- home
- Advanced Search
- Energy Research
- engineering and technology
- 13. Climate action
- 14. Life underwater
- Transport Research
- Energy Research
- engineering and technology
- 13. Climate action
- 14. Life underwater
- Transport Research
description Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, Australia, United KingdomPublisher:Cogitatio Hing-Wah Chau; Ian Gilzean; Elmira Jamei; Lesley Palmer; Terri Preece; Martin Quirke;handle: 1893/34586
Twenty-minute neighbourhoods highlight the importance of well-connected and mixed-used neighbourhoods and communities with proximate access to employment, essential services, public transport, and open spaces. Shorter distances together with re-prioritised public spaces encourage more active transport choices, resulting in public health benefits and reduced environmental pollution. Higher liveability brought about by mixed-use developments enables people to have equitable access to local facilities, amenities, and employment opportunities, promoting vibrancy, social cohesion, and intergenerational connections. The attributes of 20-minute neighbourhoods also combine to create places, that are acknowledged as friendly for all ages, address changing needs across the life course, and provide better support for the ageing population. Furthermore, there are indications that 20-minute neighbourhoods may be more resilient against many of the negative impacts of stringent public health protocols such as those implemented in periods of lockdown during the Covid-19 pandemic. In this article, we evaluate and compare planning policies and practices aimed at establishing 20-minute neighbourhoods in Melbourne (Australia) and Scotland (the UK). Using case studies, we discuss similarities and differences involved in using place-based approaches of 20-minute neighbourhoods to address 21st-century challenges in key areas of health and wellbeing, equity, environmental sustainability, and community resilience.
University of Stirli... arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1893/34586Data sources: Bielefeld Academic Search Engine (BASE)VU Research RepositoryArticle . 2022License: CC BYFull-Text: https://vuir.vu.edu.au/44125/Data sources: Bielefeld Academic Search Engine (BASE)Social Science Open Access RepositoryArticle . 2022Data sources: Social Science Open Access Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17645/up.v7i4.5668&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert University of Stirli... arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1893/34586Data sources: Bielefeld Academic Search Engine (BASE)VU Research RepositoryArticle . 2022License: CC BYFull-Text: https://vuir.vu.edu.au/44125/Data sources: Bielefeld Academic Search Engine (BASE)Social Science Open Access RepositoryArticle . 2022Data sources: Social Science Open Access Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17645/up.v7i4.5668&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Ona Egbue; Suzanna Long; Seong Dae Kim;doi: 10.3390/su14031665
Plug-in electric vehicles (PEVs) have immense potential for reducing greenhouse gas emissions and dependence on fossil fuels, and for smart grid applications. Although a great deal of research is focused on technological limitations that affect PEV battery performance targets, a major and arguably equal concern is the constraint imposed by the finite availability of elements or resources used in the manufacture of PEV batteries. Availability of resources, such as lithium, for batteries is critical to the future of PEVs and is, therefore, a topic that needs attention. This study addresses the issues related to lithium availability and sustainability, particularly supply and demand related to PEVs and the impact on future PEV growth. In this paper, a detailed review of the research on lithium availability for PEV batteries is presented, key challenges are pinpointed and future impacts on PEV technology are outlined.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Wojciech Cieslik; Filip Szwajca; Jedrzej Zawartowski; Katarzyna Pietrzak; Slawomir Rosolski; Kamil Szkarlat; Michal Rutkowski;doi: 10.3390/en14227591
The growing number of electric vehicles in recent years is observable in almost all countries. The country’s energy transition should accompany this rise in electromobility if it is currently generated from non-renewable sources. Only electric vehicles powered by renewable energy sources can be considered zero-emission. Therefore, it is essential to conduct interdisciplinary research on the feasibility of combining energy recovery/generation structures and testing the energy consumption of electric vehicles under real driving conditions. This work presents a comprehensive approach for evaluating the energy consumption of a modern public building–electric vehicle system within a specific location. The original methodology developed includes surveys that demonstrate the required mobility range to be provided to occupants of the building under consideration. In the next step, an energy balance was performed for a novel near-zero energy building equipped with a 199.8 kWp photovoltaic installation, the energy from which can be used to charge an electric vehicle. The analysis considered the variation in vehicle energy consumption by season (winter/summer), the actual charging profile of the vehicle, and the parking periods required to achieve the target range for the user.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Ukrainian State University of Science and Technologies Authors: A. F. Golovchuk;Purpose. In modern conditions of energy consumption growth and a rapid increase in energy prices the actual problem is the development and implementation of energy efficiency programs and resource-saving conversion in to a source to provide the needs of industry and municipal power. The paper aims to solve the urgent problem of energy saving and efficient use of fuel-energy ones and heat supply system optimization on the basis of Uman National University of Horticulture (UNUH). Methodology. The work investigated the process of heating and hot water supply in the course of 2007-2015 years. Implementation of current problems of energy saving is grounded on the scientific-practical and efficient assurance of fuel and energy usage. At the same time energy-saving technologies are viewed as a priority direction of the energy sector development, reduction of man-induced impact on the environment and as a way of improving the competitiveness of the national economy. Findings. Statistical data acquisition and analyzing of gas flow and outside air temperature for nine years was carried out. On the basis of this analysis, the problem was identified and specific targets for its solutions were set. Originality. Scientific novelty lies in solving the problem of energy saving and efficient use of fuel resources in Ukraine through the use of a systematic approach, the methodology development of efficient use of different fuels and optimization of local heating operation, applying contemporary automation and control systems. Firstly it was in detail analyzed and conducted the comprehensive assessment of various factors influence on energy conservation. It takes into account the human factor, professionalism and responsibility of the operators of boilers and their superiors, as well as the relevant control services. Practical value. For UNUH campus hybrid use of solid fuel and gas boilers was carried out. Decentralization of the university heating system has been conducted through the restoration of 350 individual heating systems in residential buildings, remote departments and campus dormitories. The conclusions propose the list of activities upon the real economy of fuel and energy resources, and measures to overcome the economic and political crisis in the country.
Science and Transpor... arrow_drop_down Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway TransportArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefScience and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway TransportArticleLicense: CC BYData sources: UnpayWallScience and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway TransportArticle . 2016Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15802/stp2016/74720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Science and Transpor... arrow_drop_down Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway TransportArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefScience and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway TransportArticleLicense: CC BYData sources: UnpayWallScience and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway TransportArticle . 2016Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15802/stp2016/74720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2021Embargo end date: 01 Jan 2021 Switzerland, FinlandPublisher:MDPI AG Authors: Mehdi Jahangir Samet; Heikki Liimatainen; Oscar Patrick René van Vliet; Markus Pöllänen;Medium and heavy-duty battery electric trucks (BETs) may play a key role in mitigating greenhouse gas (GHG) emissions from road freight transport. However, technological challenges such as limited range and cargo carrying capacity as well as the required charging time need to be efficiently addressed before the large-scale adoption of BETs. In this study, we apply a geospatial data analysis approach by using a battery electric vehicle potential (BEVPO) model with the datasets of road freight transport surveys for analyzing the potential of large-scale BET adoption in Finland and Switzerland for trucks with gross vehicle weight (GVW) of over 3.5 t. Our results show that trucks with payload capacities up to 30 t have the most potential for electrification by relying on the currently available battery and plug-in charging technology, with 93% (55% tkm) and 89% (84% tkm) trip coverage in Finland and Switzerland, respectively. Electric road systems (ERSs) would be essential for covering 51% trips (41% tkm) of heavy-duty trucks heavier than 30 t in Finland. Furthermore, range-extender technology could improve the trip electrification potential by 3–10 percentage points (4–12 percentage points of tkm).
Tampere University: ... arrow_drop_down Tampere University: TrepoArticle . 2021License: CC BYFull-Text: https://trepo.tuni.fi/handle/10024/133513Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14040823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Tampere University: ... arrow_drop_down Tampere University: TrepoArticle . 2021License: CC BYFull-Text: https://trepo.tuni.fi/handle/10024/133513Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14040823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Li Cai; Quanwen Zhang; Nina Dai; Qingshan Xu; Le Gao; Bingjie Shang; Lihong Xiang; Hao Chen;doi: 10.3390/wevj13100195
In light of the increasing number of electric vehicles (EV), disorderly charging in mountainous cities has implications for the stability and efficient utilization of the power grid. It is a roadblock to lowering carbon emissions. EV aggregators are a bridge between EV users and the grid, a platform to achieve energy and information interoperability, and a study of the orderly charging of EVs to reach carbon emission targets. As for the objective function, the EV aggregator considers the probability of EV charging access in mountainous cities, the SOC expectation of EV users, the transformer capacity constraint, the charging start time, and other constraints to maximize revenue. Considering the access probability of charging for users in mountainous cities, the optimized Lagrange relaxation method is used to solve the objective function. The disorderly charging, centralized optimized charging, and decentralized optimized charging modes are investigated using simulation calculations. Their load profiles, economic benefits, and computational efficiency are compared in three ways. Decentralized optimal charging using the Lagrange relaxation method is shown to be 50% more effective and to converge 279% faster than centralized optimal charging.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj13100195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj13100195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Funded by:EC | DIAPREPPEC| DIAPREPPStergios Statharas; Pantelis Capros; Yannis Moysoglou; Georgios Zazias; Pelopidas Siskos;doi: 10.3390/en12142739
The European Commission (EC) has set ambitious CO2 emission reduction objectives for the transport sector by 2050. In this context, most decarbonisation scenarios for transport foresee large market penetration of electric vehicles in 2030 and 2050. The emergence of electrified car mobility is, however, uncertain due to various barriers such as battery costs, range anxiety and dependence on battery recharging networks. Those barriers need to be addressed in the 2020–2030 decade, as this is key to achieving electrification at a large scale in the longer term. The paper explores the uncertainties prevailing in the first decade and the mix of policies to overcome the barriers by quantifying a series of sensitivity analysis scenarios of the evolution of the car markets in the EU Member States and the impacts of each barrier individually. The model used is PRIMES-TREMOVE, which has been developed by E3MLab and constitutes a detailed energy-economic model for the transport sector. Based on model results, the paper assesses the market, energy, emission and cost impacts of various CO2 car standards, infrastructure development plans with different geographic coverage and a range of battery cost reductions driven by learning and mass industrial production. The assessment draws on the comparison of 29 sensitivity scenarios for the EU, which show that removing the barriers in the decade 2020–2030 is important for electrification emergence. The results show that difficult policy dilemmas exist between adopting stringent standards and infrastructure of wide coverage to push technology and market development and adverse effects on costs, in case the high cost of batteries persists. However, if the pace of battery cost reductions is fast, a weak policy for standards and infrastructure is not cost-effective and sub-optimal. These policies are shown to have impacts on the competition between pure electric and plug-in hybrid vehicles. Drivers that facilitate electrification also favour the uptake of the former technology, the latter being a reasonable choice only in case the barriers persist and obstruct electrification.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 50 citations 50 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Funded by:EC | ECCO-MATEEC| ECCO-MATEAuthors: Grusche J. Seithe; Alexandra Bonou; Dimitrios Giannopoulos; Chariklia A. Georgopoulou; +1 AuthorsGrusche J. Seithe; Alexandra Bonou; Dimitrios Giannopoulos; Chariklia A. Georgopoulou; Maria Founti;doi: 10.3390/en13112739
A “Well-to-Propeller” Life Cycle Assessment of maritime transport was performed with a European geographical focus. Four typical types of vessels with specific operational profiles were assessed: a container vessel and a tanker (both with 2-stroke engines), a passenger roll-on/roll-off (Ro-Pax) and a cruise vessel (both with 4-stroke engines). All main engines were dual fuel operated with Heavy Fuel Oil (HFO) or Liquefied Natural Gas (LNG). Alternative onshore and offshore fuel supply chains were considered. Primary energy use and greenhouse gas emissions were assessed. Raw material extraction was found to be the most impactful life cycle stage (~90% of total energy use). Regarding greenhouse gases, liquefaction was the key issue. When transitioning from HFO to LNG, the systems were mainly influenced by a reduction in cargo capacity due to bunkering requirements and methane slip, which depends on the fuel supply chain (onshore has 64% more slip than offshore) and