- home
- Advanced Search
- Energy Research
- 12. Responsible consumption
- US
- Transport Research
- Energy Research
- 12. Responsible consumption
- US
- Transport Research
description Publicationkeyboard_double_arrow_right Article , Journal 2006 AustraliaPublisher:SAGE Publications Authors: Hendrickson, Chris T; Cicas, Gyorgyi; Matthews, Scott;Indicators of sustainability and environmental performance can be useful for comparing modes, discerning trends, and formulating appropriate policies. This paper considers the performance of U.S. transportation service sectors through use of 1992 and 1997 benchmark input–output models. Use of these models permits assessment of not only the direct performance of the sectors but also the supply chain impacts required for operation of the transportation sectors. Consideration of indirect impacts is critical for assessment of the overall costs and impacts of particular products or services. Six transportation service sectors (air, rail, water, truck, transit, and pipeline) are examined. Economic impact, energy, greenhouse gas emissions, and toxic emissions are examined. The transportation sectors use large amounts of energy, both in total and per dollar of output and on a per service basis. Pipeline and water transportation have particularly large energy requirements per dollar of output, likely reflecting higher energy intensity and lower labor intensity in these modes. Truck transportation is the most energy intensive of the freight transportation modes per ton-mile of service, but it has a trend toward greater energy efficiency. For greenhouse gas emissions, truck, water, and air transportation have the highest emissions per dollar of output. Water transportation freight rates are sufficiently low that emissions on a per ton-mile basis would be correspondingly low. Finally, the supply chain (indirect) toxic emissions per dollar of output are highest for rail and pipeline transportation. There is considerable work to be done to improve the overall sustainability of the different transportation modes.
Transportation Resea... arrow_drop_down Transportation Research Record Journal of the Transportation Research BoardArticle . 2006 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0361198106198300120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Average influence Average impulse Average Powered by BIP!
more_vert Transportation Resea... arrow_drop_down Transportation Research Record Journal of the Transportation Research BoardArticle . 2006 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0361198106198300120&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Authors: Nita Yodo; Tanzina Afrin;doi: 10.3390/su12114660
Traffic congestion is a perpetual problem for the sustainability of transportation development. Traffic congestion causes delays, inconvenience, and economic losses to drivers, as well as air pollution. Identification and quantification of traffic congestion are crucial for decision-makers to initiate mitigation strategies to improve the overall transportation system’s sustainability. In this paper, the currently available measures are detailed and compared by implementing them on a daily and weekly traffic historical dataset. The results showed each measure showed significant variations in congestion states while indicating a similar congestion trend. The advantages and disadvantages of each measure are identified from the data analysis. This study summarizes the current road traffic congestion measures and provides a constructive insight into the development of a sustainable and resilient traffic management system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12114660&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 296 citations 296 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12114660&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Book , Research , Report 2010 United StatesPublisher:World Bank, Washington, DC Kumar, Monika; Rubinfield, Adam; Moore, Judith; Raposa, Sarah; Fyodorova, Maria;doi: 10.1596/27467
handle: 10986/27467
The World Bank Group (WBG) has focused on reducing the environmental impacts of its internal operations and improving corporate environmental practices since 2002, when the WBG President announced WBG's commitment to Corporate Social Responsibility (CSR). The objective of this document is to summarize the actions WBG has taken thus far to reduce environmental impacts from internal operations and present an action plan to further integrate sustainability into WBG's internal operations. Although this work focuses on the environmental impact associated with WBG daily operations, the links between WBG policies and actions related to environmental management and the financial/social considerations are significant. The International Finance Corporation (IFC) footprint and World Bank corporate responsibility teams facilitate the sustainability commitment of the WBG and monitor and track its progress. These teams provide technical information and research support to a dedicated group of champions throughout the WBG who implement emission reduction activities. Budget for these activities flows primarily through the environment department, the general services department, and IFC facilities management and administration. The environment department and IFC facilities management each resource one staff member to provide back-up research support and to monitor and report on environmental metrics, with building engineers and managers and project officers from across the WBG contributing.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1596/27467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1596/27467&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 GermanyPublisher:Frontiers Media SA Funded by:DFG | Climate Engineering: Risk...DFG| Climate Engineering: Risks, Challenges, Opportunities?Authors:Malgorzata Borchers;
Malgorzata Borchers
Malgorzata Borchers in OpenAIREDaniela Thrän;
Daniela Thrän; Yaxuan Chi; +19 AuthorsDaniela Thrän
Daniela Thrän in OpenAIREMalgorzata Borchers;
Malgorzata Borchers
Malgorzata Borchers in OpenAIREDaniela Thrän;
Daniela Thrän; Yaxuan Chi; Nicolaus Dahmen; Roland Dittmeyer; Tobias Dolch;Daniela Thrän
Daniela Thrän in OpenAIREChristian Dold;
Christian Dold
Christian Dold in OpenAIREJohannes Förster;
Michael Herbst; Dominik Heß;Johannes Förster
Johannes Förster in OpenAIREAram Kalhori;
Aram Kalhori
Aram Kalhori in OpenAIREKetil Koop-Jakobsen;
Ketil Koop-Jakobsen
Ketil Koop-Jakobsen in OpenAIREZhan Li;
Nadine Mengis;
Thorsten B. H. Reusch;Nadine Mengis
Nadine Mengis in OpenAIREImke Rhoden;
Imke Rhoden
Imke Rhoden in OpenAIRETorsten Sachs;
Cornelia Schmidt-Hattenberger; Angela Stevenson; Terese Thoni;Torsten Sachs
Torsten Sachs in OpenAIREJiajun Wu;
Christopher Yeates;Jiajun Wu
Jiajun Wu in OpenAIREIn its latest assessment report the IPCC stresses the need for carbon dioxide removal (CDR) to counterbalance residual emissions to achieve net zero carbon dioxide or greenhouse gas emissions. There are currently a wide variety of CDR measures available. Their potential and feasibility, however, depends on context specific conditions, as among others biophysical site characteristics, or availability of infrastructure and resources. In our study, we selected 13 CDR concepts which we present in the form of exemplary CDR units described in dedicated fact sheets. They cover technical CO2 removal (two concepts of direct air carbon capture), hybrid solutions (six bioenergy with carbon capture technologies) and five options for natural sink enhancement. Our estimates for their CO2 removal potentials in 2050 range from 0.06 to 30 million tons of CO2, depending on the option. Ten of the 13 CDR concepts provide technical removal potentials higher than 1 million tons of CO2 per year. To better understand the potential contribution of analyzed CDR options to reaching net-zero CO2 emissions, we compare our results with the current CO2 emissions and potential residual CO2 emissions in 2050 in Germany. To complement the necessary information on technology-based and hybrid options, we also provide an overview on possible solutions for CO2 storage for Germany. Taking biophysical conditions and infrastructure into account, northern Germany seems a preferable area for deployment of many concepts. However, for their successful implementation further socio-economic analysis, clear regulations, and policy incentives are necessary.
OceanRep arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.810343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.810343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2011 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Johnson, C.; Hettinger, D.; Mosey, G.;doi: 10.2172/1015506
Former gasoline stations that are now classified as brownfields can be good sites to sell alternative fuels because they are in locations that are convenient to vehicles and they may be seeking a new source of income. However, their success as alternative fueling stations is highly dependent on location-specific criteria. First, this report outlines what these criteria are, how to prioritize them, and then applies that assessment framework to five of the most popular alternative fuels--electricity, natural gas, hydrogen, ethanol, and biodiesel. The second part of this report delves into the criteria and tools used to assess an alternative fuel retail site at the local level. It does this through two case studies of converting former gasoline stations in the Seattle-Eugene area into electric charge stations. The third part of this report addresses steps to be taken after the specific site has been selected. This includes choosing and installing the recharging equipment, which includes steps to take in the permitting process and key players to include.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1015506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1015506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Embargo end date: 01 Jan 2021 Switzerland, SwitzerlandPublisher:Informa UK Limited This article examines the role of architecture and urban planning in shaping connections between European land-based mobility, cities and landscapes. It investigates the development of spaces aiming to link automobility to the everyday experience of European citizens. The planning and funding of the E-road network is related to the promotion of trans-European mobility for commodities and individuals. This attempt to link the different European nations and to overcome their separate plans has reshaped the urban landscape and the territory. The article aims to show how urban planning and architecture play a key role in implementing new types of mobilities promoting environmental sustainability. Taking into account that the EU aims to overcome regimes of petroleumbased mobility and associated architectures, it intends to demonstrate how the land-based transportation of both individuals and commodities in the E-Road network functions as an actor of planetary urbanization. It investigates three kinds of nodes within the E-Road network – the nodes encountered on the E-Roads, those to be found at the gates to cities and the new structures aiming to imitate the urban dimension but proposing a novel articulation of pedestrian and automobile circulation – and relates them to overarching approaches in the design of mobility. --> This article examines the role of architecture and urban planning in shaping connections between European land-based mobility, cities and landscapes. It investigates the development of spaces aiming to link automobility to the everyday experience of European citizens. The planning and funding of the E-road network is related to the promotion of trans-European mobility for commodities and individuals. This attempt to link the different European nations and to overcome their separate plans has reshaped the urban landscape and the territory. The article aims to show how urban planning and architecture play a key role in implementing new types of mobilities promoting environmental sustainability. Taking into account that the EU aims to overcome regimes of petroleumbased mobility and associated architectures, it intends to demonstrate how the land-based transportation of both individuals and commodities in the E-Road network functions as an actor of planetary urbanization. It investigates three kinds of nodes within the E-Road network – the nodes encountered on the E-Roads, those to be found at the gates to cities and the new structures aiming to imitate the urban dimension but proposing a novel articulation of pedestrian and automobile circulation – and relates them to overarching approaches in the design of mobility.individuals. This attempt to link the different European nations and to overcome their separate plans has reshaped the urban landscape and the territory. The article aims to show how urban planning and architecture play a key role in implementing new types of mobilities promoting environmental sustainability. Taking into account that the EU aims to overcome regimes of petroleumbased mobility and associated architectures, it intends to demonstrate how the land-based transportation of both individuals and commodities in the E-Road network functions as an actor of planetary urbanization. It investigates three kinds of nodes within the E-Road network – the nodes encountered on the E-Roads, those to be found at the gates to cities and the new structures aiming to imitate the urban dimension but proposing a novel articulation of pedestrian and automobile circulation – and relates them to overarching approaches in the design of mobility. Urban, Planning and Transport Research, 9 (1) ISSN:2165-0020
Urban, Planning and ... arrow_drop_down Urban, Planning and Transport ResearchArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/21650020.2021.1950045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Urban, Planning and ... arrow_drop_down Urban, Planning and Transport ResearchArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/21650020.2021.1950045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Review , Journal 2017 France, United Kingdom, France, France, United Kingdom, Germany, Germany, France, Netherlands, Germany, Australia, Spain, Austria, France, Australia, Switzerland, France, France, United KingdomPublisher:Copernicus GmbH Funded by:NWO | The distribution and evol..., EC | IMBALANCE-P, EC | RINGO +9 projectsNWO| The distribution and evolution of inert and reactant scalars: from the atmospheric boundary layer to continental scales ,EC| IMBALANCE-P ,EC| RINGO ,RCN| Jordsystem-modellering av klimaforandringer i den antroposene tidsalder; Earth system modelling of climate Variations in the Anthropocene ,EC| CRESCENDO ,EC| HELIX ,EC| QUINCY ,EC| LUC4C ,EC| FIBER ,SNSF| Geschichte der Bausteinbearbeitung, insbesondere in der westlichen Schweiz ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,RCN| CICEP-Strategic Challenges in International Climate and Energy PolicyAuthors:Bronte Tilbrook;
Bronte Tilbrook;Bronte Tilbrook
Bronte Tilbrook in OpenAIREJessica N. Cross;
Jessica N. Cross
Jessica N. Cross in OpenAIREGuido R. van der Werf;
+83 AuthorsGuido R. van der Werf
Guido R. van der Werf in OpenAIREBronte Tilbrook;
Bronte Tilbrook;Bronte Tilbrook
Bronte Tilbrook in OpenAIREJessica N. Cross;
Jessica N. Cross
Jessica N. Cross in OpenAIREGuido R. van der Werf;
Yukihiro Nojiri;Guido R. van der Werf
Guido R. van der Werf in OpenAIREDenis Pierrot;
Denis Pierrot;Denis Pierrot
Denis Pierrot in OpenAIREArne Körtzinger;
Arne Körtzinger
Arne Körtzinger in OpenAIREAndrew J. Watson;
Andrew J. Watson
Andrew J. Watson in OpenAIRENathalie Lefèvre;
Nathalie Lefèvre
Nathalie Lefèvre in OpenAIRENicolas Metzl;
Nicolas Metzl
Nicolas Metzl in OpenAIREAndrew Lenton;
Andrew Lenton;Andrew Lenton
Andrew Lenton in OpenAIREX. Antonio Padin;
X. Antonio Padin
X. Antonio Padin in OpenAIREDavid R. Munro;
David R. Munro
David R. Munro in OpenAIREAndrew C. Manning;
Andrew C. Manning
Andrew C. Manning in OpenAIREPhilippe Ciais;
Philippe Ciais
Philippe Ciais in OpenAIRELeticia Barbero;
Leticia Barbero;Leticia Barbero
Leticia Barbero in OpenAIREKees Klein Goldewijk;
Kees Klein Goldewijk;Kees Klein Goldewijk
Kees Klein Goldewijk in OpenAIREMarkus Kautz;
Markus Kautz
Markus Kautz in OpenAIREIvan D. Lima;
Ivan D. Lima
Ivan D. Lima in OpenAIREBenjamin Poulter;
Benjamin Poulter;Benjamin Poulter
Benjamin Poulter in OpenAIRESebastian Lienert;
Sebastian Lienert; Pieter P. Tans;Sebastian Lienert
Sebastian Lienert in OpenAIREOliver Andrews;
Oliver Andrews
Oliver Andrews in OpenAIREGeorge C. Hurtt;
Janet J. Reimer;George C. Hurtt
George C. Hurtt in OpenAIREIngunn Skjelvan;
Ingunn Skjelvan
Ingunn Skjelvan in OpenAIREPeter Landschützer;
Peter Landschützer
Peter Landschützer in OpenAIREFrancesco N. Tubiello;
Thomas A. Boden;Francesco N. Tubiello
Francesco N. Tubiello in OpenAIREAnthony P. Walker;
Anthony P. Walker
Anthony P. Walker in OpenAIREPedro M. S. Monteiro;
Kim I. Currie;Pedro M. S. Monteiro
Pedro M. S. Monteiro in OpenAIRERobert B. Jackson;
Vivek K. Arora;Robert B. Jackson
Robert B. Jackson in OpenAIREMeike Becker;
Meike Becker;Meike Becker
Meike Becker in OpenAIREBenjamin D. Stocker;
Benjamin D. Stocker
Benjamin D. Stocker in OpenAIRENicolas Vuichard;
Nicolas Vuichard
Nicolas Vuichard in OpenAIRETatiana Ilyina;
Tatiana Ilyina
Tatiana Ilyina in OpenAIRERichard A. Houghton;
Richard A. Houghton
Richard A. Houghton in OpenAIREStephen Sitch;
Stephen Sitch
Stephen Sitch in OpenAIRESönke Zaehle;
Sönke Zaehle
Sönke Zaehle in OpenAIREChristian Rödenbeck;
Christian Rödenbeck
Christian Rödenbeck in OpenAIREDorothee C. E. Bakker;
Dorothee C. E. Bakker
Dorothee C. E. Bakker in OpenAIREJudith Hauck;
Judith Hauck
Judith Hauck in OpenAIREJörg Schwinger;
Jörg Schwinger
Jörg Schwinger in OpenAIREJulia E. M. S. Nabel;
Julia E. M. S. Nabel
Julia E. M. S. Nabel in OpenAIREJan Ivar Korsbakken;
Jan Ivar Korsbakken
Jan Ivar Korsbakken in OpenAIREFrédéric Chevallier;
Andy Wiltshire;Frédéric Chevallier
Frédéric Chevallier in OpenAIRERalph F. Keeling;
Catherine E Cosca;Ralph F. Keeling
Ralph F. Keeling in OpenAIREThomas Gasser;
Thomas Gasser
Thomas Gasser in OpenAIREIngrid T. van der Laan-Luijkx;
Richard Betts; Richard Betts;Ingrid T. van der Laan-Luijkx
Ingrid T. van der Laan-Luijkx in OpenAIREShin-Ichiro Nakaoka;
Shin-Ichiro Nakaoka
Shin-Ichiro Nakaoka in OpenAIREIan Harris;
Ian Harris
Ian Harris in OpenAIRERobbie M. Andrew;
Robbie M. Andrew
Robbie M. Andrew in OpenAIRERoland Séférian;
Roland Séférian
Roland Séférian in OpenAIREPierre Friedlingstein;
Pierre Friedlingstein
Pierre Friedlingstein in OpenAIRESteven van Heuven;
Christopher W. Hunt;Steven van Heuven
Steven van Heuven in OpenAIRELaurent Bopp;
Laurent Bopp
Laurent Bopp in OpenAIREDan Zhu;
Julia Pongratz;
Julia Pongratz
Julia Pongratz in OpenAIREGregor Rehder;
Gregor Rehder
Gregor Rehder in OpenAIRELouise Chini;
Louise Chini
Louise Chini in OpenAIRENicolas Viovy;
Frank J. Millero;Nicolas Viovy
Nicolas Viovy in OpenAIREEtsushi Kato;
Benjamin Pfeil; Benjamin Pfeil;Etsushi Kato
Etsushi Kato in OpenAIREGlen P. Peters;
Glen P. Peters
Glen P. Peters in OpenAIREJosep G. Canadell;
Josep G. Canadell
Josep G. Canadell in OpenAIREAnna Peregon;
Anna Peregon
Anna Peregon in OpenAIREAtul K. Jain;
Atul K. Jain
Atul K. Jain in OpenAIRECorinne Le Quéré;
Corinne Le Quéré
Corinne Le Quéré in OpenAIREDanica Lombardozzi;
Danica Lombardozzi
Danica Lombardozzi in OpenAIREVanessa Haverd;
Vanessa Haverd
Vanessa Haverd in OpenAIREHanqin Tian;
Hanqin Tian
Hanqin Tian in OpenAIREAbstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the "global carbon budget" – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of our imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016), EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1 and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007–2016), reflecting in part the higher fossil emissions and smaller SLAND for that year consistent with El Niño conditions. The global atmospheric CO2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data indicate a renewed growth in EFF of +2.0 % (range of 0.8 % to 3.0 %) based on national emissions projections for China, USA, and India, and projections of Gross Domestic Product corrected for recent changes in the carbon intensity of the economy for the rest of the world. For 2017, initial data indicate an increase in atmospheric CO2 concentration of around 5.3 GtC (2.5 ppm), attributed to a combination of increasing emissions and receding El Niño conditions. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quéré et al., 2016; 2015b; 2015a; 2014; 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/32317Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2018License: CC BYFull-Text: https://doi.org/10.18160/GCP-2017Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEarth System Science Data (ESSD)Article . 2018Earth System Science Data (ESSD)Review . 2018License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of Ifremerhttp://dx.doi.org/10.5194/essd...Other literature typeData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2017-123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1K citations 1,019 popularity Top 0.1% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/32317Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2018License: CC BYFull-Text: https://doi.org/10.18160/GCP-2017Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEarth System Science Data (ESSD)Article . 2018Earth System Science Data (ESSD)Review . 2018License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of Ifremerhttp://dx.doi.org/10.5194/essd...Other literature typeData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2017-123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United StatesPublisher:University of South Florida Libraries Being able to provide high-quality, metro-like transit service at a fraction of the cost of other options, bus rapid transit (BRT) has been viewed as one of the most cost-effective public mass transport systems suitable for urban areas. Considering significant amounts of greenhouse gas (GHG) and air pollutant emissions are attributed to the transport sector, deploying low carbon buses for BRT systems should be of high priority. With a view to promoting low carbon buses instead of diesel buses for a BRT system currently being planned in Amman, Jordan, this paper evaluates several low carbon bus options – hybrid, plug-in hybrid, opportunity charging, trolleybus, and battery electric bus options – against the baseline case of diesel buses. While low carbon buses reduce GHG and air pollutant emissions often considerably, they usually require higher upfront capital costs and additional infrastructure investments. On the other hand, they tend to incur lower energy and maintenance costs and have a longer lifetime particularly for battery electric buses. All these advantages and disadvantages are included in the assessment of low carbon bus options relative to diesel buses. For the trunk routes of the Amman BRT, the analysis shows that the opportunity charging bus can be the most appealing option having a positive internal rate of return (IRR) for the incremental investment costs. For the feeder routes, both low carbon bus options considered, hybrid and battery electric, do not result in a positive IRR. Nevertheless, the battery electric bus is found to be a comparatively better option than the hybrid bus. In consideration of variability in several parameters used in the analysis such as capital expenditures, electricity price, and diesel price, a sensitivity analysis is conducted for both trunk and feeder routes. The results show that IRR could increase favorably under certain conditions.
Journal of Public Tr... arrow_drop_down Digital Commons University of South Florida (USF)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of South Florida St. Petersburg: Digital USFSPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5038/2375-0901.22.1.4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Public Tr... arrow_drop_down Digital Commons University of South Florida (USF)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of South Florida St. Petersburg: Digital USFSPArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5038/2375-0901.22.1.4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 AustraliaPublisher:SAGE Publications Authors:Cherry, Christopher R;
Deakin, Elizabeth; Higgins, Nathan; Huey, S Brian;Cherry, Christopher R
Cherry, Christopher R in OpenAIREMany cities in the United States are facing challenges associated with antiquated urban arterials, whose purpose has changed greatly since their development. Once considered the main streets of the city, with thriving businesses and attractive residential development, many have deteriorated over the decades for a number of reasons, including shifting demand for housing and retail development and the construction of parallel high-speed urban expressways. Because of the complexity of the problems associated with these arterials, a great challenge of transportation and land use planners is to develop a systems-level approach to revitalize and reinvent these arterials in a manner that encourages environmental, economic, and social sustainability. Presented is a methodology to revitalize multimodal urban arterials that includes land use planning, traffic and transit operations management, street redesign, and community participation to improve the conditions of such arterials. Analysis is carried out by using these principles on San Pablo Avenue, a major arterial in the San Francisco Bay Area in California. By using these analysis techniques, land use and transportation recommendations are made that will facilitate sustainable development along this corridor.
Transportation Resea... arrow_drop_down Transportation Research Record Journal of the Transportation Research BoardArticle . 2006 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0361198106197700124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Transportation Resea... arrow_drop_down Transportation Research Record Journal of the Transportation Research BoardArticle . 2006 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0361198106197700124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Embargo end date: 01 Jan 2021 Germany, Austria, Belgium, United Kingdom, SwitzerlandPublisher:Springer Science and Business Media LLC Funded by:NSERC, EC | CONSTRAINNSERC ,EC| CONSTRAINAuthors:Reto Knutti;
Reto Knutti
Reto Knutti in OpenAIRENadine Mengis;
Nadine Mengis;Nadine Mengis
Nadine Mengis in OpenAIREKarsten Haustein;
+8 AuthorsKarsten Haustein
Karsten Haustein in OpenAIREReto Knutti;
Reto Knutti
Reto Knutti in OpenAIRENadine Mengis;
Nadine Mengis;Nadine Mengis
Nadine Mengis in OpenAIREKarsten Haustein;
Karsten Haustein
Karsten Haustein in OpenAIREChristopher J. Smith;
Christopher J. Smith
Christopher J. Smith in OpenAIREKatarzyna B. Tokarska;
Katarzyna B. Tokarska
Katarzyna B. Tokarska in OpenAIREH. Damon Matthews;
H. Damon Matthews
H. Damon Matthews in OpenAIRESebastian Sippel;
Joeri Rogelj; Joeri Rogelj; Andrew H. MacDougall;Sebastian Sippel
Sebastian Sippel in OpenAIREPiers M. Forster;
Piers M. Forster
Piers M. Forster in OpenAIREAbstractThe remaining carbon budget quantifies the future CO2emissions to limit global warming below a desired level. Carbon budgets are subject to uncertainty in the Transient Climate Response to Cumulative CO2Emissions (TCRE), as well as to non-CO2climate influences. Here we estimate the TCRE using observational constraints, and integrate the geophysical and socioeconomic uncertainties affecting the distribution of the remaining carbon budget. We estimate a median TCRE of 0.44 °C and 5–95% range of 0.32–0.62 °C per 1000 GtCO2emitted. Considering only geophysical uncertainties, our median estimate of the 1.5 °C remaining carbon budget is 440 GtCO2from 2020 onwards, with a range of 230–670 GtCO2, (for a 67–33% chance of not exceeding the target). Additional socioeconomic uncertainty related to human decisions regarding future non-CO2emissions scenarios can further shift the median 1.5 °C remaining carbon budget by ±170 GtCO2.
CORE arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/90424Data sources: Bielefeld Academic Search Engine (BASE)Communications Earth & EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryVrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortalCommunications Earth & EnvironmentArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-020-00064-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/90424Data sources: Bielefeld Academic Search Engine (BASE)Communications Earth & EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefSpiral - Imperial College Digital RepositoryArticle . 2020License: CC BYData sources: Spiral - Imperial College Digital RepositoryVrije Universiteit Brussel Research PortalArticle . 2021Data sources: Vrije Universiteit Brussel Research PortalCommunications Earth & EnvironmentArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s43247-020-00064-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu