
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Insights into heliobacterial photosynthesis and physiology from the genome of Heliobacterium modesticaldum

pmid: 20130998
Insights into heliobacterial photosynthesis and physiology from the genome of Heliobacterium modesticaldum
The complete annotated genome sequence of Heliobacterium modesticaldum strain Ice1 provides our first glimpse into the genetic potential of the Heliobacteriaceae, a unique family of anoxygenic phototrophic bacteria. H. modesticaldum str. Ice1 is the first completely sequenced phototrophic representative of the Firmicutes, and heliobacteria are the only phototrophic members of this large bacterial phylum. The H. modesticaldum genome consists of a single 3.1-Mb circular chromosome with no plasmids. Of special interest are genomic features that lend insight to the physiology and ecology of heliobacteria, including the genetic inventory of the photosynthesis gene cluster. Genes involved in transport, photosynthesis, and central intermediary metabolism are described and catalogued. The obligately heterotrophic metabolism of heliobacteria is a key feature of the physiology and evolution of these phototrophs. The conspicuous absence of recognizable genes encoding the enzyme ATP-citrate lyase prevents autotrophic growth via the reverse citric acid cycle in heliobacteria, thus being a distinguishing differential characteristic between heliobacteria and green sulfur bacteria. The identities of electron carriers that enable energy conservation by cyclic light-driven electron transfer remain in question.
- University of Mary United States
- MidAmerica Nazarene University United States
- Washington State University United States
- Arizona State University United States
- MidAmerica Nazarene University United States
Electron Transport, Open Reading Frames, Nitrogen, Photosynthesis, Gram-Positive Bacteria, Bacteriochlorophylls, Carbon
Electron Transport, Open Reading Frames, Nitrogen, Photosynthesis, Gram-Positive Bacteria, Bacteriochlorophylls, Carbon
24 Research products, page 1 of 3
- 2014IsAmongTopNSimilarDocuments
- 2006IsAmongTopNSimilarDocuments
- 2010IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
- 3
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).26 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