the engine type (4-stroke engines have 20% more slip than 2-stroke engines). The combination of alternative fuel supply chains and specific operational profiles allowed for a complete system assessment. The results demonstrated that multiple opposing drivers affect the environmental performance of maritime transport, a useful insight towards establishing emission abatement strategies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:EDP Sciences Roman Dychkovskyi; Mykola Tabachenko; Ksenia Zhadiaieva; Artur Dyczko; Edgar Cáceres Cabana;The paper represents the analysis, which has helped to establish the usage of gas hydrate technologies in the methane conversion. This gas could be obtained in different ways. Possibilities and sources for the gas obtaining have been demonstrated. Use of other environmentally friendly sources to support operation in such systems in terms of joint energy complex has been considered. The necessary kinetic connections to provide operational sustainability of all the constituents have been given. The approach helps evaluate quantitatively the priority of its physicochemical transformations to obtain gas hydrates artificially. It is possible to transport methane at considerable distances when it is solidified. Actually, in this case there is no necessity to build costly compressor stations and pipelines for its transportation to consumers. The approach is extremely important for mining regions as it helps prolong the operating period and working out of the abandoned and off-balance coal reserves. In this case, it is proposed to apply special gasification technologies tending to maximum methane recovery. The proposed solutions give the possibility to define the trends of our further research. They will be highlighted in the following authors’ studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202123001023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202123001023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Samantha L. Eaves; Garrett Staines; Genevra Harker-Klimeš; Margaret Pinza; Simon Geerlofs;doi: 10.3390/jmse10020177
Uncertainty surrounding the potential environmental impacts of marine energy (ME) has resulted in extensive and expensive environmental monitoring requirements for ME deployments. Recently, there have been more ME deployments and associated environmental data collection efforts, but no standardized methodologies for data collection. This hinders the use of previously collected data to inform new ME project permitting efforts. Triton Field Trials (TFiT), created at the Pacific Northwest National Laboratory by the United States (U.S.) Department of Energy, explores ways to promote more consistent environmental data collection and enable data transferability across ME device types and locations. Documents from 118 previous ME projects or ME-related research studies in the U.S. and internationally were reviewed to identify the highest priority stressor–receptor relationships to be investigated and the technologies and methodologies used to address them. Thirteen potential field sites were assessed to determine suitable locations for testing the performance of relevant monitoring technologies. This introductory paper provides an overview of how priority research areas and associated promising technologies were identified as well as how testing locations were identified for TFiT activities. Through these scoping efforts, TFiT focused on four activity areas: collision risk, underwater noise, electromagnetic fields, and changes in habitat. Technologies and methodologies were tested at field sites in Alaska, Washington, California, and New Hampshire. Detailed information on the effectiveness of the identified methodologies and specific recommendations for each of the four focus areas are included in the companion papers in this Special Issue.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10020177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10020177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022 United Kingdom, Australia, United KingdomPublisher:Cogitatio Hing-Wah Chau; Ian Gilzean; Elmira Jamei; Lesley Palmer; Terri Preece; Martin Quirke;handle: 1893/34586
Twenty-minute neighbourhoods highlight the importance of well-connected and mixed-used neighbourhoods and communities with proximate access to employment, essential services, public transport, and open spaces. Shorter distances together with re-prioritised public spaces encourage more active transport choices, resulting in public health benefits and reduced environmental pollution. Higher liveability brought about by mixed-use developments enables people to have equitable access to local facilities, amenities, and employment opportunities, promoting vibrancy, social cohesion, and intergenerational connections. The attributes of 20-minute neighbourhoods also combine to create places, that are acknowledged as friendly for all ages, address changing needs across the life course, and provide better support for the ageing population. Furthermore, there are indications that 20-minute neighbourhoods may be more resilient against many of the negative impacts of stringent public health protocols such as those implemented in periods of lockdown during the Covid-19 pandemic. In this article, we evaluate and compare planning policies and practices aimed at establishing 20-minute neighbourhoods in Melbourne (Australia) and Scotland (the UK). Using case studies, we discuss similarities and differences involved in using place-based approaches of 20-minute neighbourhoods to address 21st-century challenges in key areas of health and wellbeing, equity, environmental sustainability, and community resilience.
University of Stirli... arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1893/34586Data sources: Bielefeld Academic Search Engine (BASE)VU Research RepositoryArticle . 2022License: CC BYFull-Text: https://vuir.vu.edu.au/44125/Data sources: Bielefeld Academic Search Engine (BASE)Social Science Open Access RepositoryArticle . 2022Data sources: Social Science Open Access Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17645/up.v7i4.5668&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert University of Stirli... arrow_drop_down University of Stirling: Stirling Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/1893/34586Data sources: Bielefeld Academic Search Engine (BASE)VU Research RepositoryArticle . 2022License: CC BYFull-Text: https://vuir.vu.edu.au/44125/Data sources: Bielefeld Academic Search Engine (BASE)Social Science Open Access RepositoryArticle . 2022Data sources: Social Science Open Access Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17645/up.v7i4.5668&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Ona Egbue; Suzanna Long; Seong Dae Kim;doi: 10.3390/su14031665
Plug-in electric vehicles (PEVs) have immense potential for reducing greenhouse gas emissions and dependence on fossil fuels, and for smart grid applications. Although a great deal of research is focused on technological limitations that affect PEV battery performance targets, a major and arguably equal concern is the constraint imposed by the finite availability of elements or resources used in the manufacture of PEV batteries. Availability of resources, such as lithium, for batteries is critical to the future of PEVs and is, therefore, a topic that needs attention. This study addresses the issues related to lithium availability and sustainability, particularly supply and demand related to PEVs and the impact on future PEV growth. In this paper, a detailed review of the research on lithium availability for PEV batteries is presented, key challenges are pinpointed and future impacts on PEV technology are outlined.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031665&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Wojciech Cieslik; Filip Szwajca; Jedrzej Zawartowski; Katarzyna Pietrzak; Slawomir Rosolski; Kamil Szkarlat; Michal Rutkowski;doi: 10.3390/en14227591
The growing number of electric vehicles in recent years is observable in almost all countries. The country’s energy transition should accompany this rise in electromobility if it is currently generated from non-renewable sources. Only electric vehicles powered by renewable energy sources can be considered zero-emission. Therefore, it is essential to conduct interdisciplinary research on the feasibility of combining energy recovery/generation structures and testing the energy consumption of electric vehicles under real driving conditions. This work presents a comprehensive approach for evaluating the energy consumption of a modern public building–electric vehicle system within a specific location. The original methodology developed includes surveys that demonstrate the required mobility range to be provided to occupants of the building under consideration. In the next step, an energy balance was performed for a novel near-zero energy building equipped with a 199.8 kWp photovoltaic installation, the energy from which can be used to charge an electric vehicle. The analysis considered the variation in vehicle energy consumption by season (winter/summer), the actual charging profile of the vehicle, and the parking periods required to achieve the target range for the user.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14227591&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Ukrainian State University of Science and Technologies Authors: A. F. Golovchuk;Purpose. In modern conditions of energy consumption growth and a rapid increase in energy prices the actual problem is the development and implementation of energy efficiency programs and resource-saving conversion in to a source to provide the needs of industry and municipal power. The paper aims to solve the urgent problem of energy saving and efficient use of fuel-energy ones and heat supply system optimization on the basis of Uman National University of Horticulture (UNUH). Methodology. The work investigated the process of heating and hot water supply in the course of 2007-2015 years. Implementation of current problems of energy saving is grounded on the scientific-practical and efficient assurance of fuel and energy usage. At the same time energy-saving technologies are viewed as a priority direction of the energy sector development, reduction of man-induced impact on the environment and as a way of improving the competitiveness of the national economy. Findings. Statistical data acquisition and analyzing of gas flow and outside air temperature for nine years was carried out. On the basis of this analysis, the problem was identified and specific targets for its solutions were set. Originality. Scientific novelty lies in solving the problem of energy saving and efficient use of fuel resources in Ukraine through the use of a systematic approach, the methodology development of efficient use of different fuels and optimization of local heating operation, applying contemporary automation and control systems. Firstly it was in detail analyzed and conducted the comprehensive assessment of various factors influence on energy conservation. It takes into account the human factor, professionalism and responsibility of the operators of boilers and their superiors, as well as the relevant control services. Practical value. For UNUH campus hybrid use of solid fuel and gas boilers was carried out. Decentralization of the university heating system has been conducted through the restoration of 350 individual heating systems in residential buildings, remote departments and campus dormitories. The conclusions propose the list of activities upon the real economy of fuel and energy resources, and measures to overcome the economic and political crisis in the country.
Science and Transpor... arrow_drop_down Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway TransportArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefScience and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway TransportArticleLicense: CC BYData sources: UnpayWallScience and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway TransportArticle . 2016Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15802/stp2016/74720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Science and Transpor... arrow_drop_down Science and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway TransportArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefScience and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway TransportArticleLicense: CC BYData sources: UnpayWallScience and Transport Progress. Bulletin of Dnipropetrovsk National University of Railway TransportArticle . 2016Data sources: DOAJadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15802/stp2016/74720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2021Embargo end date: 01 Jan 2021 Switzerland, FinlandPublisher:MDPI AG Authors: Mehdi Jahangir Samet; Heikki Liimatainen; Oscar Patrick René van Vliet; Markus Pöllänen;Medium and heavy-duty battery electric trucks (BETs) may play a key role in mitigating greenhouse gas (GHG) emissions from road freight transport. However, technological challenges such as limited range and cargo carrying capacity as well as the required charging time need to be efficiently addressed before the large-scale adoption of BETs. In this study, we apply a geospatial data analysis approach by using a battery electric vehicle potential (BEVPO) model with the datasets of road freight transport surveys for analyzing the potential of large-scale BET adoption in Finland and Switzerland for trucks with gross vehicle weight (GVW) of over 3.5 t. Our results show that trucks with payload capacities up to 30 t have the most potential for electrification by relying on the currently available battery and plug-in charging technology, with 93% (55% tkm) and 89% (84% tkm) trip coverage in Finland and Switzerland, respectively. Electric road systems (ERSs) would be essential for covering 51% trips (41% tkm) of heavy-duty trucks heavier than 30 t in Finland. Furthermore, range-extender technology could improve the trip electrification potential by 3–10 percentage points (4–12 percentage points of tkm).
Tampere University: ... arrow_drop_down Tampere University: TrepoArticle . 2021License: CC BYFull-Text: https://trepo.tuni.fi/handle/10024/133513Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14040823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Tampere University: ... arrow_drop_down Tampere University: TrepoArticle . 2021License: CC BYFull-Text: https://trepo.tuni.fi/handle/10024/133513Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14040823&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Li Cai; Quanwen Zhang; Nina Dai; Qingshan Xu; Le Gao; Bingjie Shang; Lihong Xiang; Hao Chen;doi: 10.3390/wevj13100195
In light of the increasing number of electric vehicles (EV), disorderly charging in mountainous cities has implications for the stability and efficient utilization of the power grid. It is a roadblock to lowering carbon emissions. EV aggregators are a bridge between EV users and the grid, a platform to achieve energy and information interoperability, and a study of the orderly charging of EVs to reach carbon emission targets. As for the objective function, the EV aggregator considers the probability of EV charging access in mountainous cities, the SOC expectation of EV users, the transformer capacity constraint, the charging start time, and other constraints to maximize revenue. Considering the access probability of charging for users in mountainous cities, the optimized Lagrange relaxation method is used to solve the objective function. The disorderly charging, centralized optimized charging, and decentralized optimized charging modes are investigated using simulation calculations. Their load profiles, economic benefits, and computational efficiency are compared in three ways. Decentralized optimal charging using the Lagrange relaxation method is shown to be 50% more effective and to converge 279% faster than centralized optimal charging.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj13100195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj13100195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Funded by:EC | DIAPREPPEC| DIAPREPPStergios Statharas; Pantelis Capros; Yannis Moysoglou; Georgios Zazias; Pelopidas Siskos;doi: 10.3390/en12142739
The European Commission (EC) has set ambitious CO2 emission reduction objectives for the transport sector by 2050. In this context, most decarbonisation scenarios for transport foresee large market penetration of electric vehicles in 2030 and 2050. The emergence of electrified car mobility is, however, uncertain due to various barriers such as battery costs, range anxiety and dependence on battery recharging networks. Those barriers need to be addressed in the 2020–2030 decade, as this is key to achieving electrification at a large scale in the longer term. The paper explores the uncertainties prevailing in the first decade and the mix of policies to overcome the barriers by quantifying a series of sensitivity analysis scenarios of the evolution of the car markets in the EU Member States and the impacts of each barrier individually. The model used is PRIMES-TREMOVE, which has been developed by E3MLab and constitutes a detailed energy-economic model for the transport sector. Based on model results, the paper assesses the market, energy, emission and cost impacts of various CO2 car standards, infrastructure development plans with different geographic coverage and a range of battery cost reductions driven by learning and mass industrial production. The assessment draws on the comparison of 29 sensitivity scenarios for the EU, which show that removing the barriers in the decade 2020–2030 is important for electrification emergence. The results show that difficult policy dilemmas exist between adopting stringent standards and infrastructure of wide coverage to push technology and market development and adverse effects on costs, in case the high cost of batteries persists. However, if the pace of battery cost reductions is fast, a weak policy for standards and infrastructure is not cost-effective and sub-optimal. These policies are shown to have impacts on the competition between pure electric and plug-in hybrid vehicles. Drivers that facilitate electrification also favour the uptake of the former technology, the latter being a reasonable choice only in case the barriers persist and obstruct electrification.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 50 citations 50 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12142739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Funded by:EC | ECCO-MATEEC| ECCO-MATEAuthors: Grusche J. Seithe; Alexandra Bonou; Dimitrios Giannopoulos; Chariklia A. Georgopoulou; +1 AuthorsGrusche J. Seithe; Alexandra Bonou; Dimitrios Giannopoulos; Chariklia A. Georgopoulou; Maria Founti;doi: 10.3390/en13112739
A “Well-to-Propeller” Life Cycle Assessment of maritime transport was performed with a European geographical focus. Four typical types of vessels with specific operational profiles were assessed: a container vessel and a tanker (both with 2-stroke engines), a passenger roll-on/roll-off (Ro-Pax) and a cruise vessel (both with 4-stroke engines). All main engines were dual fuel operated with Heavy Fuel Oil (HFO) or Liquefied Natural Gas (LNG). Alternative onshore and offshore fuel supply chains were considered. Primary energy use and greenhouse gas emissions were assessed. Raw material extraction was found to be the most impactful life cycle stage (~90% of total energy use). Regarding greenhouse gases, liquefaction was the key issue. When transitioning from HFO to LNG, the systems were mainly influenced by a reduction in cargo capacity due to bunkering requirements and methane slip, which depends on the fuel supply chain (onshore has 64% more slip than offshore) and the engine type (4-stroke engines have 20% more slip than 2-stroke engines). The combination of alternative fuel supply chains and specific operational profiles allowed for a complete system assessment. The results demonstrated that multiple opposing drivers affect the environmental performance of maritime transport, a useful insight towards establishing emission abatement strategies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112739&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:EDP Sciences Roman Dychkovskyi; Mykola Tabachenko; Ksenia Zhadiaieva; Artur Dyczko; Edgar Cáceres Cabana;The paper represents the analysis, which has helped to establish the usage of gas hydrate technologies in the methane conversion. This gas could be obtained in different ways. Possibilities and sources for the gas obtaining have been demonstrated. Use of other environmentally friendly sources to support operation in such systems in terms of joint energy complex has been considered. The necessary kinetic connections to provide operational sustainability of all the constituents have been given. The approach helps evaluate quantitatively the priority of its physicochemical transformations to obtain gas hydrates artificially. It is possible to transport methane at considerable distances when it is solidified. Actually, in this case there is no necessity to build costly compressor stations and pipelines for its transportation to consumers. The approach is extremely important for mining regions as it helps prolong the operating period and working out of the abandoned and off-balance coal reserves. In this case, it is proposed to apply special gasification technologies tending to maximum methane recovery. The proposed solutions give the possibility to define the trends of our further research. They will be highlighted in the following authors’ studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202123001023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1051/e3sconf/202123001023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Samantha L. Eaves; Garrett Staines; Genevra Harker-Klimeš; Margaret Pinza; Simon Geerlofs;doi: 10.3390/jmse10020177
Uncertainty surrounding the potential environmental impacts of marine energy (ME) has resulted in extensive and expensive environmental monitoring requirements for ME deployments. Recently, there have been more ME deployments and associated environmental data collection efforts, but no standardized methodologies for data collection. This hinders the use of previously collected data to inform new ME project permitting efforts. Triton Field Trials (TFiT), created at the Pacific Northwest National Laboratory by the United States (U.S.) Department of Energy, explores ways to promote more consistent environmental data collection and enable data transferability across ME device types and locations. Documents from 118 previous ME projects or ME-related research studies in the U.S. and internationally were reviewed to identify the highest priority stressor–receptor relationships to be investigated and the technologies and methodologies used to address them. Thirteen potential field sites were assessed to determine suitable locations for testing the performance of relevant monitoring technologies. This introductory paper provides an overview of how priority research areas and associated promising technologies were identified as well as how testing locations were identified for TFiT activities. Through these scoping efforts, TFiT focused on four activity areas: collision risk, underwater noise, electromagnetic fields, and changes in habitat. Technologies and methodologies were tested at field sites in Alaska, Washington, California, and New Hampshire. Detailed information on the effectiveness of the identified methodologies and specific recommendations for each of the four focus areas are included in the companion papers in this Special Issue.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10020177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse10020177&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu