- home
- Advanced Search
- Energy Research
- Transport Research
- Tsinghua University
- Energy Research
- Transport Research
- Tsinghua University
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Changsheng Lin; Zhengda Cui; Qidong Tian; Ying Chen; Han Zheng; Muchen Yuan;Private electric vehicles (EVs) have great potential to conduct emergency power supply, considering the rapid development of EVs and vehicle-to-building (V2B) technologies. To enhance the resilience of the building power supply, charging piles can be upgraded to support bi-directional power supply, thus enabling EVs to help restore the buildings affected by disasters. A planning method for the charging piles’ upgrade is proposed. First, a scenario set is generated to consider the influence of uncertainties during the planning period. The uncertainties of disasters, EVs, and building load are included. Then, a two-stage stochastic programming model is established to decide the upgrade plan. Pre-disaster decisions are made in the first stage and the building is restored in the second stage. The method is applied to two different types of buildings and the test results verify the effectiveness of the proposed method.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2023.04.305&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2023.04.305&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Frontiers Media SA Zehan Lu; Ninghui Yang; Yan Cui; Peng Du; Xincheng Tian; Zechun Hu;The power grid and transportation network are coupled by the charging behavior of electric vehicles. Based on the coupled power-transportation network model, this paper first analyzes the effect of the distribution system operator’s (DSO) electricity selling price on guiding the charging behavior of electric vehicles in the transportation network and then builds the DSO’s optimal pricing formulation. Considering the competition between multiple charging network operators (CNOs), this paper establishes a game model between CNOs and solves it iteratively through the best response dynamic method. An approximation method using the elasticity matrix is proposed to speed up the solution by reducing the multi-layer optimization to a single layer one in each iteration, with its effectiveness validated through numerical tests. Furthermore, the paper discusses the issue of the prisoner’s dilemma that arises among CNOs and explores the potential impact of their cooperative strategies on the overall system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2023.1343311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2023.1343311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Xuyang Liu; Jiayang Pang; Lei Li; Weiqiang Zhao; Yupeng Wang; Dandan Yan; Lingjiu Zhou; Zhengwei Wang;doi: 10.3390/jmse11112068
Because a pump-turbine mainly undertakes the role of energy conversion and pumped storage in the field of hydropower engineering, the complex transition process and frequent conversion between different working conditions lead to the increase in the stress and strain of core components such as the unit shaft system, and even cause resonance phenomena. Based on ANSYS finite element numerical calculation software, this paper adopts the acoustic fluid–structure coupling method to study the influence of the shaft of the pump-turbine on the dynamic characteristics of the runner. At the same time, the paper analyses the influence of different contact modes between the runner and the shaft on the modal characteristics of the shaft system. The numerical simulation results have shown that the runner is affected by the added mass of the water. The natural frequency reduction rate of each order of wet modal is ranged from 19% to 64%. The main shaft has a greater influence on the simplification of the shaft system calculation method. The type of contact surface between the main shaft and the runner has a smaller influence on the modal characteristics and the natural frequency of the shaft system. The research in this paper contributes an evaluation of the dynamic characteristics of the runner of a hydraulic turbine unit, which is of great significance for the optimization of the analysis algorithm of the runner structure for large pumped storage units.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11112068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11112068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Netherlands, Australia, Germany, France, Germany, United Kingdom, Netherlands, Germany, Switzerland, Germany, Netherlands, Germany, Netherlands, Netherlands, Netherlands, Australia, Germany, United KingdomPublisher:Copernicus GmbH Publicly fundedFunded by:RCN | Integrated Carbon Observa..., UKRI | Amazon Integrated Carbon ..., EC | AtlantOS +10 projectsRCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,UKRI| Amazon Integrated Carbon Analysis / AMAZONICA ,EC| AtlantOS ,NWO| The distribution and evolution of inert and reactant scalars: from the atmospheric boundary layer to continental scales ,RCN| CICEP-Strategic Challenges in International Climate and Energy Policy ,EC| CRESCENDO ,EC| RINGO ,EC| FIXO3 ,EC| IMBALANCE-P ,EC| VERIFY ,EC| GEOCARBON ,RCN| Jordsystem-modellering av klimaforandringer i den antroposene tidsalder; Earth system modelling of climate Variations in the Anthropocene ,EC| QUINCYC. Le Quéré; R. M. Andrew; P. Friedlingstein; S. Sitch; J. Hauck; J. Pongratz; J. Pongratz; P. A. Pickers; J. I. Korsbakken; G. P. Peters; J. G. Canadell; A. Arneth; V. K. Arora; L. Barbero; L. Barbero; A. Bastos; L. Bopp; F. Chevallier; L. P. Chini; P. Ciais; S. C. Doney; T. Gkritzalis; D. S. Goll; I. Harris; V. Haverd; F. M. Hoffman; M. Hoppema; R. A. Houghton; G. Hurtt; T. Ilyina; A. K. Jain; T. Johannessen; C. D. Jones; E. Kato; R. F. Keeling; K. K. Goldewijk; K. K. Goldewijk; P. Landschützer; N. Lefèvre; S. Lienert; Z. Liu; Z. Liu; D. Lombardozzi; N. Metzl; D. R. Munro; J. E. M. S. Nabel; S.-I. Nakaoka; C. Neill; C. Neill; A. Olsen; T. Ono; P. Patra; A. Peregon; W. Peters; W. Peters; P. Peylin; B. Pfeil; B. Pfeil; D. Pierrot; D. Pierrot; B. Poulter; G. Rehder; L. Resplandy; E. Robertson; M. Rocher; C. Rödenbeck; U. Schuster; J. Schwinger; R. Séférian; I. Skjelvan; T. Steinhoff; A. Sutton; P. P. Tans; H. Tian; B. Tilbrook; B. Tilbrook; F. N. Tubiello; I. T. van der Laan-Luijkx; G. R. van der Werf; N. Viovy; A. P. Walker; A. J. Wiltshire; R. Wright; R. Wright; S. Zaehle; B. Zheng;Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use and land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2008–2017), EFF was 9.4±0.5 GtC yr−1, ELUC 1.5±0.7 GtC yr−1, GATM 4.7±0.02 GtC yr−1, SOCEAN 2.4±0.5 GtC yr−1, and SLAND 3.2±0.8 GtC yr−1, with a budget imbalance BIM of 0.5 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For the year 2017 alone, the growth in EFF was about 1.6 % and emissions increased to 9.9±0.5 GtC yr−1. Also for 2017, ELUC was 1.4±0.7 GtC yr−1, GATM was 4.6±0.2 GtC yr−1, SOCEAN was 2.5±0.5 GtC yr−1, and SLAND was 3.8±0.8 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 405.0±0.1 ppm averaged over 2017. For 2018, preliminary data for the first 6–9 months indicate a renewed growth in EFF of +2.7 % (range of 1.8 % to 3.7 %) based on national emission projections for China, the US, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. The analysis presented here shows that the mean and trend in the five components of the global carbon budget are consistently estimated over the period of 1959–2017, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations show (1) no consensus in the mean and trend in land-use change emissions, (2) a persistent low agreement among the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models, originating outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding the global carbon cycle compared with previous publications of this data set (Le Quéré et al., 2018, 2016, 2015a, b, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2018.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/35123Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2018Full-Text: https://hal.science/hal-01951197Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01951197Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01951197Data sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Earth System Science Data (ESSD)Article . 2018License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of IfremerEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-10-2141-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1K citations 1,246 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/35123Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2018Full-Text: https://hal.science/hal-01951197Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01951197Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01951197Data sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Earth System Science Data (ESSD)Article . 2018License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of IfremerEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-10-2141-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 GermanyPublisher:Elsevier BV Publicly fundedDaniel A. Cogswell; Yong Xia; Tobias Sedlatschek; Tobias Sedlatschek; Tobias Sedlatschek; Qing Zhou; Bobin Xing; Tomasz Wierzbicki; Ian Mathews; Ian Mathews; Dongsheng Ren; Wei Li; Martin Z. Bazant; Sai Nithin R. Kantareddy; Juner Zhu; Tao Gao; Tao Gao; Mengchao Yi;Cell reports 2(8), 100537 (2021). doi:10.1016/j.xcrp.2021.100537 Published by Cell Press, Maryland Heights, MO
Cell Reports Physica... arrow_drop_down Cell Reports Physical ScienceArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationsserver der RWTH Aachen UniversityArticle . 2021Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.xcrp.2021.100537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 150 citations 150 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Cell Reports Physica... arrow_drop_down Cell Reports Physical ScienceArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationsserver der RWTH Aachen UniversityArticle . 2021Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.xcrp.2021.100537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SwedenPublisher:MDPI AG Funded by:EC | EnergyMatchingEC| EnergyMatchingPei Huang; Xingxing Zhang; Benedetta Copertaro; Puneet Kumar Saini; Da Yan; Yi Wu; Xiangjie Chen;doi: 10.3390/su12177035
The deployment of solar photovoltaics (PV) and electric vehicles (EVs) is continuously increasing during urban energy transition. With the increasing deployment of energy storage, the development of the energy sharing concept and the associated advanced controls, the conventional solar mobility model (i.e., solar-to-vehicles (S2V), using solar energy in a different location) and context are becoming less compatible and limited for future scenarios. For instance, energy sharing within a building cluster enables buildings to share surplus PV power generation with other buildings of insufficient PV power generation, thereby improving the overall PV power utilization and reducing the grid power dependence. However, such energy sharing techniques are not considered in the conventional solar mobility models, which limits the potential for performance improvements. Therefore, this study conducts a systematic review of solar mobility-related studies as well as the newly developed energy concepts and techniques. Based on the review, this study extends the conventional solar mobility scope from S2V to solar-to-buildings, vehicles and storage (S2BVS). A detailed modeling of each sub-system in the S2BVS model and related advanced controls are presented, and the research gaps that need future investigation for promoting solar mobility are identified. The aim is to provide an up-to-date review of the existing studies related to solar mobility to decision makers, so as to help enhance solar power utilization, reduce buildings’ and EVs’ dependence and impacts on the power grid, as well as carbon emissions.
Sustainability arrow_drop_down Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedDalarna University College Electronic ArchiveArticle . 2020Data sources: Dalarna University College Electronic Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12177035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedDalarna University College Electronic ArchiveArticle . 2020Data sources: Dalarna University College Electronic Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12177035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Oluwatobi Pelumi Adeleke; Yong Li; Qiang Chen; Wentao Zhou; Xing Xu; Xiaoli Cui;doi: 10.3390/wevj13100181
The improvement of both the stability and economy of the four in-wheel motor drive (4IWMD) electric vehicle under complex drive cycles is currently a difficult problem in this field. A torque distribution method with the comprehensive goals of optimal torque distribution and energy efficiency, considering economy through energy efficiency for the 4IWMD electric vehicle, is proposed in this paper. Each component of the 4IWMD electric vehicle is modelled. The dynamic programming (DP) control algorithm is utilized for torque distribution between the front and rear in-wheel motors to obtain optimal torque distribution and energy efficiency in the 4IWMD electric vehicle. The simulation is performed on a co-simulation platform with the software of AVL Cruise and MATLAB/Simulink, considering a straight road. Compared to the fuzzy logic control algorithm, the simulation results are very promising, as the energy consumption of the electric vehicle was reduced by 22.68%, 20.73% and 21.84% under the WLTC, NEDC and customized IM240 driving cycle conditions, respectively, with the proposed DP control algorithm. The hardware-in-the loop (HIL) experimental results also indicate that the effectiveness of the proposed DP algorithm is verified under the NEDC, WLTC and IM240 driving cycles, when a straight road is considered. The proposed DP control algorithm not only reduces the vehicle energy consumption and guarantees the optimization of torque distribution, but also increases the driving range of the vehicle.
World Electric Vehic... arrow_drop_down World Electric Vehicle JournalOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2032-6653/13/10/181/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj13100181&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert World Electric Vehic... arrow_drop_down World Electric Vehicle JournalOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2032-6653/13/10/181/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj13100181&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Zongwei Liu; Xinglong Liu; Fuquan Zhao;doi: 10.3390/wevj12040201
Developing new energy vehicles (NEVs) is essential for China’s automotive industry to achieve carbon peak and carbon neutrality goals. The development of a NEV platform is an effective means for automotive companies to balance the development cost, development time, and product performance of NEVs. However, there is no clear solution to choosing new energy vehicle platform development strategies and models for automotive companies. This paper mainly studies the significance of NEV platform development, the classification and characteristics of NEV platforms, and the development strategies and trends of NEV platforms for automotive companies. The study results found that choosing a new dedicated electric platform (NDEP) is inevitable for the latest automotive companies, such as TESLA Motors. An adapted electric platform (AEP) is a temporary solution that meets the dual credits policy. It lacks competitiveness and has been gradually eliminated for the traditional automotive companies. The new dedicated electric platform is a long-term development solution when comprehensively considering the market, technology, and policy. The compatible platform (CP) is a transitional solution when considering the development trend of automotive powertrain, the market size of NEVs, and the platform technology of NEVs. Besides, joint development and shared use is the primary development model for the automotive enterprise in the future. Finally, companies should increase their research and development efforts on NEV architecture platforms to maximize platform-based development’s scale effect and application value. The research can provide strategic guidance for automotive companies to develop NEV platforms.
World Electric Vehic... arrow_drop_down World Electric Vehicle JournalOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2032-6653/12/4/201/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj12040201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert World Electric Vehic... arrow_drop_down World Electric Vehicle JournalOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2032-6653/12/4/201/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj12040201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:SAGE Publications Authors: Valerie J. Karplus; Da Zhang; Xiliang Zhang; Paul Kishimoto;doi: 10.3141/2454-01
China's climate and energy policy commitments are stated at the national level, but they may have uneven impacts on the country's regionally heterogeneous transport system. This work quantifies the expected provincial-level response of freight transport to an economywide policy targeting reductions in carbon emissions intensity. The analysis applies the China Regional Energy Model, a multisector, static, global, computable general equilibrium (CGE) model representing 30 individual provinces with physical accounts of energy and greenhouse gas emissions. The structure of road and nonroad freight (and passenger) sectors, the preparation of transport activity data, and a policy similar to announced goals that specify a 17% reduction in the carbon dioxide emissions intensity of gross domestic product are described. In the national aggregate and in most provinces, the road freight sector is most affected by the emissions intensity cap. The road freight sector contributes 24%–-versus 18% from nonroad freight and 51% from nontransport sectors–-of a 5.1% reduction in national refined oil demand. Significant regional differences are found in the impacts of a national-level, economywide policy. Steep reductions in freight activity occur in some of the poorest provinces, partly because they offer low-cost abatement opportunities, and the resulting adjustments across the economy affect transport demand. This research contributes a new tool capable of capturing the transport impact of sector- and province-specific policies in detail and providing a rigorous foundation for future dynamic CGE analyses. Potential impacts of energy and climate policy on regional transport systems are important inputs to policy and infrastructure investment decisions at the central and local levels.
Transportation Resea... arrow_drop_down Transportation Research Record Journal of the Transportation Research BoardArticle . 2014 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3141/2454-01&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Transportation Resea... arrow_drop_down Transportation Research Record Journal of the Transportation Research BoardArticle . 2014 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3141/2454-01&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Funded by:FCT | D4FCT| D4Jian Tan; Yulong Zhang; Li Zhang; Qingfeng Duan; Chen An; Menglan Duan;doi: 10.3390/jmse11112093
The transportation of seawater on a grand scale via an ultra-large cold-water pipe situated within the context of ocean thermal energy conversion (OTEC) floating installations inherently presents challenges associated with instability and potential malfunction in the face of demanding operational circumstances. This study endeavors to augment the stability and security of cold-water pipe (CWP) operations by scrutinizing their vibrational attributes across diverse boundary configurations. Initially, we invoke Euler–Bernoulli beam theory to forge the analytical framework and proffer a semi-analytical resolution by utilizing the generalized integral transform technique (GITT). Subsequently, we authenticate the convergence and precision of our proposed approach through comparative analysis with extant theories. Our findings underscore the conspicuous influence of boundary conditions on the convergence of transverse displacement. The influence of internal flow on the transverse displacement and the natural frequency manifests substantial variability under different boundary conditions. Significantly, an escalation in the internal flow velocity triggers a concomitant reduction in the natural frequency, ultimately culminating in instability once the critical velocity threshold is reached. Additionally, the reliance of the transverse displacement and the natural frequency on the clump weight at the bottom is markedly pronounced. Our discoveries propose that pipe stability can be ameliorated by adjusting the clump weight at the bottom. Furthermore, the novel insights obtained through our proposed approach can significantly aid in the early-stage design and analysis of CWP.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11112093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11112093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Changsheng Lin; Zhengda Cui; Qidong Tian; Ying Chen; Han Zheng; Muchen Yuan;Private electric vehicles (EVs) have great potential to conduct emergency power supply, considering the rapid development of EVs and vehicle-to-building (V2B) technologies. To enhance the resilience of the building power supply, charging piles can be upgraded to support bi-directional power supply, thus enabling EVs to help restore the buildings affected by disasters. A planning method for the charging piles’ upgrade is proposed. First, a scenario set is generated to consider the influence of uncertainties during the planning period. The uncertainties of disasters, EVs, and building load are included. Then, a two-stage stochastic programming model is established to decide the upgrade plan. Pre-disaster decisions are made in the first stage and the building is restored in the second stage. The method is applied to two different types of buildings and the test results verify the effectiveness of the proposed method.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2023.04.305&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egyr.2023.04.305&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Frontiers Media SA Zehan Lu; Ninghui Yang; Yan Cui; Peng Du; Xincheng Tian; Zechun Hu;The power grid and transportation network are coupled by the charging behavior of electric vehicles. Based on the coupled power-transportation network model, this paper first analyzes the effect of the distribution system operator’s (DSO) electricity selling price on guiding the charging behavior of electric vehicles in the transportation network and then builds the DSO’s optimal pricing formulation. Considering the competition between multiple charging network operators (CNOs), this paper establishes a game model between CNOs and solves it iteratively through the best response dynamic method. An approximation method using the elasticity matrix is proposed to speed up the solution by reducing the multi-layer optimization to a single layer one in each iteration, with its effectiveness validated through numerical tests. Furthermore, the paper discusses the issue of the prisoner’s dilemma that arises among CNOs and explores the potential impact of their cooperative strategies on the overall system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2023.1343311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2023.1343311&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Xuyang Liu; Jiayang Pang; Lei Li; Weiqiang Zhao; Yupeng Wang; Dandan Yan; Lingjiu Zhou; Zhengwei Wang;doi: 10.3390/jmse11112068
Because a pump-turbine mainly undertakes the role of energy conversion and pumped storage in the field of hydropower engineering, the complex transition process and frequent conversion between different working conditions lead to the increase in the stress and strain of core components such as the unit shaft system, and even cause resonance phenomena. Based on ANSYS finite element numerical calculation software, this paper adopts the acoustic fluid–structure coupling method to study the influence of the shaft of the pump-turbine on the dynamic characteristics of the runner. At the same time, the paper analyses the influence of different contact modes between the runner and the shaft on the modal characteristics of the shaft system. The numerical simulation results have shown that the runner is affected by the added mass of the water. The natural frequency reduction rate of each order of wet modal is ranged from 19% to 64%. The main shaft has a greater influence on the simplification of the shaft system calculation method. The type of contact surface between the main shaft and the runner has a smaller influence on the modal characteristics and the natural frequency of the shaft system. The research in this paper contributes an evaluation of the dynamic characteristics of the runner of a hydraulic turbine unit, which is of great significance for the optimization of the analysis algorithm of the runner structure for large pumped storage units.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11112068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11112068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 Netherlands, Australia, Germany, France, Germany, United Kingdom, Netherlands, Germany, Switzerland, Germany, Netherlands, Germany, Netherlands, Netherlands, Netherlands, Australia, Germany, United KingdomPublisher:Copernicus GmbH Publicly fundedFunded by:RCN | Integrated Carbon Observa..., UKRI | Amazon Integrated Carbon ..., EC | AtlantOS +10 projectsRCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,UKRI| Amazon Integrated Carbon Analysis / AMAZONICA ,EC| AtlantOS ,NWO| The distribution and evolution of inert and reactant scalars: from the atmospheric boundary layer to continental scales ,RCN| CICEP-Strategic Challenges in International Climate and Energy Policy ,EC| CRESCENDO ,EC| RINGO ,EC| FIXO3 ,EC| IMBALANCE-P ,EC| VERIFY ,EC| GEOCARBON ,RCN| Jordsystem-modellering av klimaforandringer i den antroposene tidsalder; Earth system modelling of climate Variations in the Anthropocene ,EC| QUINCYC. Le Quéré; R. M. Andrew; P. Friedlingstein; S. Sitch; J. Hauck; J. Pongratz; J. Pongratz; P. A. Pickers; J. I. Korsbakken; G. P. Peters; J. G. Canadell; A. Arneth; V. K. Arora; L. Barbero; L. Barbero; A. Bastos; L. Bopp; F. Chevallier; L. P. Chini; P. Ciais; S. C. Doney; T. Gkritzalis; D. S. Goll; I. Harris; V. Haverd; F. M. Hoffman; M. Hoppema; R. A. Houghton; G. Hurtt; T. Ilyina; A. K. Jain; T. Johannessen; C. D. Jones; E. Kato; R. F. Keeling; K. K. Goldewijk; K. K. Goldewijk; P. Landschützer; N. Lefèvre; S. Lienert; Z. Liu; Z. Liu; D. Lombardozzi; N. Metzl; D. R. Munro; J. E. M. S. Nabel; S.