- home
- Advanced Search
- Energy Research
- 12. Responsible consumption
- 2. Zero hunger
- DE
- IT
- NO
- European Marine Science
- Energy Research
- 12. Responsible consumption
- 2. Zero hunger
- DE
- IT
- NO
- European Marine Science
description Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, Netherlands, NetherlandsPublisher:Resilience Alliance, Inc. Funded by:EC | KNOWSEASEC| KNOWSEASMee, L.; Cooper, P.; Kannen, A.; Gilbert, A.J.; O`Higgins, T.;BACKGROUND There is ample evidence for human alteration of Europe’s regional seas, particularly the enclosed or partly enclosed Baltic, Black, Mediterranean, and North Seas. Accounts of habitat and biodiversity loss, pollution, and the decline of fish stocks in these economically, socially, and ecologically important seas demonstrate unsustainable use of the marine environment. At the same time, there is an insufficient quantity and quality of information to enable purely evidence-based management of Europe’s seas despite this being a declared goal of many decisionmakers; for example, less than 10% of the deep sea has been systematically explored (UNEP 2006). Evidence-based management alone is rarely possible in situations with complex value-laden policy options (Greenhalgh and Russell 2009), and unfortunately, many of the most pervasive problems in the marine environment are “wicked” second-order problems (Jentoft and Chuenpagdee 2009): they are complex in nature and their management will often involve both winners and losers. Solutions to these problems involve less politically attractive, valuebased choices and may require long time lags before tangible results are observed. Fisheries management, habitat and species protection, competition for marine space, and invasive species are all examples of “wicked” problems. These are some of the biggest issues facing Europe’s seas and are the major focus of this article and Special Feature. For the first time in European history, most countries have adopted a common maritime policy (the 2007 Integrated Maritime Policy) and a legally binding environmental directive (the 2008 Marine Strategy Framework Directive [MSFD]). These comprehensive policy vehicles encompass, or closely interface with, more specific measures, such as the recently reformed Common Fisheries Policy, the Water Framework Directive, the Habitats and Birds Directive, and a number of targeted policy instruments that deal with aspects of pollution control and coastal zone management. The overall array of measures has the potential to ensure the sustainable use of Europe’s seas and the restoration of marine environments, but the pathway between the current situation and the implementation of an ecosystem approach to management (the aspiration of the European Commission; see Our Approach to Research) is fraught with “wicked” problems. Science can help society resolve these problems, but in many cases this requires the broad and integrative vision of Odum’s (1971) “macroscope” rather than trying to piece together an ill-fitting jigsaw puzzle of discipline-focused information. This paper and the others in this Special Feature employ a systems approach. We describe the approach, how it can be applied practically, and some of the challenges in making it work. Though the work is based on research on Europe’s seas, it has much wider implications for regional seas throughout the world. OUR APPROACH TO RESEARCH ON MARINE SOCIALECOLOGICAL SYSTEMS The research described in this paper (and Special Feature) was conducted in the framework of the EU-FP7 funded project Knowledge-based Sustainable Management of Europe’s Seas (KnowSeas). The interdisciplinary research spanned 4 years and involved 33 institutions from 16 European countries (KnowSeas 2013). Its primary objective was to develop “a comprehensive scientific knowledge base and practical guidance for the application of the ecosystem approach to the sustainable development of Europe’s regional seas.” Given the knowledge gaps and uncertainties in the way Europe’s marine social-ecological systems function (e.g., unresolved causal links, poorly mapped habitats, nonlinear dynamics), an iterative approach to inquiry was adopted, based partly on the reasoning behind soft systems analysis (e.g., Checkland 2000).
Ecology and Society arrow_drop_down Ecology and SocietyArticle . 2015University of Bath's research portalArticle . 2015Data sources: University of Bath's research portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-07143-200101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecology and Society arrow_drop_down Ecology and SocietyArticle . 2015University of Bath's research portalArticle . 2015Data sources: University of Bath's research portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-07143-200101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, Netherlands, NetherlandsPublisher:Resilience Alliance, Inc. Funded by:EC | KNOWSEASEC| KNOWSEASMee, L.; Cooper, P.; Kannen, A.; Gilbert, A.J.; O`Higgins, T.;BACKGROUND There is ample evidence for human alteration of Europe’s regional seas, particularly the enclosed or partly enclosed Baltic, Black, Mediterranean, and North Seas. Accounts of habitat and biodiversity loss, pollution, and the decline of fish stocks in these economically, socially, and ecologically important seas demonstrate unsustainable use of the marine environment. At the same time, there is an insufficient quantity and quality of information to enable purely evidence-based management of Europe’s seas despite this being a declared goal of many decisionmakers; for example, less than 10% of the deep sea has been systematically explored (UNEP 2006). Evidence-based management alone is rarely possible in situations with complex value-laden policy options (Greenhalgh and Russell 2009), and unfortunately, many of the most pervasive problems in the marine environment are “wicked” second-order problems (Jentoft and Chuenpagdee 2009): they are complex in nature and their management will often involve both winners and losers. Solutions to these problems involve less politically attractive, valuebased choices and may require long time lags before tangible results are observed. Fisheries management, habitat and species protection, competition for marine space, and invasive species are all examples of “wicked” problems. These are some of the biggest issues facing Europe’s seas and are the major focus of this article and Special Feature. For the first time in European history, most countries have adopted a common maritime policy (the 2007 Integrated Maritime Policy) and a legally binding environmental directive (the 2008 Marine Strategy Framework Directive [MSFD]). These comprehensive policy vehicles encompass, or closely interface with, more specific measures, such as the recently reformed Common Fisheries Policy, the Water Framework Directive, the Habitats and Birds Directive, and a number of targeted policy instruments that deal with aspects of pollution control and coastal zone management. The overall array of measures has the potential to ensure the sustainable use of Europe’s seas and the restoration of marine environments, but the pathway between the current situation and the implementation of an ecosystem approach to management (the aspiration of the European Commission; see Our Approach to Research) is fraught with “wicked” problems. Science can help society resolve these problems, but in many cases this requires the broad and integrative vision of Odum’s (1971) “macroscope” rather than trying to piece together an ill-fitting jigsaw puzzle of discipline-focused information. This paper and the others in this Special Feature employ a systems approach. We describe the approach, how it can be applied practically, and some of the challenges in making it work. Though the work is based on research on Europe’s seas, it has much wider implications for regional seas throughout the world. OUR APPROACH TO RESEARCH ON MARINE SOCIALECOLOGICAL SYSTEMS The research described in this paper (and Special Feature) was conducted in the framework of the EU-FP7 funded project Knowledge-based Sustainable Management of Europe’s Seas (KnowSeas). The interdisciplinary research spanned 4 years and involved 33 institutions from 16 European countries (KnowSeas 2013). Its primary objective was to develop “a comprehensive scientific knowledge base and practical guidance for the application of the ecosystem approach to the sustainable development of Europe’s regional seas.” Given the knowledge gaps and uncertainties in the way Europe’s marine social-ecological systems function (e.g., unresolved causal links, poorly mapped habitats, nonlinear dynamics), an iterative approach to inquiry was adopted, based partly on the reasoning behind soft systems analysis (e.g., Checkland 2000).
