Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Software . 2018
Data sources: Datacite
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

marquetlab/GCM_compareR: Release of GCM compareR v1.0.0

Authors: Fajardo, Javier; Corcoran, Derek; Roehrdanz, Patrick; Hannah, Lee; Marquet, Pablo;

marquetlab/GCM_compareR: Release of GCM compareR v1.0.0

Abstract

GCM compareR GCM compareR is a web application developed to assist ecologists, conservationists and policy makers at understanding climate change scenarios and differences between Global Circulation Models (GCMs), and at assisting the triage of subsets of models in an objective and informed manner. GCM compareR is written in R and uses the web app development package shiny. The code of this app can be find in the project's github, https://github.com/marquetlab/GCM_compareR. The number of GCMs that are accessible to researchers and practitioners has grown large. Concretely, meteorological research centers worldwide have contributed more than 35 different GCMs for four distinct climate change scenarios as part of the Coupled Model Intercomparison Project Phase 5 (CMIP5; (Taylor, Stouffer, and Meehl 2012)). All these models have shown good performance and skill in predicting historical climatic data, but present differences among them as a result of different sources of uncertainty (including model formulation, resolution and sensitivity to initial conditions, climate noise; (Flato et al. 2013)). GCMs could be ranked by their skill at specific geographic areas, but models that most accurately predict historic data are not necessarily the most useful for making future climate projections (Knutti 2008). In practice, best practices when conducting any evaluation advice for using multi-model approaches where differences in GCMs projections are adequantely understood and assessed as uncertainty (Pierce et al. 2009, Flato et al. (2013)). Also, and even though the ideal case would use all available GCMs, researchers are often forced to work with a few selected models for computational restrictions (Barsugli et al. 2013). However, the choice of some GCMs and not other has the potential to influence results (Synes and Osborne 2011), and thus it should be made following informed and replicable procedures (P. Mote et al. 2011, Snover et al. (2013), Vano et al. (2015)). GCM compareR has been design to serve the purpose of informing about differences and similarities between GCMs and climate change scenarios, and of assisting the triage of models that best suit every used needs.

Keywords

Climate Change

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 45
    download downloads 5
  • 45
    views
    5
    downloads
    Data sourceViewsDownloads
    ZENODO455
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
45
5
Related to Research communities
Energy Research