Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Rapid Communications...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Rapid Communications in Mass Spectrometry
Article . 2019 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A multi‐biomarker approach supports the use of compound‐specific stable isotope analysis of amino acids to quantify basal carbon source use in a salt marsh consumer

Authors: Jessica J. Johnson; Jessica J. Johnson; Michael J. Polito; Jill A. Olin; Jill A. Olin;

A multi‐biomarker approach supports the use of compound‐specific stable isotope analysis of amino acids to quantify basal carbon source use in a salt marsh consumer

Abstract

RationaleDetermining the flow of energy from primary producers to higher trophic levels in complex systems remains an important task for ecologists. Biomarkers can be used to trace carbon or energy sources contributing to an organism's tissues. However, different biomarkers vary in their ability to trace carbon sources based on how faithfully they transfer between trophic levels. Comparing emerging biomarker techniques with more commonly used techniques can demonstrate the relative efficacy of each in specific systems.MethodsTwo common biomarker techniques, fatty acid analysis (FAA) and bulk stable isotope analysis (SIA), and one emerging biomarker technique, compound‐specific stable isotope analysis of amino acids (CSIA‐AA), were compared to assess their ability to characterize and quantify basal carbon sources supporting the seaside sparrow (Ammodramus maritimus), a common salt marsh species. Herbivorous insect and deposit‐feeding fiddler crab biomarker values were analyzed as proxies of major terrestrial and aquatic basal carbon sources, respectively.ResultsAll three biomarker techniques indicated that both terrestrial and aquatic carbon sources were important to seaside sparrows. However, FAA could only be evaluated qualitatively, due to a currently limited understanding of trophic modification of fatty acids between primary producer and this consumer's tissues. Quantitative stable isotope (SIA or CSIA‐AA) mixing models predicted nearly equal contributions of terrestrial and aquatic carbon sources supporting seaside sparrows, yet estimates based on CSIA‐AA had greater precision.ConclusionsThese findings support the use of CSIA‐AA as an emerging tool to quantify the relative importance of basal carbon sources in salt marsh consumers. Integrating multiple biomarker techniques, with their differing benefits and limitations, will help to constrain models of carbon and energy flow in future ecosystem studies.

Keywords

Carbon Isotopes, Food Chain, Nitrogen Isotopes, Fatty Acids, Carbon, Animals, Amino Acids, Ecosystem, Sparrows

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    15
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
15
Top 10%
Average
Top 10%