Ecology and Society arrow_drop_down Ecology and SocietyArticle . 2015University of Bath's research portalArticle . 2015Data sources: University of Bath's research portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-07143-200101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecology and Society arrow_drop_down Ecology and SocietyArticle . 2015University of Bath's research portalArticle . 2015Data sources: University of Bath's research portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-07143-200101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 Germany, Germany, Germany, Germany, Sweden, FrancePublisher:Wiley Authors: Gerald G. Singh; Nathalie Hilmi; Joey R. Bernhardt; Andres M. Cisneros Montemayor; +16 AuthorsGerald G. Singh; Nathalie Hilmi; Joey R. Bernhardt; Andres M. Cisneros Montemayor; Madeline S. Cashion; Yoshitaka Ota; Sevil Acar; Jason Brown; Richard S. Cottrell; Salpie Djoundourian; Pedro C. González‐Espinosa; Vicky W. Y. Lam; Nadine Marshall; Barbara Neumann; Nicolas Pichon; Gabriel Reygondeau; Joacim Rocklöv; Alain Safa; Laura Recuero Virto; William W. L. Cheung;Abstract Climate change is impacting marine ecosystems and their goods and services in diverse ways, which can directly hinder our ability to achieve the Sustainable Development Goals (SDGs), set out under the 2030 Agenda for Sustainable Development. Through expert elicitation and a literature review, we find that most climate change effects have a wide variety of negative consequences across marine ecosystem services, though most studies have highlighted impacts from warming and consequences of marine species. Climate change is expected to negatively influence marine ecosystem services through global stressors—such as ocean warming and acidification—but also by amplifying local and regional stressors such as freshwater runoff and pollution load. Experts indicated that all SDGs would be overwhelmingly negatively affected by these climate impacts on marine ecosystem services, with eliminating hunger being among the most directly negatively affected SDG. Despite these challenges, the SDGs aiming to transform our consumption and production practices and develop clean energy systems are found to be least affected by marine climate impacts. These findings represent a strategic point of entry for countries to achieve sustainable development, given that these two goals are relatively robust to climate impacts and that they are important pre‐requisite for other SDGs. Our results suggest that climate change impacts on marine ecosystems are set to make the SDGs a moving target travelling away from us. Effective and urgent action towards sustainable development, including mitigating and adapting to climate impacts on marine systems are important to achieve the SDGs, but the longer this action stalls the more distant these goals will become. A free Plain Language Summary can be found within the Supporting Information of this article.
Université de Bretag... arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2019Full-Text: https://hal.science/hal-02467633Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02467633Data sources: Bielefeld Academic Search Engine (BASE)Publikationer från Umeå universitetArticle . 2019 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedArchiMer - Institutional Archive of IfremerOther literature type . 2019Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pan3.26&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Université de Bretag... arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2019Full-Text: https://hal.science/hal-02467633Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02467633Data sources: Bielefeld Academic Search Engine (BASE)Publikationer från Umeå universitetArticle . 2019 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedArchiMer - Institutional Archive of IfremerOther literature type . 2019Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pan3.26&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 Germany, Germany, Germany, Germany, Sweden, FrancePublisher:Wiley Authors: Gerald G. Singh; Nathalie Hilmi; Joey R. Bernhardt; Andres M. Cisneros Montemayor; +16 AuthorsGerald G. Singh; Nathalie Hilmi; Joey R. Bernhardt; Andres M. Cisneros Montemayor; Madeline S. Cashion; Yoshitaka Ota; Sevil Acar; Jason Brown; Richard S. Cottrell; Salpie Djoundourian; Pedro C. González‐Espinosa; Vicky W. Y. Lam; Nadine Marshall; Barbara Neumann; Nicolas Pichon; Gabriel Reygondeau; Joacim Rocklöv; Alain Safa; Laura Recuero Virto; William W. L. Cheung;Abstract Climate change is impacting marine ecosystems and their goods and services in diverse ways, which can directly hinder our ability to achieve the Sustainable Development Goals (SDGs), set out under the 2030 Agenda for Sustainable Development. Through expert elicitation and a literature review, we find that most climate change effects have a wide variety of negative consequences across marine ecosystem services, though most studies have highlighted impacts from warming and consequences of marine species. Climate change is expected to negatively influence marine ecosystem services through global stressors—such as ocean warming and acidification—but also by amplifying local and regional stressors such as freshwater runoff and pollution load. Experts indicated that all SDGs would be overwhelmingly negatively affected by these climate impacts on marine ecosystem services, with eliminating hunger being among the most directly negatively affected SDG. Despite these challenges, the SDGs aiming to transform our consumption and production practices and develop clean energy systems are found to be least affected by marine climate impacts. These findings represent a strategic point of entry for countries to achieve sustainable development, given that these two goals are relatively robust to climate impacts and that they are important pre‐requisite for other SDGs. Our results suggest that climate change impacts on marine ecosystems are set to make the SDGs a moving target travelling away from us. Effective and urgent action towards sustainable development, including mitigating and adapting to climate impacts on marine systems are important to achieve the SDGs, but the longer this action stalls the more distant these goals will become. A free Plain Language Summary can be found within the Supporting Information of this article.
Université de Bretag... arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2019Full-Text: https://hal.science/hal-02467633Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02467633Data sources: Bielefeld Academic Search Engine (BASE)Publikationer från Umeå universitetArticle . 2019 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedArchiMer - Institutional Archive of IfremerOther literature type . 2019Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pan3.26&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Université de Bretag... arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2019Full-Text: https://hal.science/hal-02467633Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02467633Data sources: Bielefeld Academic Search Engine (BASE)Publikationer från Umeå universitetArticle . 2019 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedArchiMer - Institutional Archive of IfremerOther literature type . 2019Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pan3.26&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 GermanyPublisher:Frontiers Media SA Funded by:DFG | Climate Engineering: Risk...DFG| Climate Engineering: Risks, Challenges, Opportunities?Malgorzata Borchers; Daniela Thrän; Daniela Thrän; Yaxuan Chi; Nicolaus Dahmen; Roland Dittmeyer; Tobias Dolch; Christian Dold; Johannes Förster; Michael Herbst; Dominik Heß; Aram Kalhori; Ketil Koop-Jakobsen; Zhan Li; Nadine Mengis; Thorsten B. H. Reusch; Imke Rhoden; Torsten Sachs; Cornelia Schmidt-Hattenberger; Angela Stevenson; Terese Thoni; Jiajun Wu; Christopher Yeates;In its latest assessment report the IPCC stresses the need for carbon dioxide removal (CDR) to counterbalance residual emissions to achieve net zero carbon dioxide or greenhouse gas emissions. There are currently a wide variety of CDR measures available. Their potential and feasibility, however, depends on context specific conditions, as among others biophysical site characteristics, or availability of infrastructure and resources. In our study, we selected 13 CDR concepts which we present in the form of exemplary CDR units described in dedicated fact sheets. They cover technical CO2 removal (two concepts of direct air carbon capture), hybrid solutions (six bioenergy with carbon capture technologies) and five options for natural sink enhancement. Our estimates for their CO2 removal potentials in 2050 range from 0.06 to 30 million tons of CO2, depending on the option. Ten of the 13 CDR concepts provide technical removal potentials higher than 1 million tons of CO2 per year. To better understand the potential contribution of analyzed CDR options to reaching net-zero CO2 emissions, we compare our results with the current CO2 emissions and potential residual CO2 emissions in 2050 in Germany. To complement the necessary information on technology-based and hybrid options, we also provide an overview on possible solutions for CO2 storage for Germany. Taking biophysical conditions and infrastructure into account, northern Germany seems a preferable area for deployment of many concepts. However, for their successful implementation further socio-economic analysis, clear regulations, and policy incentives are necessary.
OceanRep arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.810343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.810343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 GermanyPublisher:Frontiers Media SA Funded by:DFG | Climate Engineering: Risk...DFG| Climate Engineering: Risks, Challenges, Opportunities?Malgorzata Borchers; Daniela Thrän; Daniela Thrän; Yaxuan Chi; Nicolaus Dahmen; Roland Dittmeyer; Tobias Dolch; Christian Dold; Johannes Förster; Michael Herbst; Dominik Heß; Aram Kalhori; Ketil Koop-Jakobsen; Zhan Li; Nadine Mengis; Thorsten B. H. Reusch; Imke Rhoden; Torsten Sachs; Cornelia Schmidt-Hattenberger; Angela Stevenson; Terese Thoni; Jiajun Wu; Christopher Yeates;In its latest assessment report the IPCC stresses the need for carbon dioxide removal (CDR) to counterbalance residual emissions to achieve net zero carbon dioxide or greenhouse gas emissions. There are currently a wide variety of CDR measures available. Their potential and feasibility, however, depends on context specific conditions, as among others biophysical site characteristics, or availability of infrastructure and resources. In our study, we selected 13 CDR concepts which we present in the form of exemplary CDR units described in dedicated fact sheets. They cover technical CO2 removal (two concepts of direct air carbon capture), hybrid solutions (six bioenergy with carbon capture technologies) and five options for natural sink enhancement. Our estimates for their CO2 removal potentials in 2050 range from 0.06 to 30 million tons of CO2, depending on the option. Ten of the 13 CDR concepts provide technical removal potentials higher than 1 million tons of CO2 per year. To better understand the potential contribution of analyzed CDR options to reaching net-zero CO2 emissions, we compare our results with the current CO2 emissions and potential residual CO2 emissions in 2050 in Germany. To complement the necessary information on technology-based and hybrid options, we also provide an overview on possible solutions for CO2 storage for Germany. Taking biophysical conditions and infrastructure into account, northern Germany seems a preferable area for deployment of many concepts. However, for their successful implementation further socio-economic analysis, clear regulations, and policy incentives are necessary.
OceanRep arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.810343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.810343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Argentina, Finland, United States, Australia, Argentina, Spain, United Kingdom, Denmark, NetherlandsPublisher:Wiley Mazor, Tessa; Pitcher, C. Roland; Rochester, Wayne; Kaiser, Michel J.; Hiddink, Jan G.; Jennings, Simon; Amoroso, Ricardo; McConnaughey, Robert A.; Rijnsdorp, Adriaan D.; Parma, Ana M.; Suuronen, Petri; Collie, Jeremy; Sciberras, Marija; Atkinson, Lara; Durholtz, Deon; Ellis, Jim R; Bolam, Stefan G.; Schratzberger, Michaela; Couce, Elena; Eggleton, Jacqueline; Garcia, Clement; Kainge, Paulus; Paulus, Sarah; Kathena, Johannes N.; Gogina, Mayya; van Denderen, P. Daniël; Keller, Aimee A.; Horness, Beth H.; Hilborn; Ray;doi: 10.1111/faf.12506
handle: 10261/226139 , 11336/136595
AbstractBottom trawl fishing is a controversial activity. It yields about a quarter of the world's wild seafood, but also has impacts on the marine environment. Recent advances have quantified and improved understanding of large‐scale impacts of trawling on the seabed. However, such information needs to be coupled with distributions of benthic invertebrates (benthos) to assess whether these populations are being sustained under current trawling regimes. This study collated data from 13 diverse regions of the globe spanning four continents. Within each region, we combined trawl intensity distributions and predicted abundance distributions of benthos groups with impact and recovery parameters for taxonomic classes in a risk assessment model to estimate benthos status. The exposure of 220 predicted benthos‐group distributions to trawling intensity (as swept area ratio) ranged between 0% and 210% (mean = 37%) of abundance. However, benthos status, an indicator of the depleted abundance under chronic trawling pressure as a proportion of untrawled state, ranged between 0.86 and 1 (mean = 0.99), with 78% of benthos groups > 0.95. Mean benthos status was lowest in regions of Europe and Africa, and for taxonomic classes Bivalvia and Gastropoda. Our results demonstrate that while spatial overlap studies can help infer general patterns of potential risk, actual risks cannot be evaluated without using an assessment model that incorporates trawl impact and recovery metrics. These quantitative outputs are essential for sustainability assessments, and together with reference points and thresholds, can help managers ensure use of the marine environment is sustainable under the ecosystem approach to management.
Fish and Fisheries arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2021Data sources: Online Research Database In TechnologyFish and FisheriesArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/faf.12506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 56visibility views 56 download downloads 19 Powered bymore_vert Fish and Fisheries arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2021Data sources: Online Research Database In TechnologyFish and FisheriesArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/faf.12506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Argentina, Finland, United States, Australia, Argentina, Spain, United Kingdom, Denmark, NetherlandsPublisher:Wiley Mazor, Tessa; Pitcher, C. Roland; Rochester, Wayne; Kaiser, Michel J.; Hiddink, Jan G.; Jennings, Simon; Amoroso, Ricardo; McConnaughey, Robert A.; Rijnsdorp, Adriaan D.; Parma, Ana M.; Suuronen, Petri; Collie, Jeremy; Sciberras, Marija; Atkinson, Lara; Durholtz, Deon; Ellis, Jim R; Bolam, Stefan G.; Schratzberger, Michaela; Couce, Elena; Eggleton, Jacqueline; Garcia, Clement; Kainge, Paulus; Paulus, Sarah; Kathena, Johannes N.; Gogina, Mayya; van Denderen, P. Daniël; Keller, Aimee A.; Horness, Beth H.; Hilborn; Ray;doi: 10.1111/faf.12506
handle: 10261/226139 , 11336/136595
AbstractBottom trawl fishing is a controversial activity. It yields about a quarter of the world's wild seafood, but also has impacts on the marine environment. Recent advances have quantified and improved understanding of large‐scale impacts of trawling on the seabed. However, such information needs to be coupled with distributions of benthic invertebrates (benthos) to assess whether these populations are being sustained under current trawling regimes. This study collated data from 13 diverse regions of the globe spanning four continents. Within each region, we combined trawl intensity distributions and predicted abundance distributions of benthos groups with impact and recovery parameters for taxonomic classes in a risk assessment model to estimate benthos status. The exposure of 220 predicted benthos‐group distributions to trawling intensity (as swept area ratio) ranged between 0% and 210% (mean = 37%) of abundance. However, benthos status, an indicator of the depleted abundance under chronic trawling pressure as a proportion of untrawled state, ranged between 0.86 and 1 (mean = 0.99), with 78% of benthos groups > 0.95. Mean benthos status was lowest in regions of Europe and Africa, and for taxonomic classes Bivalvia and Gastropoda. Our results demonstrate that while spatial overlap studies can help infer general patterns of potential risk, actual risks cannot be evaluated without using an assessment model that incorporates trawl impact and recovery metrics. These quantitative outputs are essential for sustainability assessments, and together with reference points and thresholds, can help managers ensure use of the marine environment is sustainable under the ecosystem approach to management.
Fish and Fisheries arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2021Data sources: Online Research Database In TechnologyFish and FisheriesArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/faf.12506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 56visibility views 56 download downloads 19 Powered bymore_vert Fish and Fisheries arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2021Data sources: Online Research Database In TechnologyFish and FisheriesArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/faf.12506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011 Italy, Italy, Netherlands, DenmarkPublisher:Elsevier BV Funded by:EC | MESMAEC| MESMAFabio Badalamenti; Giovanni D’Anna; Helena Hulsman; Carlo Pipitone; Sandra Vöge; Patricia Breen; Thomas Kirk Sørensen; Michael Duijn; Guillem Chust; Anke Weber; Tomás Vega Fernández; Sandy Kerr; Stelios Katsanevakis; Susan Portelli; Simone Mirto; Ingrid Kröncke; Argyro Zenetos; Fabio Fiorentino; Dimitris Sakellariou; Vanessa Stelzenmüller; Maria Salomidi; Andy South; Remment ter Hofstede; Kate R. Johnson; Vassiliki Vassilopoulou; Peter J.S. Jones; Henning Reiss; Wanfei Qiu; Aristomenis P. Karageorgis; Tatiana Filatova; Luc van Hoof; Christos Anagnostou;handle: 20.500.14243/161150
Conventional sectoral management and piecemeal governance are considered less and less appropriate in pursuit of sustainable development. Ecosystem based marine spatial management (EB-MSM) is an approach that recognizes the full array of interactions within an ecosystem, including human uses, rather than considering single issues, species, or ecosystem services in isolation. Marine spatial planning and ocean zoning are emerging concepts that can support EB-MSM. EB-MSM is driven by high-level goals that managers aim to achieve through the implementation of measures. High-level goals and objectives need to be translated into more operational objectives before specific targets, limits and measures can be elaborated. Monitoring, evaluation and adaptation are necessary to ensure that marine management measures are both effective and efficient. Solid monitoring frameworks are the foundation of adaptive management, as they provide the necessary information to evaluate performance and the effectiveness of management actions. Marine protected areas (MPAs) - possibly set up in networks - constitute a key component in EB-MSM policies and practises and have been applied as a cornerstone in conservation of marine biodiversity, management of fish populations, development of coastal tourism, etc. Moreover, MPA experiences have provided methods and concepts (such as zoning) to a wider EB-MSM context. The assignment of values to biophysical features of the marine environment allows the direct assessment of related management choices and may assist EB-MSM. A range of monetary valuation techniques have been proposed to reduce attributes of goods and services to a single metric. However, in the marine environment such an approach is often over simplistic, and thus less reductive techniques may be necessary. Rather than producing a single metric, the results of non-monetary assessments guide policy allowing weight to be given as necessary to potential areas of conflict and consensus. Strategies to take into account climate change effects and geohazard risks in EB-MSM have been applied or proposed worldwide. EB-MSM regimes must be alert to such risks and flexible to account for changes.
Ocean & Coastal Mana... arrow_drop_down Ocean & Coastal ManagementArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefOnline Research Database In TechnologyArticle . 2011Data sources: Online Research Database In Technologyhttp://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2011.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 333 citations 333 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Ocean & Coastal Mana... arrow_drop_down Ocean & Coastal ManagementArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefOnline Research Database In TechnologyArticle . 2011Data sources: Online Research Database In Technologyhttp://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2011.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011 Italy, Italy, Netherlands, DenmarkPublisher:Elsevier BV Funded by:EC | MESMAEC| MESMAFabio Badalamenti; Giovanni D’Anna; Helena Hulsman; Carlo Pipitone; Sandra Vöge; Patricia Breen; Thomas Kirk Sørensen; Michael Duijn; Guillem Chust; Anke Weber; Tomás Vega Fernández; Sandy Kerr; Stelios Katsanevakis; Susan Portelli; Simone Mirto; Ingrid Kröncke; Argyro Zenetos; Fabio Fiorentino; Dimitris Sakellariou; Vanessa Stelzenmüller; Maria Salomidi; Andy South; Remment ter Hofstede; Kate R. Johnson; Vassiliki Vassilopoulou; Peter J.S. Jones; Henning Reiss; Wanfei Qiu; Aristomenis P. Karageorgis; Tatiana Filatova; Luc van Hoof; Christos Anagnostou;handle: 20.500.14243/161150
Conventional sectoral management and piecemeal governance are considered less and less appropriate in pursuit of sustainable development. Ecosystem based marine spatial management (EB-MSM) is an approach that recognizes the full array of interactions within an ecosystem, including human uses, rather than considering single issues, species, or ecosystem services in isolation. Marine spatial planning and ocean zoning are emerging concepts that can support EB-MSM. EB-MSM is driven by high-level goals that managers aim to achieve through the implementation of measures. High-level goals and objectives need to be translated into more operational objectives before specific targets, limits and measures can be elaborated. Monitoring, evaluation and adaptation are necessary to ensure that marine management measures are both effective and efficient. Solid monitoring frameworks are the foundation of adaptive management, as they provide the necessary information to evaluate performance and the effectiveness of management actions. Marine protected areas (MPAs) - possibly set up in networks - constitute a key component in EB-MSM policies and practises and have been applied as a cornerstone in conservation of marine biodiversity, management of fish populations, development of coastal tourism, etc. Moreover, MPA experiences have provided methods and concepts (such as zoning) to a wider EB-MSM context. The assignment of values to biophysical features of the marine environment allows the direct assessment of related management choices and may assist EB-MSM. A range of monetary valuation techniques have been proposed to reduce attributes of goods and services to a single metric. However, in the marine environment such an approach is often over simplistic, and thus less reductive techniques may be necessary. Rather than producing a single metric, the results of non-monetary assessments guide policy allowing weight to be given as necessary to potential areas of conflict and consensus. Strategies to take into account climate change effects and geohazard risks in EB-MSM have been applied or proposed worldwide. EB-MSM regimes must be alert to such risks and flexible to account for changes.
Ocean & Coastal Mana... arrow_drop_down Ocean & Coastal ManagementArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefOnline Research Database In TechnologyArticle . 2011Data sources: Online Research Database In Technologyhttp://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2011.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 333 citations 333 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Ocean & Coastal Mana... arrow_drop_down Ocean & Coastal ManagementArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefOnline Research Database In TechnologyArticle . 2011Data sources: Online Research Database In Technologyhttp://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2011.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | ECCO-MATEEC| ECCO-MATEAuthors: LION, SIMONE; Michos, Constantine N.; Vlaskos, Ioannis; TACCANI, RODOLFO;handle: 11368/2904788 , 11368/2884115
This work assesses the possibility of fitting an organic Rankine cycle (ORC) system in a commercial agricultural tractor, recovering waste heat from a 300-kW brake power heavy-duty diesel engine. Two different cycle architectures are considered: a single evaporator layout to recover tail-pipe exhaust heat, and a parallel evaporator configuration to recover both exhaust and exhaust gas recirculation (EGR) heat. A second lower-temperature cooling circuit is also considered as possible different heat sink for the ORC system. Ten different working fluids have been assessed, and the optimum system configuration, in terms of fuel consumption, has been obtained applying an optimization algorithm to a process simulation model. A preliminary study has been carried out to evaluate the impact of the ORC system on the engine–vehicle-cooling system. A maximum fuel consumption reduction of 10.6% has been obtained using methanol and recovering heat from tail-pipe and EGR. However, considering also components and heat rejection performance, water steam, toluene and ethanol allow to obtain the best compromises between thermodynamic performance and engine–vehicle-cooling circuit impact.
Archivio istituziona... arrow_drop_down International Journal of Energy and Environmental EngineeringArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Energy and Environmental EngineeringArticleLicense: CC BYData sources: UnpayWallArchivio istituzionale della ricerca - Università di TriesteConference object . 2016International Journal of Energy and Environmental EngineeringJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40095-017-0234-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down International Journal of Energy and Environmental EngineeringArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Energy and Environmental EngineeringArticleLicense: CC BYData sources: UnpayWallArchivio istituzionale della ricerca - Università di TriesteConference object . 2016International Journal of Energy and Environmental EngineeringJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40095-017-0234-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | ECCO-MATEEC| ECCO-MATEAuthors: LION, SIMONE; Michos, Constantine N.; Vlaskos, Ioannis; TACCANI, RODOLFO;handle: 11368/2904788 , 11368/2884115
This work assesses the possibility of fitting an organic Rankine cycle (ORC) system in a commercial agricultural tractor, recovering waste heat from a 300-kW brake power heavy-duty diesel engine. Two different cycle architectures are considered: a single evaporator layout to recover tail-pipe exhaust heat, and a parallel evaporator configuration to recover both exhaust and exhaust gas recirculation (EGR) heat. A second lower-temperature cooling circuit is also considered as possible different heat sink for the ORC system. Ten different working fluids have been assessed, and the optimum system configuration, in terms of fuel consumption, has been obtained applying an optimization algorithm to a process simulation model. A preliminary study has been carried out to evaluate the impact of the ORC system on the engine–vehicle-cooling system. A maximum fuel consumption reduction of 10.6% has been obtained using methanol and recovering heat from tail-pipe and EGR. However, considering also components and heat rejection performance, water steam, toluene and ethanol allow to obtain the best compromises between thermodynamic performance and engine–vehicle-cooling circuit impact.
Archivio istituziona... arrow_drop_down International Journal of Energy and Environmental EngineeringArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Energy and Environmental EngineeringArticleLicense: CC BYData sources: UnpayWallArchivio istituzionale della ricerca - Università di TriesteConference object . 2016International Journal of Energy and Environmental EngineeringJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40095-017-0234-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down International Journal of Energy and Environmental EngineeringArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Energy and Environmental EngineeringArticleLicense: CC BYData sources: UnpayWallArchivio istituzionale della ricerca - Università di TriesteConference object . 2016International Journal of Energy and Environmental EngineeringJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40095-017-0234-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Funded by:EC | ECCO-MATEEC| ECCO-MATEAuthors: Lion, Simone; Vlaskos, Ioannis; Rouaud, Cedric; Taccani, Rodolfo;handle: 11368/2913172
The ECCO-MATE Project is a European Union funded project aimed to develop a synergistic framework for cutting edge research on novel engine technologies for higher energy efficiency and lower emissions. The project partners, Ricardo plc, an engineering consulting company, and the University of Trieste, focus the research attention on waste heat recovery systems, such as Organic Rankine Cycles (ORC), which are gaining increasing interest by engine manufacturers, vehicles and ships fleet operators, because of their potential for further increasing engine efficiency and decreasing fuel consumption. In particular, in the frame of the developed research activity, the 1-D Ricardo engine simulation software WAVE has been used in order to assess novel engine concepts, both in the commercial vehicles and marine sectors. A combined engine-ORC system First and Second Law of Thermodynamics analysis has been proposed in order to study where system inefficiencies are concentrated and propose improvements, with particular focus on commercial vehicle heavy duty diesel engines. A thermo-economic analysis has been also considered. In collaboration with the project partners National Technical University of Athens (NTUA) and Winterthur Gas & Diesel, an innovative low pressure Exhaust Gas Recirculation (EGR) configuration for low speed 2-stroke ship propulsion units has also been studied with the aim of reducing NOx in order to meet IMO Tier III emissions limits. ORC systems are, in this application also, a promising technology that can be used, in synergy with emission reduction systems, to recover, in particular, low temperature heat sources such as engine coolant and scavenging air, always with the aim of improving overall system efficiency while respecting new stringent emission reduction targets. The first results of the research activity show that a fuel consumption improvement up to 10% could be achieved both for commercial vehicles off-highway applications and in the marine sector, depending on the type of ORC and waste heat recovery architecture chosen and the engine considered.
Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Funded by:EC | ECCO-MATEEC| ECCO-MATEAuthors: Lion, Simone; Vlaskos, Ioannis; Rouaud, Cedric; Taccani, Rodolfo;handle: 11368/2913172
The ECCO-MATE Project is a European Union funded project aimed to develop a synergistic framework for cutting edge research on novel engine technologies for higher energy efficiency and lower emissions. The project partners, Ricardo plc, an engineering consulting company, and the University of Trieste, focus the research attention on waste heat recovery systems, such as Organic Rankine Cycles (ORC), which are gaining increasing interest by engine manufacturers, vehicles and ships fleet operators, because of their potential for further increasing engine efficiency and decreasing fuel consumption. In particular, in the frame of the developed research activity, the 1-D Ricardo engine simulation software WAVE has been used in order to assess novel engine concepts, both in the commercial vehicles and marine sectors. A combined engine-ORC system First and Second Law of Thermodynamics analysis has been proposed in order to study where system inefficiencies are concentrated and propose improvements, with particular focus on commercial vehicle heavy duty diesel engines. A thermo-economic analysis has been also considered. In collaboration with the project partners National Technical University of Athens (NTUA) and Winterthur Gas & Diesel, an innovative low pressure Exhaust Gas Recirculation (EGR) configuration for low speed 2-stroke ship propulsion units has also been studied with the aim of reducing NOx in order to meet IMO Tier III emissions limits. ORC systems are, in this application also, a promising technology that can be used, in synergy with emission reduction systems, to recover, in particular, low temperature heat sources such as engine coolant and scavenging air, always with the aim of improving overall system efficiency while respecting new stringent emission reduction targets. The first results of the research activity show that a fuel consumption improvement up to 10% could be achieved both for commercial vehicles off-highway applications and in the marine sector, depending on the type of ORC and waste heat recovery architecture chosen and the engine considered.
Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 NorwayPublisher:Springer Science and Business Media LLC Wutiporn Phromkunthong; Ian Archibald; Supis Thongrod; Viswanath Kiron; Colin M. Beal; Charles H. Greene; Charles H. Greene; Joe Granados; Mark E. Huntley; Mark E. Huntley; Léda N. Gerber;AbstractA method is described for saving 30% of the world fish catch by producing fishmeal and fish oil replacement products from marine microalgae, the natural source of proteins and oils in the marine food web. To examine the commercial aspects of such a method, we adapt a model based on results of microalgae production in Hawaii and apply it to Thailand, the world’s fourth largest producer of fishmeal. A model facility of 111 ha would produce 2,750 tonnes yr−1 of protein and 2,330 tonnes yr−1 of algal oil, at a capital cost of $29.3 M. Such a facility would generate $5.5 M in average annual net income over its 30-year lifetime. Deployment of 100 such facilities in Thailand would replace all domestic production of fishmeal, 10% of world production, on ~1.5% of the land now used to cultivate oil palm. Such a global industry would generate ~$6.5 billion in annual net income.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-33504-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-33504-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 NorwayPublisher:Springer Science and Business Media LLC Wutiporn Phromkunthong; Ian Archibald; Supis Thongrod; Viswanath Kiron; Colin M. Beal; Charles H. Greene; Charles H. Greene; Joe Granados; Mark E. Huntley; Mark E. Huntley; Léda N. Gerber;AbstractA method is described for saving 30% of the world fish catch by producing fishmeal and fish oil replacement products from marine microalgae, the natural source of proteins and oils in the marine food web. To examine the commercial aspects of such a method, we adapt a model based on results of microalgae production in Hawaii and apply it to Thailand, the world’s fourth largest producer of fishmeal. A model facility of 111 ha would produce 2,750 tonnes yr−1 of protein and 2,330 tonnes yr−1 of algal oil, at a capital cost of $29.3 M. Such a facility would generate $5.5 M in average annual net income over its 30-year lifetime. Deployment of 100 such facilities in Thailand would replace all domestic production of fishmeal, 10% of world production, on ~1.5% of the land now used to cultivate oil palm. Such a global industry would generate ~$6.5 billion in annual net income.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-33504-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-33504-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Review , Journal 2017 France, United Kingdom, France, France, United Kingdom, Germany, Germany, France, Netherlands, Germany, Australia, Spain, Austria, France, Australia, Switzerland, France, France, United KingdomPublisher:Copernicus GmbH Funded by:NWO | The distribution and evol..., EC | IMBALANCE-P, EC | RINGO +9 projectsNWO| The distribution and evolution of inert and reactant scalars: from the atmospheric boundary layer to continental scales ,EC| IMBALANCE-P ,EC| RINGO ,RCN| Jordsystem-modellering av klimaforandringer i den antroposene tidsalder; Earth system modelling of climate Variations in the Anthropocene ,EC| CRESCENDO ,EC| HELIX ,EC| QUINCY ,EC| LUC4C ,EC| FIBER ,SNSF| Geschichte der Bausteinbearbeitung, insbesondere in der westlichen Schweiz ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,RCN| CICEP-Strategic Challenges in International Climate and Energy PolicyBronte Tilbrook; Bronte Tilbrook; Jessica N. Cross; Guido R. van der Werf; Yukihiro Nojiri; Denis Pierrot; Denis Pierrot; Arne Körtzinger; Andrew J. Watson; Nathalie Lefèvre; Nicolas Metzl; Andrew Lenton; Andrew Lenton; X. Antonio Padin; David R. Munro; Andrew C. Manning; Philippe Ciais; Leticia Barbero; Leticia Barbero; Kees Klein Goldewijk; Kees Klein Goldewijk; Markus Kautz; Ivan D. Lima; Benjamin Poulter; Benjamin Poulter; Sebastian Lienert; Sebastian Lienert; Pieter P. Tans; Oliver Andrews; George C. Hurtt; Janet J. Reimer; Ingunn Skjelvan; Peter Landschützer; Francesco N. Tubiello; Thomas A. Boden; Anthony P. Walker; Pedro M. S. Monteiro; Kim I. Currie; Robert B. Jackson; Vivek K. Arora; Meike Becker; Meike Becker; Benjamin D. Stocker; Nicolas Vuichard; Tatiana Ilyina; Richard A. Houghton; Stephen Sitch; Sönke Zaehle; Christian Rödenbeck; Dorothee C. E. Bakker; Judith Hauck; Jörg Schwinger; Julia E. M. S. Nabel; Jan Ivar Korsbakken; Frédéric Chevallier; Andy Wiltshire; Ralph F. Keeling; Catherine E Cosca; Thomas Gasser; Ingrid T. van der Laan-Luijkx; Richard Betts; Richard Betts; Shin-Ichiro Nakaoka; Ian Harris; Robbie M. Andrew; Roland Séférian; Pierre Friedlingstein; Steven van Heuven; Christopher W. Hunt; Laurent Bopp; Dan Zhu; Julia Pongratz; Gregor Rehder; Louise Chini; Nicolas Viovy; Frank J. Millero; Etsushi Kato; Benjamin Pfeil; Benjamin Pfeil; Glen P. Peters; Josep G. Canadell; Anna Peregon; Atul K. Jain; Corinne Le Quéré; Danica Lombardozzi; Vanessa Haverd; Hanqin Tian;Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the "global carbon budget" – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of our imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016), EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1 and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007–2016), reflecting in part the higher fossil emissions and smaller SLAND for that year consistent with El Niño conditions. The global atmospheric CO2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data indicate a renewed growth in EFF of +2.0 % (range of 0.8 % to 3.0 %) based on national emissions projections for China, USA, and India, and projections of Gross Domestic Product corrected for recent changes in the carbon intensity of the economy for the rest of the world. For 2017, initial data indicate an increase in atmospheric CO2 concentration of around 5.3 GtC (2.5 ppm), attributed to a combination of increasing emissions and receding El Niño conditions. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quéré et al., 2016; 2015b; 2015a; 2014; 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/32317Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2018License: CC BYFull-Text: https://doi.org/10.18160/GCP-2017Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEarth System Science Data (ESSD)Article . 2018Earth System Science Data (ESSD)Review . 2018License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of Ifremerhttp://dx.doi.org/10.5194/essd...Other literature typeData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2017-123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1K citations 1,019 popularity Top 0.1% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/32317Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2018License: CC BYFull-Text: https://doi.org/10.18160/GCP-2017Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEarth System Science Data (ESSD)Article . 2018Earth System Science Data (ESSD)Review . 2018License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of Ifremerhttp://dx.doi.org/10.5194/essd...Other literature typeData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2017-123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Review , Journal 2017 France, United Kingdom, France, France, United Kingdom, Germany, Germany, France, Netherlands, Germany, Australia, Spain, Austria, France, Australia, Switzerland, France, France, United KingdomPublisher:Copernicus GmbH Funded by:NWO | The distribution and evol..., EC | IMBALANCE-P, EC | RINGO +9 projectsNWO| The distribution and evolution of inert and reactant scalars: from the atmospheric boundary layer to continental scales ,EC| IMBALANCE-P ,EC| RINGO ,RCN| Jordsystem-modellering av klimaforandringer i den antroposene tidsalder; Earth system modelling of climate Variations in the Anthropocene ,EC| CRESCENDO ,EC| HELIX ,EC| QUINCY ,EC| LUC4C ,EC| FIBER ,SNSF| Geschichte der Bausteinbearbeitung, insbesondere in der westlichen Schweiz ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,RCN| CICEP-Strategic Challenges in International Climate and Energy PolicyBronte Tilbrook; Bronte Tilbrook; Jessica N. Cross; Guido R. van der Werf; Yukihiro Nojiri; Denis Pierrot; Denis Pierrot; Arne Körtzinger; Andrew J. Watson; Nathalie Lefèvre; Nicolas Metzl; Andrew Lenton; Andrew Lenton; X. Antonio Padin; David R. Munro; Andrew C. Manning; Philippe Ciais; Leticia Barbero; Leticia Barbero; Kees Klein Goldewijk; Kees Klein Goldewijk; Markus Kautz; Ivan D. Lima; Benjamin Poulter; Benjamin Poulter; Sebastian Lienert; Sebastian Lienert; Pieter P. Tans; Oliver Andrews; George C. Hurtt; Janet J. Reimer; Ingunn Skjelvan; Peter Landschützer; Francesco N. Tubiello; Thomas A. Boden; Anthony P. Walker; Pedro M. S. Monteiro; Kim I. Currie; Robert B. Jackson; Vivek K. Arora; Meike Becker; Meike Becker; Benjamin D. Stocker; Nicolas Vuichard; Tatiana Ilyina; Richard A. Houghton; Stephen Sitch; Sönke Zaehle; Christian Rödenbeck; Dorothee C. E. Bakker; Judith Hauck; Jörg Schwinger; Julia E. M. S. Nabel; Jan Ivar Korsbakken; Frédéric Chevallier; Andy Wiltshire; Ralph F. Keeling; Catherine E Cosca; Thomas Gasser; Ingrid T. van der Laan-Luijkx; Richard Betts; Richard Betts; Shin-Ichiro Nakaoka; Ian Harris; Robbie M. Andrew; Roland Séférian; Pierre Friedlingstein; Steven van Heuven; Christopher W. Hunt; Laurent Bopp; Dan Zhu; Julia Pongratz; Gregor Rehder; Louise Chini; Nicolas Viovy; Frank J. Millero; Etsushi Kato; Benjamin Pfeil; Benjamin Pfeil; Glen P. Peters; Josep G. Canadell; Anna Peregon; Atul K. Jain; Corinne Le Quéré; Danica Lombardozzi; Vanessa Haverd; Hanqin Tian;Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the "global carbon budget" – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of our imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016), EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1 and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007–2016), reflecting in part the higher fossil emissions and smaller SLAND for that year consistent with El Niño conditions. The global atmospheric CO2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data indicate a renewed growth in EFF of +2.0 % (range of 0.8 % to 3.0 %) based on national emissions projections for China, USA, and India, and projections of Gross Domestic Product corrected for recent changes in the carbon intensity of the economy for the rest of the world. For 2017, initial data indicate an increase in atmospheric CO2 concentration of around 5.3 GtC (2.5 ppm), attributed to a combination of increasing emissions and receding El Niño conditions. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quéré et al., 2016; 2015b; 2015a; 2014; 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/32317Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2018License: CC BYFull-Text: https://doi.org/10.18160/GCP-2017Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEarth System Science Data (ESSD)Article . 2018Earth System Science Data (ESSD)Review . 2018License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of Ifremerhttp://dx.doi.org/10.5194/essd...Other literature typeData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2017-123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1K citations 1,019 popularity Top 0.1% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/32317Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2018License: CC BYFull-Text: https://doi.org/10.18160/GCP-2017Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEarth System Science Data (ESSD)Article . 2018Earth System Science Data (ESSD)Review . 2018License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of Ifremerhttp://dx.doi.org/10.5194/essd...Other literature typeData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2017-123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Public Library of Science (PLoS) Funded by:EC | TOPIOS, EC | TRIATLASEC| TOPIOS ,EC| TRIATLASErin V. Satterthwaite; Valeriya Komyakova; Natalia Erazo; Louise Carin Gammage; Gabriel A. Juma; Rachel Kelly; Daniel Lee Kleinman; Delphine Lobelle; Rachel Sapery James; Norlaila Binti Mohd Zanuri;pmid: 36251638
pmc: PMC9576046
Solutions to complex and unprecedented global challenges are urgently needed. Overcoming these challenges requires input and innovative solutions from all experts, including Early Career Ocean Professionals (ECOPs). To achieve diverse inclusion from ECOPs, fundamental changes must occur at all levels—from individuals to organizations. Drawing on insights from across the globe, we propose 5 actionable pillars that support the engagement of ECOPs in co-design processes that address ocean sustainability: sharing knowledge through networks and mentorship, providing cross-boundary training and opportunities, incentivizing and celebrating knowledge co-design, creating inclusive and participatory governance structures, and catalyzing culture change for inclusivity. Foundational to all actions are the cross-cutting principles of justice, equity, diversity, and inclusivity. In addition, the pillars are cross-boundary in nature, including collaboration and innovation across sectors, disciplines, regions, generations, and backgrounds. Together, these recommendations provide an actionable and iterative path toward inclusive engagement and intergenerational exchange that can develop ocean solutions for a sustainable future.
PLoS Biology arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3001832&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PLoS Biology arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3001832&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Public Library of Science (PLoS) Funded by:EC | TOPIOS, EC | TRIATLASEC| TOPIOS ,EC| TRIATLASErin V. Satterthwaite; Valeriya Komyakova; Natalia Erazo; Louise Carin Gammage; Gabriel A. Juma; Rachel Kelly; Daniel Lee Kleinman; Delphine Lobelle; Rachel Sapery James; Norlaila Binti Mohd Zanuri;pmid: 36251638
pmc: PMC9576046
Solutions to complex and unprecedented global challenges are urgently needed. Overcoming these challenges requires input and innovative solutions from all experts, including Early Career Ocean Professionals (ECOPs). To achieve diverse inclusion from ECOPs, fundamental changes must occur at all levels—from individuals to organizations. Drawing on insights from across the globe, we propose 5 actionable pillars that support the engagement of ECOPs in co-design processes that address ocean sustainability: sharing knowledge through networks and mentorship, providing cross-boundary training and opportunities, incentivizing and celebrating knowledge co-design, creating inclusive and participatory governance structures, and catalyzing culture change for inclusivity. Foundational to all actions are the cross-cutting principles of justice, equity, diversity, and inclusivity. In addition, the pillars are cross-boundary in nature, including collaboration and innovation across sectors, disciplines, regions, generations, and backgrounds. Together, these recommendations provide an actionable and iterative path toward inclusive engagement and intergenerational exchange that can develop ocean solutions for a sustainable future.
