Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Construction and Bui...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Construction and Building Materials
Article . 2021 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Construction and Building Materials
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aaltodoc Publication Archive
Article . 2021 . Peer-reviewed
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigation on the effect of high amount of Re-recycled RAP with Warm mix asphalt (WMA) technology

Authors: Riccardi, Chiara; Jafari, Babak; Cannone Falchetto, Augusto; Wistuba; Michael, P.; Wang, Di;

Investigation on the effect of high amount of Re-recycled RAP with Warm mix asphalt (WMA) technology

Abstract

Abstract In this paper, the effect of the combined use of re-recycled Reclaimed Asphalt Pavement (RAP) on the performance properties of Warm Mix Asphalt (WMA) was experimentally investigated at both binder and mixture scales. First, a virgin 50/70 Pen Grade binder and fresh Gabbro aggregates were used to prepare a conventional Hot Mix Asphalt (HMA) for surface layers as a reference mixture. Then, the same reference mix type was used to produce a mixture designed with 40% of RAP, 160/220 Pen Grade binder, and Sasobit to prepare the first generation of Warm Mix Asphalt (WMA-1) mixture. Next, WMA-1 was artificially aged to simulate the re-recycled RAP, and the same mix design was adopted to prepare the second generation of WMA with re-recycled RAP identified as WMA-2. Finally, fatigue and low temperature performance of the mixture was evaluated for the three recycling level (reference, first and second recycling). In addition, rheological tests were conducted on the entire set of six asphalt binders used for the mix design, including virgin 50/70, 160/220 Pen Grade binders, extracted binders from RAP, WMA-1, artificial aged WMA-1, and WMA-2. Results of asphalt mixtures indicate that WMA-2 shows better low temperaure properties compared to the other two mixtures associated with limited reduction in the fatigue response. Concerning asphalt binders, similar rheological properties were observed within virgin 50/70, and two WMA extracted binders in a wide range of temperatures. The present study supports the idea of using re-recycled RAP up to 40% together with WMA technology in the mix design.

Countries
Finland, Finland, Italy
Keywords

Reclaimed Asphalt Pavement (RAP), Warm Mix Asphalt (WMA); Reclaimed Asphalt Pavement (RAP); Re-recycling; Performance properties, Performance properties, Re-recycling, ta216, Warm Mix Asphalt (WMA)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    48
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
48
Top 10%
Top 10%
Top 1%
Green
hybrid