-I. Nakaoka; C. Neill; C. Neill; A. Olsen; T. Ono; P. Patra; A. Peregon; W. Peters; W. Peters; P. Peylin; B. Pfeil; B. Pfeil; D. Pierrot; D. Pierrot; B. Poulter; G. Rehder; L. Resplandy; E. Robertson; M. Rocher; C. Rödenbeck; U. Schuster; J. Schwinger; R. Séférian; I. Skjelvan; T. Steinhoff; A. Sutton; P. P. Tans; H. Tian; B. Tilbrook; B. Tilbrook; F. N. Tubiello; I. T. van der Laan-Luijkx; G. R. van der Werf; N. Viovy; A. P. Walker; A. J. Wiltshire; R. Wright; R. Wright; S. Zaehle; B. Zheng;Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFF) are based on energy statistics and cement production data, while emissions from land use and land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2008–2017), EFF was 9.4±0.5 GtC yr−1, ELUC 1.5±0.7 GtC yr−1, GATM 4.7±0.02 GtC yr−1, SOCEAN 2.4±0.5 GtC yr−1, and SLAND 3.2±0.8 GtC yr−1, with a budget imbalance BIM of 0.5 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For the year 2017 alone, the growth in EFF was about 1.6 % and emissions increased to 9.9±0.5 GtC yr−1. Also for 2017, ELUC was 1.4±0.7 GtC yr−1, GATM was 4.6±0.2 GtC yr−1, SOCEAN was 2.5±0.5 GtC yr−1, and SLAND was 3.8±0.8 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 405.0±0.1 ppm averaged over 2017. For 2018, preliminary data for the first 6–9 months indicate a renewed growth in EFF of +2.7 % (range of 1.8 % to 3.7 %) based on national emission projections for China, the US, the EU, and India and projections of gross domestic product corrected for recent changes in the carbon intensity of the economy for the rest of the world. The analysis presented here shows that the mean and trend in the five components of the global carbon budget are consistently estimated over the period of 1959–2017, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. A detailed comparison among individual estimates and the introduction of a broad range of observations show (1) no consensus in the mean and trend in land-use change emissions, (2) a persistent low agreement among the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent underestimation of the CO2 variability by ocean models, originating outside the tropics. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding the global carbon cycle compared with previous publications of this data set (Le Quéré et al., 2018, 2016, 2015a, b, 2014, 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2018.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/35123Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2018Full-Text: https://hal.science/hal-01951197Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01951197Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01951197Data sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Earth System Science Data (ESSD)Article . 2018License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of IfremerEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-10-2141-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1K citations 1,246 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/35123Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2019License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2018Full-Text: https://hal.science/hal-01951197Data sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2018Full-Text: https://hal.science/hal-01951197Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-01951197Data sources: Bielefeld Academic Search Engine (BASE)Earth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Earth System Science Data (ESSD)Article . 2018License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of IfremerEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-10-2141-2018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 GermanyPublisher:Elsevier BV Publicly fundedDaniel A. Cogswell; Yong Xia; Tobias Sedlatschek; Tobias Sedlatschek; Tobias Sedlatschek; Qing Zhou; Bobin Xing; Tomasz Wierzbicki; Ian Mathews; Ian Mathews; Dongsheng Ren; Wei Li; Martin Z. Bazant; Sai Nithin R. Kantareddy; Juner Zhu; Tao Gao; Tao Gao; Mengchao Yi;Cell reports 2(8), 100537 (2021). doi:10.1016/j.xcrp.2021.100537 Published by Cell Press, Maryland Heights, MO
Cell Reports Physica... arrow_drop_down Cell Reports Physical ScienceArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationsserver der RWTH Aachen UniversityArticle . 2021Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.xcrp.2021.100537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 150 citations 150 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Cell Reports Physica... arrow_drop_down Cell Reports Physical ScienceArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefPublikationsserver der RWTH Aachen UniversityArticle . 2021Data sources: Publikationsserver der RWTH Aachen Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.xcrp.2021.100537&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 SwedenPublisher:MDPI AG Funded by:EC | EnergyMatchingEC| EnergyMatchingPei Huang; Xingxing Zhang; Benedetta Copertaro; Puneet Kumar Saini; Da Yan; Yi Wu; Xiangjie Chen;doi: 10.3390/su12177035
The deployment of solar photovoltaics (PV) and electric vehicles (EVs) is continuously increasing during urban energy transition. With the increasing deployment of energy storage, the development of the energy sharing concept and the associated advanced controls, the conventional solar mobility model (i.e., solar-to-vehicles (S2V), using solar energy in a different location) and context are becoming less compatible and limited for future scenarios. For instance, energy sharing within a building cluster enables buildings to share surplus PV power generation with other buildings of insufficient PV power generation, thereby improving the overall PV power utilization and reducing the grid power dependence. However, such energy sharing techniques are not considered in the conventional solar mobility models, which limits the potential for performance improvements. Therefore, this study conducts a systematic review of solar mobility-related studies as well as the newly developed energy concepts and techniques. Based on the review, this study extends the conventional solar mobility scope from S2V to solar-to-buildings, vehicles and storage (S2BVS). A detailed modeling of each sub-system in the S2BVS model and related advanced controls are presented, and the research gaps that need future investigation for promoting solar mobility are identified. The aim is to provide an up-to-date review of the existing studies related to solar mobility to decision makers, so as to help enhance solar power utilization, reduce buildings’ and EVs’ dependence and impacts on the power grid, as well as carbon emissions.
Sustainability arrow_drop_down Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedDalarna University College Electronic ArchiveArticle . 2020Data sources: Dalarna University College Electronic Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12177035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down Digitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedDalarna University College Electronic ArchiveArticle . 2020Data sources: Dalarna University College Electronic Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12177035&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Oluwatobi Pelumi Adeleke; Yong Li; Qiang Chen; Wentao Zhou; Xing Xu; Xiaoli Cui;doi: 10.3390/wevj13100181
The improvement of both the stability and economy of the four in-wheel motor drive (4IWMD) electric vehicle under complex drive cycles is currently a difficult problem in this field. A torque distribution method with the comprehensive goals of optimal torque distribution and energy efficiency, considering economy through energy efficiency for the 4IWMD electric vehicle, is proposed in this paper. Each component of the 4IWMD electric vehicle is modelled. The dynamic programming (DP) control algorithm is utilized for torque distribution between the front and rear in-wheel motors to obtain optimal torque distribution and energy efficiency in the 4IWMD electric vehicle. The simulation is performed on a co-simulation platform with the software of AVL Cruise and MATLAB/Simulink, considering a straight road. Compared to the fuzzy logic control algorithm, the simulation results are very promising, as the energy consumption of the electric vehicle was reduced by 22.68%, 20.73% and 21.84% under the WLTC, NEDC and customized IM240 driving cycle conditions, respectively, with the proposed DP control algorithm. The hardware-in-the loop (HIL) experimental results also indicate that the effectiveness of the proposed DP algorithm is verified under the NEDC, WLTC and IM240 driving cycles, when a straight road is considered. The proposed DP control algorithm not only reduces the vehicle energy consumption and guarantees the optimization of torque distribution, but also increases the driving range of the vehicle.
World Electric Vehic... arrow_drop_down World Electric Vehicle JournalOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2032-6653/13/10/181/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj13100181&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert World Electric Vehic... arrow_drop_down World Electric Vehicle JournalOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2032-6653/13/10/181/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj13100181&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Zongwei Liu; Xinglong Liu; Fuquan Zhao;doi: 10.3390/wevj12040201
Developing new energy vehicles (NEVs) is essential for China’s automotive industry to achieve carbon peak and carbon neutrality goals. The development of a NEV platform is an effective means for automotive companies to balance the development cost, development time, and product performance of NEVs. However, there is no clear solution to choosing new energy vehicle platform development strategies and models for automotive companies. This paper mainly studies the significance of NEV platform development, the classification and characteristics of NEV platforms, and the development strategies and trends of NEV platforms for automotive companies. The study results found that choosing a new dedicated electric platform (NDEP) is inevitable for the latest automotive companies, such as TESLA Motors. An adapted electric platform (AEP) is a temporary solution that meets the dual credits policy. It lacks competitiveness and has been gradually eliminated for the traditional automotive companies. The new dedicated electric platform is a long-term development solution when comprehensively considering the market, technology, and policy. The compatible platform (CP) is a transitional solution when considering the development trend of automotive powertrain, the market size of NEVs, and the platform technology of NEVs. Besides, joint development and shared use is the primary development model for the automotive enterprise in the future. Finally, companies should increase their research and development efforts on NEV architecture platforms to maximize platform-based development’s scale effect and application value. The research can provide strategic guidance for automotive companies to develop NEV platforms.
World Electric Vehic... arrow_drop_down World Electric Vehicle JournalOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2032-6653/12/4/201/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj12040201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert World Electric Vehic... arrow_drop_down World Electric Vehicle JournalOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2032-6653/12/4/201/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/wevj12040201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:SAGE Publications Authors: Valerie J. Karplus; Da Zhang; Xiliang Zhang; Paul Kishimoto;doi: 10.3141/2454-01
China's climate and energy policy commitments are stated at the national level, but they may have uneven impacts on the country's regionally heterogeneous transport system. This work quantifies the expected provincial-level response of freight transport to an economywide policy targeting reductions in carbon emissions intensity. The analysis applies the China Regional Energy Model, a multisector, static, global, computable general equilibrium (CGE) model representing 30 individual provinces with physical accounts of energy and greenhouse gas emissions. The structure of road and nonroad freight (and passenger) sectors, the preparation of transport activity data, and a policy similar to announced goals that specify a 17% reduction in the carbon dioxide emissions intensity of gross domestic product are described. In the national aggregate and in most provinces, the road freight sector is most affected by the emissions intensity cap. The road freight sector contributes 24%–-versus 18% from nonroad freight and 51% from nontransport sectors–-of a 5.1% reduction in national refined oil demand. Significant regional differences are found in the impacts of a national-level, economywide policy. Steep reductions in freight activity occur in some of the poorest provinces, partly because they offer low-cost abatement opportunities, and the resulting adjustments across the economy affect transport demand. This research contributes a new tool capable of capturing the transport impact of sector- and province-specific policies in detail and providing a rigorous foundation for future dynamic CGE analyses. Potential impacts of energy and climate policy on regional transport systems are important inputs to policy and infrastructure investment decisions at the central and local levels.
Transportation Resea... arrow_drop_down Transportation Research Record Journal of the Transportation Research BoardArticle . 2014 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3141/2454-01&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Transportation Resea... arrow_drop_down Transportation Research Record Journal of the Transportation Research BoardArticle . 2014 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3141/2454-01&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Funded by:FCT | D4FCT| D4Jian Tan; Yulong Zhang; Li Zhang; Qingfeng Duan; Chen An; Menglan Duan;doi: 10.3390/jmse11112093
The transportation of seawater on a grand scale via an ultra-large cold-water pipe situated within the context of ocean thermal energy conversion (OTEC) floating installations inherently presents challenges associated with instability and potential malfunction in the face of demanding operational circumstances. This study endeavors to augment the stability and security of cold-water pipe (CWP) operations by scrutinizing their vibrational attributes across diverse boundary configurations. Initially, we invoke Euler–Bernoulli beam theory to forge the analytical framework and proffer a semi-analytical resolution by utilizing the generalized integral transform technique (GITT). Subsequently, we authenticate the convergence and precision of our proposed approach through comparative analysis with extant theories. Our findings underscore the conspicuous influence of boundary conditions on the convergence of transverse displacement. The influence of internal flow on the transverse displacement and the natural frequency manifests substantial variability under different boundary conditions. Significantly, an escalation in the internal flow velocity triggers a concomitant reduction in the natural frequency, ultimately culminating in instability once the critical velocity threshold is reached. Additionally, the reliance of the transverse displacement and the natural frequency on the clump weight at the bottom is markedly pronounced. Our discoveries propose that pipe stability can be ameliorated by adjusting the clump weight at the bottom. Furthermore, the novel insights obtained through our proposed approach can significantly aid in the early-stage design and analysis of CWP.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11112093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringArticle . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse11112093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu