
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Evaluation of ERA5, MERRA-2, COSMO-REA6, NEWA and AROME to simulate wind power production over France

Evaluation of ERA5, MERRA-2, COSMO-REA6, NEWA and AROME to simulate wind power production over France
Abstract. As variable renewable energies are developing, their impacts on the electric system are growing. To anticipate these impacts, prospective studies may use wind power production simulations in the form of 1 h or 30 min time series that are often based on reanalysis wind-speed data. The purpose of this study is to assess how several wind-speed datasets are performing when used to simulate wind-power production at the local scale, when no observation is available to use bias correction methods. The study evaluates two global reanalysis (MERRA-2 from NASA and ERA5 from ECMWF), two high-resolution models (COSMO-REA6 reanalysis from DWD, AROME NWP model from Météo-France) and the New European Wind Atlas mesoscale data. The study is conducted over continental France. In a first part, wind-speed measurements (between 55 and 100 m above ground) at eight locations are directly compared to modelled wind speeds. In a second part, 30 min wind-power productions are simulated for every wind farm in France and compared to two open datasets of observed production published by the distribution and transmission system operators, either at the local scale in terms of annual bias, or aggregated at the regional scale, in terms of bias, correlations and diurnal cycles. ERA5 is very skilled, despite its low resolution compared to the regional models, but it underestimates wind speeds, especially in mountainous areas. AROME and COSMO-REA6 have better skills in complex areas and have generally low biases. MERRA-2 and NEWA have large biases and overestimate wind speeds especially at night. Several problems affecting diurnal cycles are detected in ERA5 and COSMO-REA6.
Science, Physics, QC1-999, Q, Meteorology. Climatology, QC851-999
Science, Physics, QC1-999, Q, Meteorology. Climatology, QC851-999
11 Research products, page 1 of 2
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).101 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
