
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Photon-induced desorption of larger species in UV-irradiated methane (CH4) ice
Photon-induced desorption of larger species in UV-irradiated methane (CH4) ice
At the low temperatures found in the interior of dense clouds and circumstellar regions, along with H$_2$O and smaller amounts of species such as CO, CO$_2$, or CH$_3$OH, the infrared features of CH$_4$ have been observed on icy dust grains. Ultraviolet (UV) photons induce different processes in ice mantles, affecting the molecular abundances detected in the gas-phase. This work aims to understand the processes that occur in a pure CH$_4$ ice mantle submitted to UV irradiation. We studied photon-induced processes for the different photoproducts arising in the ice upon UV irradiation. Experiments were carried out in ISAC, an ultra-high vacuum chamber equipped with a cryostat and an F-type UV-lamp reproducing the secondary UV-field induced by cosmic rays in dense clouds. Infrared spectroscopy and quadrupole mass spectrometry were used to monitor the solid and gas-phase, respectively, during the formation, irradiation, and warm-up of the ice. Direct photodesorption of pure CH$_4$ was not observed. UV photons form CH$_x\cdot$ and H$\cdot$ radicals, leading to photoproducts such as H$_2$, C$_2$H$_2$, C$_2$H$_6$, and C$_3$H$_8$. Evidence for the photodesorption of C$_2$H$_2$ and photochemidesorption of C$_2$H$_6$ and C$_3$H$_8$ was found, the latter species is so far the largest molecule found to photochemidesorb. $^{13}$CH$_4$ experiments were also carried out to confirm the reliability of these results.
Earth and Planetary Astrophysics (astro-ph.EP), FOS: Physical sciences, Astrophysics - Instrumentation and Methods for Astrophysics, Instrumentation and Methods for Astrophysics (astro-ph.IM), Astrophysics - Earth and Planetary Astrophysics
Earth and Planetary Astrophysics (astro-ph.EP), FOS: Physical sciences, Astrophysics - Instrumentation and Methods for Astrophysics, Instrumentation and Methods for Astrophysics (astro-ph.IM), Astrophysics - Earth and Planetary Astrophysics
4 Research products, page 1 of 1
- 2020IsAmongTopNSimilarDocuments
- 2014IsAmongTopNSimilarDocuments
- 2005IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
