- home
- Advanced Search
- Energy Research
- 2021-2025
- NL
- GB
- UA
- Aurora Universities Network
- Energy Research
- 2021-2025
- NL
- GB
- UA
- Aurora Universities Network
description Publicationkeyboard_double_arrow_right Article 2022 DenmarkPublisher:Elsevier BV Funded by:EC | RECONECTEC| RECONECTAuthors:Skrydstrup, Julie;
Skrydstrup, Julie
Skrydstrup, Julie in OpenAIRELöwe, Roland;
Gregersen, Ida Bülow;Löwe, Roland
Löwe, Roland in OpenAIREKoetse, Mark;
+3 AuthorsKoetse, Mark
Koetse, Mark in OpenAIRESkrydstrup, Julie;
Skrydstrup, Julie
Skrydstrup, Julie in OpenAIRELöwe, Roland;
Gregersen, Ida Bülow;Löwe, Roland
Löwe, Roland in OpenAIREKoetse, Mark;
Aerts, Jeroen C.J.H.;Koetse, Mark
Koetse, Mark in OpenAIREde Ruiter, Marleen;
de Ruiter, Marleen
de Ruiter, Marleen in OpenAIREArnbjerg-Nielsen, Karsten;
Arnbjerg-Nielsen, Karsten
Arnbjerg-Nielsen, Karsten in OpenAIRENature-based solutions may actively reduce hydro-meteorological risks in urban areas as a part of climate change adaptation. However, the main reason for the increasing uptake of this type of solution is their many benefits for the local inhabitants, including recreational value. Previous studies on recreational value focus on studies of existing nature sites that are often much larger than what is considered as new NBS for flood adaptation studies in urban areas. We thus prioritized studies with smaller areas and nature types suitable for urban flood adaptation and divided them into four common nature types for urban flood adaptation: sustainable urban drainage systems, city parks, nature areas and rivers. We identified 23 primary valuation studies, including both stated and revealed preference studies, and derived two value transfer functions based on meta-regression analysis on existing areas. We investigated trends between values and variables and found that for the purpose of planning of new NBS the size of NBS and population density were determining factors of recreational value. For existing NBS the maximum travelling distance may be included as well. We find that existing state-of-the-art studies overestimate the recreational with more than a factor of 4 for NBS sizes below 5 ha. Our results are valid in a European context for nature-based solutions below 250 ha and can be applied across different NBS types and sizes.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2022Data sources: Online Research Database In TechnologyJournal of Environmental ManagementArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.115724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 16 Powered bymore_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2022Data sources: Online Research Database In TechnologyJournal of Environmental ManagementArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.115724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 DenmarkPublisher:Elsevier BV Funded by:EC | RECONECTEC| RECONECTAuthors:Skrydstrup, Julie;
Skrydstrup, Julie
Skrydstrup, Julie in OpenAIRELöwe, Roland;
Gregersen, Ida Bülow;Löwe, Roland
Löwe, Roland in OpenAIREKoetse, Mark;
+3 AuthorsKoetse, Mark
Koetse, Mark in OpenAIRESkrydstrup, Julie;
Skrydstrup, Julie
Skrydstrup, Julie in OpenAIRELöwe, Roland;
Gregersen, Ida Bülow;Löwe, Roland
Löwe, Roland in OpenAIREKoetse, Mark;
Aerts, Jeroen C.J.H.;Koetse, Mark
Koetse, Mark in OpenAIREde Ruiter, Marleen;
de Ruiter, Marleen
de Ruiter, Marleen in OpenAIREArnbjerg-Nielsen, Karsten;
Arnbjerg-Nielsen, Karsten
Arnbjerg-Nielsen, Karsten in OpenAIRENature-based solutions may actively reduce hydro-meteorological risks in urban areas as a part of climate change adaptation. However, the main reason for the increasing uptake of this type of solution is their many benefits for the local inhabitants, including recreational value. Previous studies on recreational value focus on studies of existing nature sites that are often much larger than what is considered as new NBS for flood adaptation studies in urban areas. We thus prioritized studies with smaller areas and nature types suitable for urban flood adaptation and divided them into four common nature types for urban flood adaptation: sustainable urban drainage systems, city parks, nature areas and rivers. We identified 23 primary valuation studies, including both stated and revealed preference studies, and derived two value transfer functions based on meta-regression analysis on existing areas. We investigated trends between values and variables and found that for the purpose of planning of new NBS the size of NBS and population density were determining factors of recreational value. For existing NBS the maximum travelling distance may be included as well. We find that existing state-of-the-art studies overestimate the recreational with more than a factor of 4 for NBS sizes below 5 ha. Our results are valid in a European context for nature-based solutions below 250 ha and can be applied across different NBS types and sizes.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2022Data sources: Online Research Database In TechnologyJournal of Environmental ManagementArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.115724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 16 Powered bymore_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefOnline Research Database In TechnologyArticle . 2022Data sources: Online Research Database In TechnologyJournal of Environmental ManagementArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2022.115724&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Italy, SwitzerlandPublisher:Elsevier BV Funded by:AKA | Developing the plasma pow..., EC | EUROfusionAKA| Developing the plasma power exhaust scenario for fusion reactors ,EC| EUROfusionAuthors:Subba, F.;
Coster, D. P.; Xiang, L.; Militello, F.; +10 AuthorsSubba, F.
Subba, F. in OpenAIRESubba, F.;
Coster, D. P.; Xiang, L.; Militello, F.; Lunt, T.; Moulton, D.; Reimerdes, H.; Wensing, M.;Subba, F.
Subba, F. in OpenAIREWischmeier, M.;
Wischmeier, M.
Wischmeier, M. in OpenAIREAmbrosino, R.;
Bonnin, X.; Siccinio; M.;Ambrosino, R.
Ambrosino, R. in OpenAIREAho-Mantila, Leena;
Aho-Mantila, Leena
Aho-Mantila, Leena in OpenAIREA double-null configuration is being considered for the EU-DEMO, due to its potential benefits for power exhaust arising from the use of two active divertors and magnetically disconnected low- and high-field sides. Using systematic parameter scans in fluid simulations, we have investigated the divertor power exhaust in the EU-DEMO in a connected double-null configuration, and compared the edge plasma properties to those obtained in a single-null configuration under detached conditions anticipated for reactor operation. Neglecting drift effects and kinetic behaviour of the neutrals, no clear benefits of the double-null configuration could yet be identified for the radiation pattern and power mitigation on open field lines. Future work should address the aforementioned physics as well as the effect of the additional X-point on core radiation.
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2021License: CC BY NC NDData sources: Publications Open Repository TOrinoNuclear Materials and EnergyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2021License: CC BY NC NDData sources: VTT Research Information SystemNuclear Materials and EnergyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2020.100886&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2021License: CC BY NC NDData sources: Publications Open Repository TOrinoNuclear Materials and EnergyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2021License: CC BY NC NDData sources: VTT Research Information SystemNuclear Materials and EnergyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2020.100886&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Italy, SwitzerlandPublisher:Elsevier BV Funded by:AKA | Developing the plasma pow..., EC | EUROfusionAKA| Developing the plasma power exhaust scenario for fusion reactors ,EC| EUROfusionAuthors:Subba, F.;
Coster, D. P.; Xiang, L.; Militello, F.; +10 AuthorsSubba, F.
Subba, F. in OpenAIRESubba, F.;
Coster, D. P.; Xiang, L.; Militello, F.; Lunt, T.; Moulton, D.; Reimerdes, H.; Wensing, M.;Subba, F.
Subba, F. in OpenAIREWischmeier, M.;
Wischmeier, M.
Wischmeier, M. in OpenAIREAmbrosino, R.;
Bonnin, X.; Siccinio; M.;Ambrosino, R.
Ambrosino, R. in OpenAIREAho-Mantila, Leena;
Aho-Mantila, Leena
Aho-Mantila, Leena in OpenAIREA double-null configuration is being considered for the EU-DEMO, due to its potential benefits for power exhaust arising from the use of two active divertors and magnetically disconnected low- and high-field sides. Using systematic parameter scans in fluid simulations, we have investigated the divertor power exhaust in the EU-DEMO in a connected double-null configuration, and compared the edge plasma properties to those obtained in a single-null configuration under detached conditions anticipated for reactor operation. Neglecting drift effects and kinetic behaviour of the neutrals, no clear benefits of the double-null configuration could yet be identified for the radiation pattern and power mitigation on open field lines. Future work should address the aforementioned physics as well as the effect of the additional X-point on core radiation.
Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2021License: CC BY NC NDData sources: Publications Open Repository TOrinoNuclear Materials and EnergyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2021License: CC BY NC NDData sources: VTT Research Information SystemNuclear Materials and EnergyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2020.100886&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Publications Open Re... arrow_drop_down Publications Open Repository TOrinoArticle . 2021License: CC BY NC NDData sources: Publications Open Repository TOrinoNuclear Materials and EnergyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefNuclear Materials and EnergyArticle . 2021License: CC BY NC NDData sources: VTT Research Information SystemNuclear Materials and EnergyArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2020.100886&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 04 Jul 2023 France, Italy, Germany, Denmark, United States, France, New Zealand, Spain, Denmark, Czech Republic, Czech Republic, Switzerland, New ZealandPublisher:Springer Science and Business Media LLC Funded by:SNSF | ICOS-CH: Integrated Carbo..., SNSF | Robust models for assessi..., NSF | BII-Implementation: The c... +4 projectsSNSF| ICOS-CH: Integrated Carbon Observation System in Switzerland ,SNSF| Robust models for assessing the effectiveness of technologies and managements to reduce N2O emissions from grazed pastures (Models4Pastures) ,NSF| BII-Implementation: The causes and consequences of plant biodiversity across scales in a rapidly changing world ,SNSF| ICOS-CH Phase 3 ,EC| USMILE ,SNSF| ICOS-CH Phase 2 ,EC| TERRAFORMAuthors:Ulisse Gomarasca;
Mirco Migliavacca;Ulisse Gomarasca
Ulisse Gomarasca in OpenAIREJens Kattge;
Jens Kattge
Jens Kattge in OpenAIREJacob A. Nelson;
+40 AuthorsJacob A. Nelson
Jacob A. Nelson in OpenAIREUlisse Gomarasca;
Mirco Migliavacca;Ulisse Gomarasca
Ulisse Gomarasca in OpenAIREJens Kattge;
Jens Kattge
Jens Kattge in OpenAIREJacob A. Nelson;
Ülo Niinemets;Jacob A. Nelson
Jacob A. Nelson in OpenAIREChristian Wirth;
Alessandro Cescatti;Christian Wirth
Christian Wirth in OpenAIREMichael Bahn;
Michael Bahn
Michael Bahn in OpenAIRERichard Nair;
Richard Nair
Richard Nair in OpenAIREAlicia T. R. Acosta;
Alicia T. R. Acosta
Alicia T. R. Acosta in OpenAIREM. Altaf Arain;
M. Altaf Arain
M. Altaf Arain in OpenAIREMirela Beloiu;
Mirela Beloiu
Mirela Beloiu in OpenAIRET. Andrew Black;
T. Andrew Black
T. Andrew Black in OpenAIREHans Henrik Bruun;
Hans Henrik Bruun
Hans Henrik Bruun in OpenAIRESolveig Franziska Bucher;
Solveig Franziska Bucher
Solveig Franziska Bucher in OpenAIRENina Buchmann;
Nina Buchmann
Nina Buchmann in OpenAIREChaeho Byun;
Chaeho Byun
Chaeho Byun in OpenAIREArnaud Carrara;
Arnaud Carrara
Arnaud Carrara in OpenAIREAdriano Conte;
Adriano Conte
Adriano Conte in OpenAIREAna C. da Silva;
Ana C. da Silva
Ana C. da Silva in OpenAIREGregory Duveiller;
Gregory Duveiller
Gregory Duveiller in OpenAIRESilvano Fares;
Silvano Fares
Silvano Fares in OpenAIREAndreas Ibrom;
Andreas Ibrom
Andreas Ibrom in OpenAIREAlexander Knohl;
Benjamin Komac;Alexander Knohl
Alexander Knohl in OpenAIREJean-Marc Limousin;
Jean-Marc Limousin
Jean-Marc Limousin in OpenAIREChristopher H. Lusk;
Christopher H. Lusk
Christopher H. Lusk in OpenAIREMiguel D. Mahecha;
David Martini; Vanessa Minden;Miguel D. Mahecha
Miguel D. Mahecha in OpenAIRELeonardo Montagnani;
Leonardo Montagnani
Leonardo Montagnani in OpenAIREAkira S. Mori;
Akira S. Mori
Akira S. Mori in OpenAIREYusuke Onoda;
Yusuke Onoda
Yusuke Onoda in OpenAIREJosep Peñuelas;
Josep Peñuelas
Josep Peñuelas in OpenAIREOscar Perez-Priego;
Peter Poschlod; Thomas L. Powell;Oscar Perez-Priego
Oscar Perez-Priego in OpenAIREPeter B. Reich;
Peter B. Reich
Peter B. Reich in OpenAIRELadislav Šigut;
Ladislav Šigut
Ladislav Šigut in OpenAIREPeter M. van Bodegom;
Peter M. van Bodegom
Peter M. van Bodegom in OpenAIRESophia Walther;
Sophia Walther
Sophia Walther in OpenAIREGeorg Wohlfahrt;
Georg Wohlfahrt
Georg Wohlfahrt in OpenAIREIan J. Wright;
Ian J. Wright
Ian J. Wright in OpenAIREMarkus Reichstein;
Markus Reichstein
Markus Reichstein in OpenAIREpmid: 37402725
pmc: PMC10319885
AbstractFundamental axes of variation in plant traits result from trade-offs between costs and benefits of resource-use strategies at the leaf scale. However, it is unclear whether similar trade-offs propagate to the ecosystem level. Here, we test whether trait correlation patterns predicted by three well-known leaf- and plant-level coordination theories – the leaf economics spectrum, the global spectrum of plant form and function, and the least-cost hypothesis – are also observed between community mean traits and ecosystem processes. We combined ecosystem functional properties from FLUXNET sites, vegetation properties, and community mean plant traits into three corresponding principal component analyses. We find that the leaf economics spectrum (90 sites), the global spectrum of plant form and function (89 sites), and the least-cost hypothesis (82 sites) all propagate at the ecosystem level. However, we also find evidence of additional scale-emergent properties. Evaluating the coordination of ecosystem functional properties may aid the development of more realistic global dynamic vegetation models with critical empirical data, reducing the uncertainty of climate change projections.
IRIS Cnr arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/4xv8d89vData sources: Bielefeld Academic Search Engine (BASE)The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/16163Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In TechnologyDiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABCopenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of ScienceseScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università degli Studi Roma TreArticle . 2023Data sources: Archivio della Ricerca - Università degli Studi Roma TreInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-39572-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/4xv8d89vData sources: Bielefeld Academic Search Engine (BASE)The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/16163Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In TechnologyDiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABCopenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of ScienceseScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università degli Studi Roma TreArticle . 2023Data sources: Archivio della Ricerca - Università degli Studi Roma TreInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-39572-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 04 Jul 2023 France, Italy, Germany, Denmark, United States, France, New Zealand, Spain, Denmark, Czech Republic, Czech Republic, Switzerland, New ZealandPublisher:Springer Science and Business Media LLC Funded by:SNSF | ICOS-CH: Integrated Carbo..., SNSF | Robust models for assessi..., NSF | BII-Implementation: The c... +4 projectsSNSF| ICOS-CH: Integrated Carbon Observation System in Switzerland ,SNSF| Robust models for assessing the effectiveness of technologies and managements to reduce N2O emissions from grazed pastures (Models4Pastures) ,NSF| BII-Implementation: The causes and consequences of plant biodiversity across scales in a rapidly changing world ,SNSF| ICOS-CH Phase 3 ,EC| USMILE ,SNSF| ICOS-CH Phase 2 ,EC| TERRAFORMAuthors:Ulisse Gomarasca;
Mirco Migliavacca;Ulisse Gomarasca
Ulisse Gomarasca in OpenAIREJens Kattge;
Jens Kattge
Jens Kattge in OpenAIREJacob A. Nelson;
+40 AuthorsJacob A. Nelson
Jacob A. Nelson in OpenAIREUlisse Gomarasca;
Mirco Migliavacca;Ulisse Gomarasca
Ulisse Gomarasca in OpenAIREJens Kattge;
Jens Kattge
Jens Kattge in OpenAIREJacob A. Nelson;
Ülo Niinemets;Jacob A. Nelson
Jacob A. Nelson in OpenAIREChristian Wirth;
Alessandro Cescatti;Christian Wirth
Christian Wirth in OpenAIREMichael Bahn;
Michael Bahn
Michael Bahn in OpenAIRERichard Nair;
Richard Nair
Richard Nair in OpenAIREAlicia T. R. Acosta;
Alicia T. R. Acosta
Alicia T. R. Acosta in OpenAIREM. Altaf Arain;
M. Altaf Arain
M. Altaf Arain in OpenAIREMirela Beloiu;
Mirela Beloiu
Mirela Beloiu in OpenAIRET. Andrew Black;
T. Andrew Black
T. Andrew Black in OpenAIREHans Henrik Bruun;
Hans Henrik Bruun
Hans Henrik Bruun in OpenAIRESolveig Franziska Bucher;
Solveig Franziska Bucher
Solveig Franziska Bucher in OpenAIRENina Buchmann;
Nina Buchmann
Nina Buchmann in OpenAIREChaeho Byun;
Chaeho Byun
Chaeho Byun in OpenAIREArnaud Carrara;
Arnaud Carrara
Arnaud Carrara in OpenAIREAdriano Conte;
Adriano Conte
Adriano Conte in OpenAIREAna C. da Silva;
Ana C. da Silva
Ana C. da Silva in OpenAIREGregory Duveiller;
Gregory Duveiller
Gregory Duveiller in OpenAIRESilvano Fares;
Silvano Fares
Silvano Fares in OpenAIREAndreas Ibrom;
Andreas Ibrom
Andreas Ibrom in OpenAIREAlexander Knohl;
Benjamin Komac;Alexander Knohl
Alexander Knohl in OpenAIREJean-Marc Limousin;
Jean-Marc Limousin
Jean-Marc Limousin in OpenAIREChristopher H. Lusk;
Christopher H. Lusk
Christopher H. Lusk in OpenAIREMiguel D. Mahecha;
David Martini; Vanessa Minden;Miguel D. Mahecha
Miguel D. Mahecha in OpenAIRELeonardo Montagnani;
Leonardo Montagnani
Leonardo Montagnani in OpenAIREAkira S. Mori;
Akira S. Mori
Akira S. Mori in OpenAIREYusuke Onoda;
Yusuke Onoda
Yusuke Onoda in OpenAIREJosep Peñuelas;
Josep Peñuelas
Josep Peñuelas in OpenAIREOscar Perez-Priego;
Peter Poschlod; Thomas L. Powell;Oscar Perez-Priego
Oscar Perez-Priego in OpenAIREPeter B. Reich;
Peter B. Reich
Peter B. Reich in OpenAIRELadislav Šigut;
Ladislav Šigut
Ladislav Šigut in OpenAIREPeter M. van Bodegom;
Peter M. van Bodegom
Peter M. van Bodegom in OpenAIRESophia Walther;
Sophia Walther
Sophia Walther in OpenAIREGeorg Wohlfahrt;
Georg Wohlfahrt
Georg Wohlfahrt in OpenAIREIan J. Wright;
Ian J. Wright
Ian J. Wright in OpenAIREMarkus Reichstein;
Markus Reichstein
Markus Reichstein in OpenAIREpmid: 37402725
pmc: PMC10319885
AbstractFundamental axes of variation in plant traits result from trade-offs between costs and benefits of resource-use strategies at the leaf scale. However, it is unclear whether similar trade-offs propagate to the ecosystem level. Here, we test whether trait correlation patterns predicted by three well-known leaf- and plant-level coordination theories – the leaf economics spectrum, the global spectrum of plant form and function, and the least-cost hypothesis – are also observed between community mean traits and ecosystem processes. We combined ecosystem functional properties from FLUXNET sites, vegetation properties, and community mean plant traits into three corresponding principal component analyses. We find that the leaf economics spectrum (90 sites), the global spectrum of plant form and function (89 sites), and the least-cost hypothesis (82 sites) all propagate at the ecosystem level. However, we also find evidence of additional scale-emergent properties. Evaluating the coordination of ecosystem functional properties may aid the development of more realistic global dynamic vegetation models with critical empirical data, reducing the uncertainty of climate change projections.
IRIS Cnr arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/4xv8d89vData sources: Bielefeld Academic Search Engine (BASE)The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/16163Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In TechnologyDiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABCopenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of ScienceseScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università degli Studi Roma TreArticle . 2023Data sources: Archivio della Ricerca - Università degli Studi Roma TreInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-39572-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BYFull-Text: https://escholarship.org/uc/item/4xv8d89vData sources: Bielefeld Academic Search Engine (BASE)The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/16163Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2023Data sources: Online Research Database In TechnologyDiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABCopenhagen University Research Information SystemArticle . 2023Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of ScienceseScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaUniversity of Western Sydney (UWS): Research DirectArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università degli Studi Roma TreArticle . 2023Data sources: Archivio della Ricerca - Università degli Studi Roma TreInstitut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-39572-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Italy, United KingdomPublisher:Elsevier BV Authors:Roberto Chirone;
Roberto Chirone
Roberto Chirone in OpenAIREAndrea Paulillo;
Antonio Coppola;Andrea Paulillo
Andrea Paulillo in OpenAIREFabrizio Scala;
Fabrizio Scala
Fabrizio Scala in OpenAIREhandle: 11588/915138 , 20.500.14243/415808
The production of synthetic methane using CO from flue gases and green hydrogen appears to be a promising way to combine the concepts of renewable energy, chemical storage, and utilization of CO. Recently, a new reactor configuration for catalytic methanation has been proposed, integrating sorption-enhanced methanation and chemical looping in interconnected fluidized bed systems. This configuration would ensure high methane yields while keeping good temperature control and low operating pressure. In this work, such novel system layout for the catalytic production of methane was combined with a calcium looping unit for CO capture from flue gases of a coal-fired power plant, and with a water electrolyzer sustained by renewable energy. The integrated layout offers a series of advantages deriving from the integration of different mass and energy flows of the different sections of the plant. The performance of this latter was assessed in terms of construction and production costs, as well as from an environmental point of view: a life cycle assessment was carried out to quantify the environmental impact of all process units. Results of the techno-economic analysis indicated that the production cost of methane is higher than that of natural gas (0.66 vs 0.17 EUR/Nm), but lower than that of biomethane (1 EUR/Nm). The largest impact on such costs comes from the PEM electrolyzer. The LCA analysis showed that the environmental performance is better in some categories and worse in others with respect to traditional scenarios. Again, the PEM electrolyzer appears to account for most of the environmental impacts of the process.
UCL Discovery arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIArticle . 2022License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.125255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert UCL Discovery arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIArticle . 2022License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.125255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Italy, United KingdomPublisher:Elsevier BV Authors:Roberto Chirone;
Roberto Chirone
Roberto Chirone in OpenAIREAndrea Paulillo;
Antonio Coppola;Andrea Paulillo
Andrea Paulillo in OpenAIREFabrizio Scala;
Fabrizio Scala
Fabrizio Scala in OpenAIREhandle: 11588/915138 , 20.500.14243/415808
The production of synthetic methane using CO from flue gases and green hydrogen appears to be a promising way to combine the concepts of renewable energy, chemical storage, and utilization of CO. Recently, a new reactor configuration for catalytic methanation has been proposed, integrating sorption-enhanced methanation and chemical looping in interconnected fluidized bed systems. This configuration would ensure high methane yields while keeping good temperature control and low operating pressure. In this work, such novel system layout for the catalytic production of methane was combined with a calcium looping unit for CO capture from flue gases of a coal-fired power plant, and with a water electrolyzer sustained by renewable energy. The integrated layout offers a series of advantages deriving from the integration of different mass and energy flows of the different sections of the plant. The performance of this latter was assessed in terms of construction and production costs, as well as from an environmental point of view: a life cycle assessment was carried out to quantify the environmental impact of all process units. Results of the techno-economic analysis indicated that the production cost of methane is higher than that of natural gas (0.66 vs 0.17 EUR/Nm), but lower than that of biomethane (1 EUR/Nm). The largest impact on such costs comes from the PEM electrolyzer. The LCA analysis showed that the environmental performance is better in some categories and worse in others with respect to traditional scenarios. Again, the PEM electrolyzer appears to account for most of the environmental impacts of the process.
UCL Discovery arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIArticle . 2022License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.125255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert UCL Discovery arrow_drop_down Archivio della ricerca - Università degli studi di Napoli Federico IIArticle . 2022License: CC BY NC NDadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2022.125255&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Italy, NetherlandsPublisher:Elsevier BV Authors:Marc van den Homberg;
Aklilu Teklesadik; Dennis L.J. van den Berg; Gabriela Guimarães Nobre; +3 AuthorsMarc van den Homberg
Marc van den Homberg in OpenAIREMarc van den Homberg;
Aklilu Teklesadik; Dennis L.J. van den Berg; Gabriela Guimarães Nobre; Gabriela Guimarães Nobre; Joris J.L. Westerveld;Marc van den Homberg
Marc van den Homberg in OpenAIRESjoerd Stuit;
Sjoerd Stuit
Sjoerd Stuit in OpenAIREFood insecurity is a growing concern due to man-made conflicts, climate change, and economic downturns. Forecasting the state of food insecurity is essential to be able to trigger early actions, for example, by humanitarian actors. To measure the actual state of food insecurity, expert and consensus-based approaches and surveys are currently used. Both require substantial manpower, time, and budget. This paper introduces an extreme gradient-boosting machine learning model to forecast monthly transitions in the state of food security in Ethiopia, at a spatial granularity of livelihood zones, and for lead times of one to 12 months, using open-source data. The transition in the state of food security, hereafter referred to as predictand, is represented by the Integrated Food Security Phase Classification Data. From 19 categories of datasets, 130 variables were derived and used as predictors of the transition in the state of food security. The predictors represent changes in climate and land, market, conflict, infrastructure, demographics and livelihood zone characteristics. The most relevant predictors are found to be food security history and surface soil moisture. Overall, the model performs best for forecasting Deteriorations and Improvements in the state of food security compared to the baselines. The proposed method performs (F1 macro score) at least twice as well as the best baseline (a dummy classifier) for a Deterioration. The model performs better when forecasting long-term (7 months; F1 macro average = 0.61) compared to short-term (3 months; F1 macro average = 0.51). Combining machine learning, Integrated Phase Classification (IPC) ratings from monitoring systems, and open data can add value to existing consensus-based forecasting approaches as this combination provides longer lead times and more regular updates. Our approach can also be transferred to other countries as most of the data on the predictors are openly available from global data repositories.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefThe Science of The Total EnvironmentArticle . 2021License: CC BY NC NDData sources: Pure Utrecht UniversityThe Science of The Total EnvironmentArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.147366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefThe Science of The Total EnvironmentArticle . 2021License: CC BY NC NDData sources: Pure Utrecht UniversityThe Science of The Total EnvironmentArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.147366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Italy, NetherlandsPublisher:Elsevier BV Authors:Marc van den Homberg;
Aklilu Teklesadik; Dennis L.J. van den Berg; Gabriela Guimarães Nobre; +3 AuthorsMarc van den Homberg
Marc van den Homberg in OpenAIREMarc van den Homberg;
Aklilu Teklesadik; Dennis L.J. van den Berg; Gabriela Guimarães Nobre; Gabriela Guimarães Nobre; Joris J.L. Westerveld;Marc van den Homberg
Marc van den Homberg in OpenAIRESjoerd Stuit;
Sjoerd Stuit
Sjoerd Stuit in OpenAIREFood insecurity is a growing concern due to man-made conflicts, climate change, and economic downturns. Forecasting the state of food insecurity is essential to be able to trigger early actions, for example, by humanitarian actors. To measure the actual state of food insecurity, expert and consensus-based approaches and surveys are currently used. Both require substantial manpower, time, and budget. This paper introduces an extreme gradient-boosting machine learning model to forecast monthly transitions in the state of food security in Ethiopia, at a spatial granularity of livelihood zones, and for lead times of one to 12 months, using open-source data. The transition in the state of food security, hereafter referred to as predictand, is represented by the Integrated Food Security Phase Classification Data. From 19 categories of datasets, 130 variables were derived and used as predictors of the transition in the state of food security. The predictors represent changes in climate and land, market, conflict, infrastructure, demographics and livelihood zone characteristics. The most relevant predictors are found to be food security history and surface soil moisture. Overall, the model performs best for forecasting Deteriorations and Improvements in the state of food security compared to the baselines. The proposed method performs (F1 macro score) at least twice as well as the best baseline (a dummy classifier) for a Deterioration. The model performs better when forecasting long-term (7 months; F1 macro average = 0.61) compared to short-term (3 months; F1 macro average = 0.51). Combining machine learning, Integrated Phase Classification (IPC) ratings from monitoring systems, and open data can add value to existing consensus-based forecasting approaches as this combination provides longer lead times and more regular updates. Our approach can also be transferred to other countries as most of the data on the predictors are openly available from global data repositories.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefThe Science of The Total EnvironmentArticle . 2021License: CC BY NC NDData sources: Pure Utrecht UniversityThe Science of The Total EnvironmentArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.147366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefThe Science of The Total EnvironmentArticle . 2021License: CC BY NC NDData sources: Pure Utrecht UniversityThe Science of The Total EnvironmentArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.147366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 22 Oct 2021 United Kingdom, Netherlands, United KingdomPublisher:Springer Science and Business Media LLC Authors:Rachel Warren;
Rachel Warren
Rachel Warren in OpenAIREKatie Jenkins;
Chris Hope; David E.H.J. Gernaat; +2 AuthorsKatie Jenkins
Katie Jenkins in OpenAIRERachel Warren;
Rachel Warren
Rachel Warren in OpenAIREKatie Jenkins;
Chris Hope; David E.H.J. Gernaat;Katie Jenkins
Katie Jenkins in OpenAIRED.P. van Vuuren;
D.P. van Vuuren;D.P. van Vuuren
D.P. van Vuuren in OpenAIREAbstractWe quantify global and regional aggregate damages from global warming of 1.5 to 4 °C above pre-industrial levels using a well-established integrated assessment model, PAGE09. We find mean global aggregate damages in 2100 of 0.29% of GDP if global warming is limited to about 1.5 °C (90% confidence interval 0.09–0.60%) and 0.40% for 2 °C (range 0.12–0.91%). These are, respectively, 92% and 89% lower than mean losses of 3.67% of GDP (range 0.64–10.77%) associated with global warming of 4 °C. The net present value of global aggregate damages for the 2008–2200 period is estimated at $48.7 trillion for ~ 1.5 °C global warming (range $13–108 trillion) and $60.7 trillion for 2 °C (range $15–140 trillion). These are, respectively, 92% and 90% lower than the mean NPV of $591.7 trillion of GDP for 4 °C warming (range $70–1920 trillion). This leads to a mean social cost of CO2 emitted in 2020 of ~ $150 for 4 °C warming as compared to $30 at ~ 1.5 °C warming. The benefits of limiting warming to 1.5 °C rather than 2 °C might be underestimated since PAGE09 is not recalibrated to reflect the recent understanding of the full range of risks at 1.5 °C warming.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2021 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-021-03198-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2021 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-021-03198-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 22 Oct 2021 United Kingdom, Netherlands, United KingdomPublisher:Springer Science and Business Media LLC Authors:Rachel Warren;
Rachel Warren
Rachel Warren in OpenAIREKatie Jenkins;
Chris Hope; David E.H.J. Gernaat; +2 AuthorsKatie Jenkins
Katie Jenkins in OpenAIRERachel Warren;
Rachel Warren
Rachel Warren in OpenAIREKatie Jenkins;
Chris Hope; David E.H.J. Gernaat;Katie Jenkins
Katie Jenkins in OpenAIRED.P. van Vuuren;
D.P. van Vuuren;D.P. van Vuuren
D.P. van Vuuren in OpenAIREAbstractWe quantify global and regional aggregate damages from global warming of 1.5 to 4 °C above pre-industrial levels using a well-established integrated assessment model, PAGE09. We find mean global aggregate damages in 2100 of 0.29% of GDP if global warming is limited to about 1.5 °C (90% confidence interval 0.09–0.60%) and 0.40% for 2 °C (range 0.12–0.91%). These are, respectively, 92% and 89% lower than mean losses of 3.67% of GDP (range 0.64–10.77%) associated with global warming of 4 °C. The net present value of global aggregate damages for the 2008–2200 period is estimated at $48.7 trillion for ~ 1.5 °C global warming (range $13–108 trillion) and $60.7 trillion for 2 °C (range $15–140 trillion). These are, respectively, 92% and 90% lower than the mean NPV of $591.7 trillion of GDP for 4 °C warming (range $70–1920 trillion). This leads to a mean social cost of CO2 emitted in 2020 of ~ $150 for 4 °C warming as compared to $30 at ~ 1.5 °C warming. The benefits of limiting warming to 1.5 °C rather than 2 °C might be underestimated since PAGE09 is not recalibrated to reflect the recent understanding of the full range of risks at 1.5 °C warming.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2021 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-021-03198-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2021 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryUniversity of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-021-03198-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Netherlands, France, France, Netherlands, AustriaPublisher:Springer Science and Business Media LLC Funded by:EC | SWITCHEC| SWITCHAuthors:Marta Kozicka;
Marta Kozicka
Marta Kozicka in OpenAIREPetr Havlík;
Petr Havlík
Petr Havlík in OpenAIREHugo Valin;
Hugo Valin
Hugo Valin in OpenAIREEva Wollenberg;
+9 AuthorsEva Wollenberg
Eva Wollenberg in OpenAIREMarta Kozicka;
Marta Kozicka
Marta Kozicka in OpenAIREPetr Havlík;
Petr Havlík
Petr Havlík in OpenAIREHugo Valin;
Hugo Valin
Hugo Valin in OpenAIREEva Wollenberg;
Eva Wollenberg
Eva Wollenberg in OpenAIREAndre Deppermann;
Andre Deppermann
Andre Deppermann in OpenAIREDavid Leclère;
Pekka Lauri; Rebekah Moses;David Leclère
David Leclère in OpenAIREEsther Boere;
Esther Boere
Esther Boere in OpenAIREStefan Frank;
Chris Davis; Esther Park; Noel Gurwick;Stefan Frank
Stefan Frank in OpenAIREpmid: 37699877
pmc: PMC10497520
AbstractPlant-based animal product alternatives are increasingly promoted to achieve more sustainable diets. Here, we use a global economic land use model to assess the food system-wide impacts of a global dietary shift towards these alternatives. We find a substantial reduction in the global environmental impacts by 2050 if globally 50% of the main animal products (pork, chicken, beef and milk) are substituted—net reduction of forest and natural land is almost fully halted and agriculture and land use GHG emissions decline by 31% in 2050 compared to 2020. If spared agricultural land within forest ecosystems is restored to forest, climate benefits could double, reaching 92% of the previously estimated land sector mitigation potential. Furthermore, the restored area could contribute to 13-25% of the estimated global land restoration needs under target 2 from the Kunming Montreal Global Biodiversity Framework by 2030, and future declines in ecosystem integrity by 2050 would be more than halved. The distribution of these impacts varies across regions—the main impacts on agricultural input use are in China and on environmental outcomes in Sub-Saharan Africa and South America. While beef replacement provides the largest impacts, substituting multiple products is synergistic.
IIASA DARE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/131912Data sources: Bielefeld Academic Search Engine (BASE)Nature CommunicationsArticle . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-40899-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 63 citations 63 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/131912Data sources: Bielefeld Academic Search Engine (BASE)Nature CommunicationsArticle . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-40899-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Netherlands, France, France, Netherlands, AustriaPublisher:Springer Science and Business Media LLC Funded by:EC | SWITCHEC| SWITCHAuthors:Marta Kozicka;
Marta Kozicka
Marta Kozicka in OpenAIREPetr Havlík;
Petr Havlík
Petr Havlík in OpenAIREHugo Valin;
Hugo Valin
Hugo Valin in OpenAIREEva Wollenberg;
+9 AuthorsEva Wollenberg
Eva Wollenberg in OpenAIREMarta Kozicka;
Marta Kozicka
Marta Kozicka in OpenAIREPetr Havlík;
Petr Havlík
Petr Havlík in OpenAIREHugo Valin;
Hugo Valin
Hugo Valin in OpenAIREEva Wollenberg;
Eva Wollenberg
Eva Wollenberg in OpenAIREAndre Deppermann;
Andre Deppermann
Andre Deppermann in OpenAIREDavid Leclère;
Pekka Lauri; Rebekah Moses;David Leclère
David Leclère in OpenAIREEsther Boere;
Esther Boere
Esther Boere in OpenAIREStefan Frank;
Chris Davis; Esther Park; Noel Gurwick;Stefan Frank
Stefan Frank in OpenAIREpmid: 37699877
pmc: PMC10497520
AbstractPlant-based animal product alternatives are increasingly promoted to achieve more sustainable diets. Here, we use a global economic land use model to assess the food system-wide impacts of a global dietary shift towards these alternatives. We find a substantial reduction in the global environmental impacts by 2050 if globally 50% of the main animal products (pork, chicken, beef and milk) are substituted—net reduction of forest and natural land is almost fully halted and agriculture and land use GHG emissions decline by 31% in 2050 compared to 2020. If spared agricultural land within forest ecosystems is restored to forest, climate benefits could double, reaching 92% of the previously estimated land sector mitigation potential. Furthermore, the restored area could contribute to 13-25% of the estimated global land restoration needs under target 2 from the Kunming Montreal Global Biodiversity Framework by 2030, and future declines in ecosystem integrity by 2050 would be more than halved. The distribution of these impacts varies across regions—the main impacts on agricultural input use are in China and on environmental outcomes in Sub-Saharan Africa and South America. While beef replacement provides the largest impacts, substituting multiple products is synergistic.
IIASA DARE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/131912Data sources: Bielefeld Academic Search Engine (BASE)Nature CommunicationsArticle . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-40899-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 63 citations 63 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IIASA DARE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/10568/131912Data sources: Bielefeld Academic Search Engine (BASE)Nature CommunicationsArticle . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-023-40899-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 01 Jan 2021 Switzerland, Switzerland, Netherlands, Netherlands, NetherlandsPublisher:Elsevier BV Authors: Saeid Ashraf Vaghefi; Saeid Ashraf Vaghefi;Kees van Ginkel;
Kees van Ginkel
Kees van Ginkel in OpenAIREVeruska Muccione;
+1 AuthorsVeruska Muccione
Veruska Muccione in OpenAIRESaeid Ashraf Vaghefi; Saeid Ashraf Vaghefi;Kees van Ginkel;
Kees van Ginkel
Kees van Ginkel in OpenAIREVeruska Muccione;
Veruska Muccione
Veruska Muccione in OpenAIREMarjolijn Haasnoot;
Marjolijn Haasnoot
Marjolijn Haasnoot in OpenAIREClimate change threatens winter tourism in the Alps severely, and ski resorts are struggling to cope under uncertain climate change. We aim to identify under what conditions physical and economic tipping points for ski resorts may occur under changing climate in six Swiss ski resorts representing low, medium, and high elevation in the Alps. We use exploratory modeling (EMA) to assess climate change impacts on ski resorts under a range of futures adaptation options: (1) snowmaking and (2) diversifying the ski resorts' activities throughout the year. High-resolution climate projections (CH2018) were used to represent climate uncertainty. To improve the coverage of the uncertainty space and account for the climate models' intra-annual variability, we produced new climate realizations using resampling techniques. We demonstrate the importance of five factors, namely climate scenarios (RCPs), intra-annual climate variability, snow processes model, and two adaptation options, in ski resorts survival under a wide range of future scenarios. In six ski resorts, strong but highly variable decreases in the future number of days with good snow conditions for skiing (GSD) are projected. However, despite the different characteristics of the resorts, responses are similar and a shrunk of up to 31, 50, and 62 days in skiing season (Dec-April) is projected for the near-future (2020–2050), mid-future (2050–2080), and far-future (2070–2100), respectively. Similarly, in all cases, the number of days with good conditions for snowmaking (GDSM) will reduce up to 30, 50, and 74 days in the skiing season in the near-, mid-, and far-future horizons, respectively. We indicate that all ski resorts will face a reduction of up to 13%, 33%, and 51% of their reference period (1981–2010) revenue from winter skiing activities in the near-, mid-, and far-future horizons. Based on the outcomes of the EMA, we identify Dynamic Adaptive Policy Pathways (DAPP) and determine the adaptation options that ski resorts could implement to avoid tipping points in the future. We highlight the advantages of adaptive planning in a first of its kind application of DMDU techniques to winter tourism. We specify the possible adaptation options ranging from “low revenue diversification and moderate snowmaking” to “high revenue diversification and large snowmaking” and demonstrate when an adaptation action fails and a change to a new plan is needed. By the end of the century, we show that only ski resorts with ski lines above 1800–2000 m elevation will survive regardless of the climate scenarios. Our approach to decision-making is highly flexible and can easily be extended to other ski resorts and account for additional adaptation options.
Environmental Scienc... arrow_drop_down Zurich Open Repository and ArchiveArticle . 2021License: CC BYData sources: Zurich Open Repository and ArchiveEnvironmental Science & PolicyArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2021.09.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Zurich Open Repository and ArchiveArticle . 2021License: CC BYData sources: Zurich Open Repository and ArchiveEnvironmental Science & PolicyArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2021.09.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Embargo end date: 01 Jan 2021 Switzerland, Switzerland, Netherlands, Netherlands, NetherlandsPublisher:Elsevier BV Authors: Saeid Ashraf Vaghefi; Saeid Ashraf Vaghefi;Kees van Ginkel;
Kees van Ginkel
Kees van Ginkel in OpenAIREVeruska Muccione;
+1 AuthorsVeruska Muccione
Veruska Muccione in OpenAIRESaeid Ashraf Vaghefi; Saeid Ashraf Vaghefi;Kees van Ginkel;
Kees van Ginkel
Kees van Ginkel in OpenAIREVeruska Muccione;
Veruska Muccione
Veruska Muccione in OpenAIREMarjolijn Haasnoot;
Marjolijn Haasnoot
Marjolijn Haasnoot in OpenAIREClimate change threatens winter tourism in the Alps severely, and ski resorts are struggling to cope under uncertain climate change. We aim to identify under what conditions physical and economic tipping points for ski resorts may occur under changing climate in six Swiss ski resorts representing low, medium, and high elevation in the Alps. We use exploratory modeling (EMA) to assess climate change impacts on ski resorts under a range of futures adaptation options: (1) snowmaking and (2) diversifying the ski resorts' activities throughout the year. High-resolution climate projections (CH2018) were used to represent climate uncertainty. To improve the coverage of the uncertainty space and account for the climate models' intra-annual variability, we produced new climate realizations using resampling techniques. We demonstrate the importance of five factors, namely climate scenarios (RCPs), intra-annual climate variability, snow processes model, and two adaptation options, in ski resorts survival under a wide range of future scenarios. In six ski resorts, strong but highly variable decreases in the future number of days with good snow conditions for skiing (GSD) are projected. However, despite the different characteristics of the resorts, responses are similar and a shrunk of up to 31, 50, and 62 days in skiing season (Dec-April) is projected for the near-future (2020–2050), mid-future (2050–2080), and far-future (2070–2100), respectively. Similarly, in all cases, the number of days with good conditions for snowmaking (GDSM) will reduce up to 30, 50, and 74 days in the skiing season in the near-, mid-, and far-future horizons, respectively. We indicate that all ski resorts will face a reduction of up to 13%, 33%, and 51% of their reference period (1981–2010) revenue from winter skiing activities in the near-, mid-, and far-future horizons. Based on the outcomes of the EMA, we identify Dynamic Adaptive Policy Pathways (DAPP) and determine the adaptation options that ski resorts could implement to avoid tipping points in the future. We highlight the advantages of adaptive planning in a first of its kind application of DMDU techniques to winter tourism. We specify the possible adaptation options ranging from “low revenue diversification and moderate snowmaking” to “high revenue diversification and large snowmaking” and demonstrate when an adaptation action fails and a change to a new plan is needed. By the end of the century, we show that only ski resorts with ski lines above 1800–2000 m elevation will survive regardless of the climate scenarios. Our approach to decision-making is highly flexible and can easily be extended to other ski resorts and account for additional adaptation options.
Environmental Scienc... arrow_drop_down Zurich Open Repository and ArchiveArticle . 2021License: CC BYData sources: Zurich Open Repository and ArchiveEnvironmental Science & PolicyArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2021.09.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Zurich Open Repository and ArchiveArticle . 2021License: CC BYData sources: Zurich Open Repository and ArchiveEnvironmental Science & PolicyArticle . 2021add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.envsci.2021.09.005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Netherlands, United States, NetherlandsPublisher:Wiley Authors: Estrada, Francisco; Perron, Pierre; Yamamoto, Yohei;doi: 10.1111/nyas.15088
pmid: 38051498
AbstractWe consider issues related to the effect of climate change on the persistence of (trend‐corrected) temperatures using global gridded data for both land and oceans. We first discuss how the presence of trends and additive noise affects inference about persistence. Ignoring a trend induces an upward bias, while not accounting for noise induces a downward bias. We show that the increase in persistence in the commonly used Warm Spell Duration Index is simply an artifact of increasing temperatures. To purge the impact of both trends and noise, we adopt a simple state‐space model. Of separate interest, we document a much larger noise component for land than for oceans. The estimates of the persistence are much larger for oceans than for land. Inspection of the estimates across various subsamples and the application of tests for structural changes suggest the same pattern of persistence for both land and oceans across time, with few minor exceptions. Hence, our results show that surface temperature persistence has remained constant during the observed period.
Boston University: O... arrow_drop_down Boston University: OpenBUArticle . 2023License: CC BY NC NDFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/38051498Data sources: Bielefeld Academic Search Engine (BASE)Annals of the New York Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAnnals of the New York Academy of SciencesArticle . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nyas.15088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Boston University: O... arrow_drop_down Boston University: OpenBUArticle . 2023License: CC BY NC NDFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/38051498Data sources: Bielefeld Academic Search Engine (BASE)Annals of the New York Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAnnals of the New York Academy of SciencesArticle . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nyas.15088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 Netherlands, United States, NetherlandsPublisher:Wiley Authors: Estrada, Francisco; Perron, Pierre; Yamamoto, Yohei;doi: 10.1111/nyas.15088
pmid: 38051498
AbstractWe consider issues related to the effect of climate change on the persistence of (trend‐corrected) temperatures using global gridded data for both land and oceans. We first discuss how the presence of trends and additive noise affects inference about persistence. Ignoring a trend induces an upward bias, while not accounting for noise induces a downward bias. We show that the increase in persistence in the commonly used Warm Spell Duration Index is simply an artifact of increasing temperatures. To purge the impact of both trends and noise, we adopt a simple state‐space model. Of separate interest, we document a much larger noise component for land than for oceans. The estimates of the persistence are much larger for oceans than for land. Inspection of the estimates across various subsamples and the application of tests for structural changes suggest the same pattern of persistence for both land and oceans across time, with few minor exceptions. Hence, our results show that surface temperature persistence has remained constant during the observed period.
Boston University: O... arrow_drop_down Boston University: OpenBUArticle . 2023License: CC BY NC NDFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/38051498Data sources: Bielefeld Academic Search Engine (BASE)Annals of the New York Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAnnals of the New York Academy of SciencesArticle . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nyas.15088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Boston University: O... arrow_drop_down Boston University: OpenBUArticle . 2023License: CC BY NC NDFull-Text: https://www.ncbi.nlm.nih.gov/pubmed/38051498Data sources: Bielefeld Academic Search Engine (BASE)Annals of the New York Academy of SciencesArticle . 2023 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefAnnals of the New York Academy of SciencesArticle . 2023add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/nyas.15088&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 NetherlandsPublisher:Elsevier BV Authors:Leon Bremer;
Leon Bremer
Leon Bremer in OpenAIREKonstantin Sommer;
Konstantin Sommer
Konstantin Sommer in OpenAIREWe study the effects of the EU Emissions Trading System on the economic performance and investments of Dutch manufacturing firms. Motivated both by sizable differences between firms that became regulated in different phases and by a gradual increase in regulatory stringency, we pay close attention to the staggered design of the ETS as well as to potential treatment effect heterogeneity. We base our estimation on recent advances in the estimation of treatment effects and make use of administrative microdata. Our results align with those of the previous literature. Even when studying the more stringent third phase and when using estimators appropriate for the staggered ETS setting, there seems to be no discernible effects of the ETS on firms’ economic performance. We also do not find any statistically significant effect on the investment behavior of regulated firms.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4731564&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4731564&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 NetherlandsPublisher:Elsevier BV Authors:Leon Bremer;
Leon Bremer
Leon Bremer in OpenAIREKonstantin Sommer;
Konstantin Sommer
Konstantin Sommer in OpenAIREWe study the effects of the EU Emissions Trading System on the economic performance and investments of Dutch manufacturing firms. Motivated both by sizable differences between firms that became regulated in different phases and by a gradual increase in regulatory stringency, we pay close attention to the staggered design of the ETS as well as to potential treatment effect heterogeneity. We base our estimation on recent advances in the estimation of treatment effects and make use of administrative microdata. Our results align with those of the previous literature. Even when studying the more stringent third phase and when using estimators appropriate for the staggered ETS setting, there seems to be no discernible effects of the ETS on firms’ economic performance. We also do not find any statistically significant effect on the investment behavior of regulated firms.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4731564&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4731564&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu