- home
- Advanced Search
- Energy Research
- 2025-2025
- EU
- DE
- UA
- Aurora Universities Network
- Energy Research
- 2025-2025
- EU
- DE
- UA
- Aurora Universities Network
description Publicationkeyboard_double_arrow_right Article , Other literature type 2025 France, Italy, United KingdomPublisher:The Royal Society Funded by:EC | TREEADS, EC | FIRE-ADAPTEC| TREEADS ,EC| FIRE-ADAPTAuthors:Roger Puig-Gironès;
Roger Puig-Gironès
Roger Puig-Gironès in OpenAIREMarina Palmero-Iniesta;
Paulo M. Fernandes;Marina Palmero-Iniesta
Marina Palmero-Iniesta in OpenAIREImma Oliveras Menor;
+22 AuthorsImma Oliveras Menor
Imma Oliveras Menor in OpenAIRERoger Puig-Gironès;
Roger Puig-Gironès
Roger Puig-Gironès in OpenAIREMarina Palmero-Iniesta;
Paulo M. Fernandes;Marina Palmero-Iniesta
Marina Palmero-Iniesta in OpenAIREImma Oliveras Menor;
Imma Oliveras Menor
Imma Oliveras Menor in OpenAIREDavide Ascoli;
Luke T. Kelly;Davide Ascoli
Davide Ascoli in OpenAIRETristan Charles-Dominique;
Tristan Charles-Dominique
Tristan Charles-Dominique in OpenAIREAdrian Regos;
Adrian Regos
Adrian Regos in OpenAIRESandy Harrison;
Sandy Harrison
Sandy Harrison in OpenAIREDolors Armenteras;
Lluís Brotons; Sergio de-Miguel; Gian Luca Spadoni;Dolors Armenteras
Dolors Armenteras in OpenAIRERachel Carmenta;
Manoela Machado; Adrian Cardil;Rachel Carmenta
Rachel Carmenta in OpenAIREXavier Santos;
Maitane Erdozain; Guillem Canaleta;Xavier Santos
Xavier Santos in OpenAIREChristian Niel Berlinck;
Quel Vilalta-Clapés; Florent Mouillot;Christian Niel Berlinck
Christian Niel Berlinck in OpenAIREMichele Salis;
Michele Salis
Michele Salis in OpenAIREMarcello Verdinelli;
Marcello Verdinelli
Marcello Verdinelli in OpenAIREValentina Bacciu;
Valentina Bacciu
Valentina Bacciu in OpenAIREPere Pons;
Pere Pons
Pere Pons in OpenAIRENovel fire regimes are emerging worldwide and pose substantial challenges to biodiversity conservation. Addressing these challenges and mitigating their impacts on biodiversity will require developing a wide range of fire management practices. In this paper, we leverage research across taxa, ecosystems and continents to highlight strategies for applying fire knowledge in biodiversity conservation. First, we define novel fire regimes and outline different fire management practices in contemporary landscapes from different parts of the world. Next, we synthesize recent research on fire use and biodiversity, and provide a decision-making framework for biodiversity conservation under novel fire regimes. We recommend that fire management strategies for preserving biodiversity should consider both social and ecological factors, iterative learning informed by effective monitoring, and developing and testing new management actions. An integrated approach to learning about fire and biodiversity will help to navigate the complexities of novel fire regimes and preserve biodiversity in a rapidly changing world. This article is part of the theme issue ‘Novel fire regimes under climate changes and human influences: impacts, ecosystem responses and feedbacks’.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2025 . Peer-reviewedLicense: CC BYFull-Text: https://ueaeprints.uea.ac.uk/id/eprint/99061/1/Puig-Giron_s-et-al-_2025_PhilTransRSocB.pdfData sources: University of East Anglia digital repositoryPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2025 . Peer-reviewedLicense: CC BYData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2025Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2023.0449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2025 . Peer-reviewedLicense: CC BYFull-Text: https://ueaeprints.uea.ac.uk/id/eprint/99061/1/Puig-Giron_s-et-al-_2025_PhilTransRSocB.pdfData sources: University of East Anglia digital repositoryPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2025 . Peer-reviewedLicense: CC BYData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2025Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2023.0449&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Wiley Funded by:DFG, EC | eLTER PLUSDFG ,EC| eLTER PLUSAuthors:Carlos Cano‐Barbacil;
Carlos Cano‐Barbacil
Carlos Cano‐Barbacil in OpenAIREJames S. Sinclair;
James S. Sinclair
James S. Sinclair in OpenAIREEllen A. R. Welti;
Ellen A. R. Welti
Ellen A. R. Welti in OpenAIREPeter Haase;
Peter Haase
Peter Haase in OpenAIREABSTRACTFreshwater ecosystems face significant threats, including pollution, habitat loss, invasive species, and climate change. To address these challenges, management strategies and restoration efforts have been broadly implemented. Across Europe, such efforts have resulted in overall improvements in freshwater biodiversity, but recovery has stalled or failed to occur in many localities, which may be partly caused by the limited dispersal capacity of many species. Here, we used a comprehensive dataset comprising 1327 time series of freshwater macroinvertebrate communities ranging from 1968 to 2021 across 23 European countries to investigate whether dispersal capacity changes with the ecological quality of riverine systems. Sites experiencing improvements in ecological quality exhibited a net gain in species and tended to have macroinvertebrate communities containing species with stronger dispersal capacity (e.g., active aquatic and aerial dispersers, species with frequent propensity to drift, and insects with larger wings). In contrast, sites experiencing degradation of ecological quality exhibited a net loss of species and a reduction in the proportion of strong dispersers. However, this response varied extensively among countries and local sites, with some improving sites exhibiting no parallel gains in macroinvertebrates with higher dispersal capacity. Dispersal capacity of the local species pool can affect the success of freshwater ecosystem restoration projects. Management strategies should focus on enhancing landscape connectivity to create accessible “source” areas and refugia for sensitive taxa, especially as climate change reshapes habitat suitability. Additionally, biodiversity initiatives must incorporate adaptive decision‐making approaches that account for the site‐specific responses of macroinvertebrate communities to changes in ecological quality.
Global Change Biolog... arrow_drop_down Universitätsbibliographie, Universität Duisburg-EssenArticle . 2025Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Universitätsbibliographie, Universität Duisburg-EssenArticle . 2025Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable 2025Publisher:Zenodo Funded by:EC | HEPHAESTUSEC| HEPHAESTUSThis deliverable documents the establishment of the HEPHAESTUS Green Living Lab (HGLL) on Bornholm, Denmark. It outlines the conceptual foundations, co-creation processes, stakeholder engagement, implementation activities, and evaluation framework used to develop the Living Lab. Guided by New European Bauhaus values and Living Lab principles, the HGLL connects craft heritage with circular economy experimentation, positioning Bornholm as a “test island” for sustainable innovation in the craft sector.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.15117234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.15117234&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 NetherlandsPublisher:Elsevier BV Funded by:EC | ADAPTEDEC| ADAPTEDThe energy transition is crucial to unlocking the potential of the Paris Agreement and the global climate goals. To meet the projected demand for the transition, critical mineral extraction is expected to significantly increase in countries of the global South. The critical mineral mining boom has the potential to drive economic development, contributing to the achievement of the Sustainable Development Goals (SDGs) under the 2030 Agenda. However, considering historical tensions between extractive industries and development, critical mineral mining risks exacerbating socio-economic inequalities and poverty. Against this background, the paper investigates factors influencing the local socio-economic impact of critical mineral extraction. Using satellite data and mining data from the S&P database, the study examines the socio-economic effects of 94 critical mineral mines that opened in Africa between 2000 and 2020, focusing on mineral-specific attributes and contextual factors, as well as factors related to governance. Findings indicate that critical mineral extraction can have significant positive impacts on local socioeconomic activity, particularly in areas distant from existing infrastructure and urban centers. The results highlight the complex role of institutional quality in mediating the socio-economic impact of mines, and shift attention to the underlying factors that shape institutional performance to deliver local benefits.
The Extractive Indus... arrow_drop_down The Extractive Industries and SocietyArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe Extractive Industries and SocietyArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.exis.2024.101565&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert The Extractive Indus... arrow_drop_down The Extractive Industries and SocietyArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe Extractive Industries and SocietyArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.exis.2024.101565&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG doi: 10.3390/en18030625
The comprehensive change from known, classical energy production methods to the increased use of renewable energy requires new methods in the field of efficient application and use of renewable energy. The urban energy supply presents complex challenges in improving efficiency; therefore, the prediction of the dynamical availability of energy is required. Several approaches have been explored, including statistical models and machine learning using historical data and numerical weather prediction models using mathematical models of the atmosphere and weather conditions. Accurately forecasting renewable energy production involves analyzing factors such as related weather conditions, conversion systems, and their locations, which influence both energy availability and yield. This study focuses on the short-term forecasting of wind and photovoltaic (PV) energy using historical data and machine learning approaches, aiming for accurate 8 h predictions. The goal is to develop models capable of producing accurate short-term forecasts of energy production from both resources (solar and wind), suitable for later use in a model predictive control scheme where generation and demand, as well as storage, must be considered together. Methods include regression trees, support vector regression, and regression neural networks. The main idea in this work is to use past and future information in the model. Inputs for the PV model are past PV generation and future solar irradiance, while the wind model uses past wind generation and future wind speed data. The performance of the model is evaluated over the entire year. Two scenarios are tested: one with perfect future predictions of wind speed and solar irradiance, and another considered realistic situation where perfect future prediction is not possible, and uncertain prediction is accounted for by incorporating noise models. The results of the second scenario were further improved using the output filtering method. This study shows the advantages and disadvantages of different methods, as well as the accuracy that can be expected in principle. The results show that the regression neural network has the best performance in predicting PV and wind generation compared to other methods, with an RMSE of 0.1809 for PV and 5.3154 for wind, and a Pearson coefficient of 0.9455 for PV and 0.9632 for wind.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18030625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18030625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025 NetherlandsPublisher:Wiley Funded by:EC | FireIceEC| FireIceAuthors:Thomas A. J. Janssen;
Thomas A. J. Janssen
Thomas A. J. Janssen in OpenAIRESander Veraverbeke;
Sander Veraverbeke
Sander Veraverbeke in OpenAIREABSTRACTBoreal forest regions, including East Siberia, have experienced elevated fire activity in recent years, leading to record‐breaking greenhouse gas emissions and severe air pollution. However, our understanding of the factors that eventually halt fire spread and thus limit fire growth remains incomplete, hindering our ability to model their dynamics and predict their impacts. We investigated the locations and timing of 2.2 million fire stops—defined as 300 m unburned pixels along fire perimeters—across the vast East Siberian taiga. Fire stops were retrieved from remote sensing data covering over 27,000 individual fires that collectively burned 80 Mha between 2012 and 2022. Several geospatial datasets, including hourly fire weather data and landscape variables, were used to identify the factors contributing to individual fire stops. Our analysis attributed 87% of all fire stops to a statistically significant (p < 0.01) change in one or more of these drivers, with fire‐weather drivers limiting fire growth over time and landscape drivers constraining it across space. We found clear regional and temporal variations in the importance of these drivers. For instance, landscape drivers—such as less flammable land cover and the presence of roads—were key constraints on fire growth in southeastern Siberia, where the landscape is more populated and fragmented. In contrast, fire weather was the primary constraint on fire growth in the remote northern taiga. Additionally, in central Yakutia, a major fire hotspot in recent years, fuel limitations from previous fires increasingly restricted fire spread. The methodology we present is adaptable to other biomes and can be applied globally, providing a framework for future attribution studies on global fire growth limitations. In northeast Siberia, we found that with increasing droughts and heatwaves, remote northern fires could potentially grow even larger in the future, with major implications for the global carbon cycle and climate.
Global Change Biolog... arrow_drop_down Wageningen Staff PublicationsArticle . 2025License: CC BYData sources: Wageningen Staff PublicationsGlobal Change BiologyArticle . 2025add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Wageningen Staff PublicationsArticle . 2025License: CC BYData sources: Wageningen Staff PublicationsGlobal Change BiologyArticle . 2025add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70130&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 United KingdomPublisher:MDPI AG Authors:Joana Verheyen;
Christian Thommessen; Jürgen Roes;Joana Verheyen
Joana Verheyen in OpenAIREHarry Hoster;
Harry Hoster
Harry Hoster in OpenAIREdoi: 10.3390/en18030645
The ongoing transformation of district heating systems (DHSs) aims to reduce emissions and increase renewable energy sources. The objective of this work is to integrate solar thermal (ST) and seasonal aquifer thermal energy storage (ATES) in various scenarios applied to a large DHS. Mixed-integer linear programming (MILP) is used to develop a comprehensive model that minimizes operating costs, including heat pumps (HPs), combined heat and power (CHP) units, electric heat boilers (EHBs), heat-only boilers (HOBs), short-term thermal energy storage (TES), and ATES. Different ATES scenarios are compared to a reference without seasonal TES (potential of 15.3 GWh of ST). An ATES system with an injection well temperature of about 55 °C has an overall efficiency of 49.8% (58.6% with additional HPs) and increases the integrable amount of ST by 178% (42.5 GWh). For the scenario with an injection well temperature of 20 °C and HPs, the efficiency is 86.6% and ST is increased by 276% (57.5 GWh). The HOB heat supply is reduced by 8.9% up to 36.6%. However, the integration of an ATES is not always economically or environmentally beneficial. There is a high dependency on the configurations, prices, or emissions allocated to electricity procurement. Further research is of interest to investigate the sensitivity of the correlations and to apply a multi-objective MILP optimization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18030645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18030645&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 PortugalPublisher:Wiley Authors:Eva Kröll;
Lara Devecioglu;Eva Kröll
Eva Kröll in OpenAIREAndrei N. Salak;
Lukas Piotrowsky; +2 AuthorsAndrei N. Salak
Andrei N. Salak in OpenAIREEva Kröll;
Lara Devecioglu;Eva Kröll
Eva Kröll in OpenAIREAndrei N. Salak;
Lukas Piotrowsky;Andrei N. Salak
Andrei N. Salak in OpenAIREVladimir V. Shvartsman;
Doru C. Lupascu;Vladimir V. Shvartsman
Vladimir V. Shvartsman in OpenAIREdoi: 10.1111/jace.20413
handle: 10773/44669
AbstractLead‐free relaxor ferroelectrics are promising materials for energy storage applications. To find new material systems for electrostatic capacitors, many researches have dedicated their work to formulate new ecologically safe compositions. In our study, we have prepared (1−x)Ba(Ti0.93Sn0.07)O3−xBiYO3 (BTS7‐BY) solid solutions via the solid‐state method. The parent composition, Ba(Ti0.93Sn0.07)O3 is a ferroelectric‐relaxor crossover material. It reduces its remanent polarization while still maintaining a high maximum polarization. Moderate substitution with BiYO3 further lowers the remanent polarization, resulting in slimmer polarization loops and increasing the energy storage efficiency to 90 %. Samples with x ≥ 0.06 show a true relaxor behavior with linear‐like polarization loops with character of weakly‐coupled relaxors. Breakdown strength measurements reveal a reduced breakdown strength with increasing BY content. Further investigations of the electrostriction, the band gap, and the electrical microstructure link the homogeneity and grain size of the microstructure to the resulting breakdown strength. This highlights the importance of a homogenous and small‐grained microstructure for enhancing the energy storage properties. Samples with x = 0.06 exhibit the best energy storage properties with a recoverable energy density of 1.11 J/cm3 at 189 kV/cm with an energy storage efficiency of 74%.
Journal of the Ameri... arrow_drop_down Journal of the American Ceramic SocietyArticle . 2025 . Peer-reviewedLicense: CC BYData sources: CrossrefRepositório Institucional da Universidade de AveiroArticle . 2025License: CC BYData sources: Repositório Institucional da Universidade de AveiroUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2025Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jace.20413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of the Ameri... arrow_drop_down Journal of the American Ceramic SocietyArticle . 2025 . Peer-reviewedLicense: CC BYData sources: CrossrefRepositório Institucional da Universidade de AveiroArticle . 2025License: CC BYData sources: Repositório Institucional da Universidade de AveiroUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2025Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jace.20413&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 NetherlandsPublisher:American Chemical Society (ACS) Funded by:EC | SOL, DFGEC| SOL ,DFGAuthors:Ivo H. M. van Stokkum;
Jakub Dostal;Ivo H. M. van Stokkum
Ivo H. M. van Stokkum in OpenAIREThanh Nhut Do;
Lifei Fu; +6 AuthorsThanh Nhut Do
Thanh Nhut Do in OpenAIREIvo H. M. van Stokkum;
Jakub Dostal;Ivo H. M. van Stokkum
Ivo H. M. van Stokkum in OpenAIREThanh Nhut Do;
Lifei Fu; Gregor Madej; Christine Ziegler;Thanh Nhut Do
Thanh Nhut Do in OpenAIREPeter Hegemann;
Miroslav Kloz;Peter Hegemann
Peter Hegemann in OpenAIREMatthias Broser;
Matthias Broser
Matthias Broser in OpenAIREJohn T. M. Kennis;
John T. M. Kennis
John T. M. Kennis in OpenAIRENeorhodopsin (NeoR) is a newly discovered fungal bistable rhodopsin that reversibly photoswitches between UV- and near-IR absorbing states denoted NeoR367 and NeoR690, respectively. NeoR367 represents a deprotonated retinal Schiff base (RSB), while NeoR690 represents a protonated RSB. Cryo-EM studies indicate that NeoR forms homodimers with 29 Å center-to-center distance between the retinal chromophores. UV excitation of NeoR367 takes place to an optically allowed S3 state of 1Bu+ symmetry, which rapidly converts to a low-lying optically forbidden S1 state of 2Ag- symmetry in 39 fs, followed by a multiexponential decay to the ground state on the 1-100 ps time scale. A theoretically predicted nπ* (S2) state does not get populated in any appreciable transient concentration during the excited-state relaxation cascade. We observe an intradimer retinal to retinal excitation energy transfer (EET) process from the NeoR367 S1 state to NeoR690, in competition with photoproduct formation. To quantitatively assess the EET mechanism and rate, we experimentally addressed and modeled the EET process under varying NeoR367-NeoR690 photoequilibrium conditions and determined the EET rate at (200 ps)-1. The NeoR367 S1 state shows a weak stimulated emission band in the near-IR around 700 nm, which may result from mixing with an intramolecular charge-transfer (ICT) state, enhancing the transition dipole moment of the S1-S0 transition and possibly facilitating the EET process. We suggest that EET may bear general relevance to the function of bistable multiwavelength rhodopsin oligomers.
Journal of the Ameri... arrow_drop_down Journal of the American Chemical SocietyArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jacs.5c01276&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Journal of the Ameri... arrow_drop_down Journal of the American Chemical SocietyArticle . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jacs.5c01276&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Authors: Ali Al Humairi; Zuhair A. Al Hemyari;Hayat El Asri;
Hayat El Asri
Hayat El Asri in OpenAIREPeter Jung;
Peter Jung
Peter Jung in OpenAIREdoi: 10.3390/asi8010025
This paper focuses on the modeling of the performance of photovoltaic systems based on advanced techniques. This research leverages real-world data from the Shams Solar Facility at the German University of Technology in Oman to explore the application of Linear, Lasso, Ridge, and Elastic Net Regressions to predict and optimize the performance of photovoltaic systems. A comprehensive dataset of 36,851 observations of environmental and operational conditions forms the basis of the analysis. The research identifies the strengths and limitations of these modeling techniques for an accurate forecast of energy output under various scenarios. The comparative analysis highlights the precision and reliability of each regression method and offers actionable insights into their practical implementation. The findings highlight the importance of more sophisticated modeling approaches in increasing the knowledge of photovoltaic system dynamics and optimizing their performance. This research facilitates the advancement in solar energy systems and provides critical recommendations for the improvement in efficiency and reliability of photovoltaic installations under different geographic and climatic settings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/asi8010025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/asi8010025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu