Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Industrial Managemen...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Industrial Management & Data Systems
Article . 2019 . Peer-reviewed
License: Emerald Insight Site Policies
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Developing intuitionistic fuzzy seasonality regression with particle swarm optimization for air pollution forecasting

Authors: Chung-Han Ho; Ping-Teng Chang; Kuo-Chen Hung; Kuo-Ping Lin;

Developing intuitionistic fuzzy seasonality regression with particle swarm optimization for air pollution forecasting

Abstract

PurposeThe purpose of this paper is to develop a novel intuitionistic fuzzy seasonality regression (IFSR) with particle swarm optimization (PSO) algorithms to accurately forecast air pollutions, which are typical seasonal time series data. Seasonal time series prediction is a critical topic, and some time series data contain uncertain or unpredictable factors. To handle such seasonal factors and uncertain forecasting seasonal time series data, the proposed IFSR with the PSO method effectively extends the intuitionistic fuzzy linear regression (IFLR).Design/methodology/approachThe prediction model sets up IFLR with spreads unrestricted so as to correctly approach the trend of seasonal time series data when the decomposition method is used. PSO algorithms were simultaneously employed to select the parameters of the IFSR model. In this study, IFSR with the PSO method was first compared with fuzzy seasonality regression, providing evidence that the concept of the intuitionistic fuzzy set can improve performance in forecasting the daily concentration of carbon monoxide (CO). Furthermore, the risk management system also implemented is based on the forecasting results for decision-maker.FindingsSeasonal autoregressive integrated moving average and deep belief network were then employed as comparative models for forecasting the daily concentration of CO. The empirical results of the proposed IFSR with PSO model revealed improved performance regarding forecasting accuracy, compared with the other methods.Originality/valueThis study presents IFSR with PSO to accurately forecast air pollutions. The proposed IFSR with PSO model can efficiently provide credible values of prediction for seasonal time series data in uncertain environments.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Top 10%
Average
Average