Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Digitala Vetenskapli...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Biogas Production from Citrus Wastes and Chicken Feather : Pretreatment and Co-digestion

Authors: Forgács, Gergely;

Biogas Production from Citrus Wastes and Chicken Feather : Pretreatment and Co-digestion

Abstract

Anaerobic digestion is a sustainable and economically feasible waste management technology, which lowers the emission of greenhouse gases (GHGs), decreases the soil and water pollution, and reduces the dependence on fossil fuels. The present thesis investigates the anaerobic digestion of waste from food-processing industries, including citrus wastes (CWs) from juice processing and chicken feather from poultry slaughterhouses. Juice processing industries generate 15–25 million tons of citrus wastes every year. Utilization of CWs is not yet resolved, since drying or incineration processes are costly, due to the high moisture content; and biological processes are hindered by its peel oil content, primarily the D-limonene. Anaerobic digestion of untreated CWs consequently results in process failure because of the inhibiting effect of the produced and accumulated VFAs. The current thesis involves the development of a steam explosion pretreatment step. The methane yield increased by 426 % to 0.537 Nm3/kg VS by employing the steam explosion treatment at 150 °C for 20 min, which opened up the compact structure of the CWs and removed 94 % of the D-limonene. The developed process enables a production of 104 m3 methane and 8.4 L limonene from one ton of fresh CWs. Poultry slaughterhouses generate a significant amount of feather every year. Feathers are basically composed of keratin, an extremely strong and resistible structural protein. Methane yield from feather is low, around 0.18 Nm3/kg VS, which corresponds to only one third of the theoretical yield. In the present study, chemical, enzymatic and biological pretreatment methods were investigated to improve the biogas yield of feather waste. Chemical pretreatment with Ca(OH)2 under relatively mild conditions (0.1 g Ca(OH)2/g TSfeather, 100 °C, 30 min) improved the methane yield to 0.40 Nm3/kg VS, corresponding to 80 % of the theoretical yield. However, prior to digestion, the calcium needs to be removed. Enzymatic pretreatment with an alkaline endopeptidase, Savinase®, also increased the methane yield up to 0.40 Nm3/kg VS. Direct enzyme addition to the digester was tested and proved successful, making this process economically more feasible, since no additional pretreatment step is needed. For biological pretreatment, a recombinant Bacillus megaterium strain holding a high keratinase activity was developed. The new strain was able to degrade the feather keratin which resulted in an increase in the methane yield by 122 % during the following anaerobic digestion.

Akademisk avhandling som för avläggande av teknologie doktorsexamen vid Chalmers tekniska högskola försvaras vid offentlig disputation den 1 juni 2012, klockan 10.00 i KA-salen, Kemigården 4, Göteborg.

Keywords

anaerobic digestion, citrus wastes, pretreatments, feather, Industrial Biotechnology, Energi, Industriell bioteknik, economic analyses, material, co-digestion

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average