
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Ag nanoparticle-decorated SiO2@TiO2 hierarchical microspheres improve the efficiency of dye-sensitized solar cells

Ag nanoparticle-decorated SiO2@TiO2 hierarchical microspheres improve the efficiency of dye-sensitized solar cells
Abstract SiO2@TiO2-Ag (STA) microspheres decorated with Ag nanoparticles (Ag NPs) were prepared and assembled into the photoanode. The photoanode composed of STA microspheres and TiO2 nanoparticles (P25) was prepared by doctor blade method. UV-vis measurement indicates that the introduction of a few STA microspheres observably enhance the light scattering and capturing ability of the photoanode. The photoelectric conversion efficiency of the DSSCs with 2wt% STA photoanode increased to 7.4% from 4.3% comparing with pure P25 TiO2 nanoparticles. The configuration DSSCs have the maximum short circuit current density (Jsc) of 16.0 mA cm− 2 and open circuit voltage (Voc) of 0.780 V, which are significantly higher than the pure TiO2 DSSCs. The significant improvement of the DSSCs performance can be due to the synergistic effect of the superior light scattering of STA and the localized surface plasma resonance (LSPR) effect of Ag NPs modified on the microspheres surface.
- Anhui University China (People's Republic of)
- Anhui University China (People's Republic of)
16 Research products, page 1 of 2
- 2013IsAmongTopNSimilarDocuments
- 2012IsAmongTopNSimilarDocuments
- 2009IsAmongTopNSimilarDocuments
- 2021IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2014IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2020IsAmongTopNSimilarDocuments
- 2015IsAmongTopNSimilarDocuments
chevron_left - 1
- 2
chevron_right
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
