Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enhanced Efficiency of Halide Perovskite Solar Cells by Solvent Engineering

Authors: Jiayou Tao; Xiaoxiang Sun; Zhijun Zou; Xinchang Zou; Fen Li; Xibin Liu; Qiyun Li; +3 Authors

Enhanced Efficiency of Halide Perovskite Solar Cells by Solvent Engineering

Abstract

During the process of the low-temperature solution fabrication, it always leads to high defects density at the grain boundaries and the interfaces, which are great barriers toward excellent solar cells. Different polar molecules of solvents are brought in to modify the surface composition by tuning the nucleation densities to obtain perovskite films with high crystallization quality. In this work, with efficiently exchanging intramolecular mechanism, high-quality MAPbI3-based perovskite films had been conveniently fabricated. Two kinds of polar molecules of dimethyl sulfoxide (DMSO) and N-methyl-2-pyrrolidone (NMP) were added to the dimethylformamide (DMF) solvent to result in perovskite films with high quality. As a result, the device with NMP solvent treatment outputs improved efficiency of 18.5% at the short-circuit current (Jsc) of 23.3 mA cm–2, with an open-circuit voltage (Voc) of 1.075 V and a fill factor of 77.1% under standard AM 1.5 solar illumination. This method of solvent engineering might provide a convenient way for the application of perovskite-based photovoltaic devices.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average