
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Syngas-fueled, chemical-looping combustion-based power plant lay-out for clean energy generation

Syngas-fueled, chemical-looping combustion-based power plant lay-out for clean energy generation
Of the various clean combustion technologies with carbon capture and sequestration (CCS) possibilities, chemical-looping combustion (CLC) promises to be an efficient and attractive method for oxidizing fuels without the energy penalty required for oxygen separation from air. The present work reports on a detailed thermodynamic analysis of 1,500 MWth, syngas-fueled, CLC-based power generation system which includes a provision for CCS. Taking account of the exothermic nature of the reaction of syngas with the selected oxygen carrier, NiO, in the fuel reactor, operating temperatures of air and fuel reactors are fixed at 900 and 908 °C, respectively. The CLC reactor system operates at atmospheric pressure on fuel/air side, and generates supercritical steam. An overall plant lay-out has been prepared such that the steam side, which is rated at 240 bar/538/552/566 °C, is very similar to that of a conventional thermal power plant making retrofitting a distinct possibility. A detailed analysis of the ideal cycle shows that a highly promising gross cycle efficiency of 41.22 % and net cycle efficiency of 36.77 % can be achieved after accounting for the energy cost of CO2 compression to 110 bar to facilitate CCS.
4 Research products, page 1 of 1
- 2017IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