PLoS Biology arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3001832&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PLoS Biology arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3001832&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, Netherlands, NetherlandsPublisher:Resilience Alliance, Inc. Funded by:EC | KNOWSEASEC| KNOWSEASMee, L.; Cooper, P.; Kannen, A.; Gilbert, A.J.; O`Higgins, T.;BACKGROUND There is ample evidence for human alteration of Europe’s regional seas, particularly the enclosed or partly enclosed Baltic, Black, Mediterranean, and North Seas. Accounts of habitat and biodiversity loss, pollution, and the decline of fish stocks in these economically, socially, and ecologically important seas demonstrate unsustainable use of the marine environment. At the same time, there is an insufficient quantity and quality of information to enable purely evidence-based management of Europe’s seas despite this being a declared goal of many decisionmakers; for example, less than 10% of the deep sea has been systematically explored (UNEP 2006). Evidence-based management alone is rarely possible in situations with complex value-laden policy options (Greenhalgh and Russell 2009), and unfortunately, many of the most pervasive problems in the marine environment are “wicked” second-order problems (Jentoft and Chuenpagdee 2009): they are complex in nature and their management will often involve both winners and losers. Solutions to these problems involve less politically attractive, valuebased choices and may require long time lags before tangible results are observed. Fisheries management, habitat and species protection, competition for marine space, and invasive species are all examples of “wicked” problems. These are some of the biggest issues facing Europe’s seas and are the major focus of this article and Special Feature. For the first time in European history, most countries have adopted a common maritime policy (the 2007 Integrated Maritime Policy) and a legally binding environmental directive (the 2008 Marine Strategy Framework Directive [MSFD]). These comprehensive policy vehicles encompass, or closely interface with, more specific measures, such as the recently reformed Common Fisheries Policy, the Water Framework Directive, the Habitats and Birds Directive, and a number of targeted policy instruments that deal with aspects of pollution control and coastal zone management. The overall array of measures has the potential to ensure the sustainable use of Europe’s seas and the restoration of marine environments, but the pathway between the current situation and the implementation of an ecosystem approach to management (the aspiration of the European Commission; see Our Approach to Research) is fraught with “wicked” problems. Science can help society resolve these problems, but in many cases this requires the broad and integrative vision of Odum’s (1971) “macroscope” rather than trying to piece together an ill-fitting jigsaw puzzle of discipline-focused information. This paper and the others in this Special Feature employ a systems approach. We describe the approach, how it can be applied practically, and some of the challenges in making it work. Though the work is based on research on Europe’s seas, it has much wider implications for regional seas throughout the world. OUR APPROACH TO RESEARCH ON MARINE SOCIALECOLOGICAL SYSTEMS The research described in this paper (and Special Feature) was conducted in the framework of the EU-FP7 funded project Knowledge-based Sustainable Management of Europe’s Seas (KnowSeas). The interdisciplinary research spanned 4 years and involved 33 institutions from 16 European countries (KnowSeas 2013). Its primary objective was to develop “a comprehensive scientific knowledge base and practical guidance for the application of the ecosystem approach to the sustainable development of Europe’s regional seas.” Given the knowledge gaps and uncertainties in the way Europe’s marine social-ecological systems function (e.g., unresolved causal links, poorly mapped habitats, nonlinear dynamics), an iterative approach to inquiry was adopted, based partly on the reasoning behind soft systems analysis (e.g., Checkland 2000).
Ecology and Society arrow_drop_down Ecology and SocietyArticle . 2015University of Bath's research portalArticle . 2015Data sources: University of Bath's research portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-07143-200101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecology and Society arrow_drop_down Ecology and SocietyArticle . 2015University of Bath's research portalArticle . 2015Data sources: University of Bath's research portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-07143-200101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 United Kingdom, Netherlands, NetherlandsPublisher:Resilience Alliance, Inc. Funded by:EC | KNOWSEASEC| KNOWSEASMee, L.; Cooper, P.; Kannen, A.; Gilbert, A.J.; O`Higgins, T.;BACKGROUND There is ample evidence for human alteration of Europe’s regional seas, particularly the enclosed or partly enclosed Baltic, Black, Mediterranean, and North Seas. Accounts of habitat and biodiversity loss, pollution, and the decline of fish stocks in these economically, socially, and ecologically important seas demonstrate unsustainable use of the marine environment. At the same time, there is an insufficient quantity and quality of information to enable purely evidence-based management of Europe’s seas despite this being a declared goal of many decisionmakers; for example, less than 10% of the deep sea has been systematically explored (UNEP 2006). Evidence-based management alone is rarely possible in situations with complex value-laden policy options (Greenhalgh and Russell 2009), and unfortunately, many of the most pervasive problems in the marine environment are “wicked” second-order problems (Jentoft and Chuenpagdee 2009): they are complex in nature and their management will often involve both winners and losers. Solutions to these problems involve less politically attractive, valuebased choices and may require long time lags before tangible results are observed. Fisheries management, habitat and species protection, competition for marine space, and invasive species are all examples of “wicked” problems. These are some of the biggest issues facing Europe’s seas and are the major focus of this article and Special Feature. For the first time in European history, most countries have adopted a common maritime policy (the 2007 Integrated Maritime Policy) and a legally binding environmental directive (the 2008 Marine Strategy Framework Directive [MSFD]). These comprehensive policy vehicles encompass, or closely interface with, more specific measures, such as the recently reformed Common Fisheries Policy, the Water Framework Directive, the Habitats and Birds Directive, and a number of targeted policy instruments that deal with aspects of pollution control and coastal zone management. The overall array of measures has the potential to ensure the sustainable use of Europe’s seas and the restoration of marine environments, but the pathway between the current situation and the implementation of an ecosystem approach to management (the aspiration of the European Commission; see Our Approach to Research) is fraught with “wicked” problems. Science can help society resolve these problems, but in many cases this requires the broad and integrative vision of Odum’s (1971) “macroscope” rather than trying to piece together an ill-fitting jigsaw puzzle of discipline-focused information. This paper and the others in this Special Feature employ a systems approach. We describe the approach, how it can be applied practically, and some of the challenges in making it work. Though the work is based on research on Europe’s seas, it has much wider implications for regional seas throughout the world. OUR APPROACH TO RESEARCH ON MARINE SOCIALECOLOGICAL SYSTEMS The research described in this paper (and Special Feature) was conducted in the framework of the EU-FP7 funded project Knowledge-based Sustainable Management of Europe’s Seas (KnowSeas). The interdisciplinary research spanned 4 years and involved 33 institutions from 16 European countries (KnowSeas 2013). Its primary objective was to develop “a comprehensive scientific knowledge base and practical guidance for the application of the ecosystem approach to the sustainable development of Europe’s regional seas.” Given the knowledge gaps and uncertainties in the way Europe’s marine social-ecological systems function (e.g., unresolved causal links, poorly mapped habitats, nonlinear dynamics), an iterative approach to inquiry was adopted, based partly on the reasoning behind soft systems analysis (e.g., Checkland 2000).
Ecology and Society arrow_drop_down Ecology and SocietyArticle . 2015University of Bath's research portalArticle . 2015Data sources: University of Bath's research portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-07143-200101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 35 citations 35 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecology and Society arrow_drop_down Ecology and SocietyArticle . 2015University of Bath's research portalArticle . 2015Data sources: University of Bath's research portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5751/es-07143-200101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 Germany, Germany, Germany, Germany, Sweden, FrancePublisher:Wiley Authors: Gerald G. Singh; Nathalie Hilmi; Joey R. Bernhardt; Andres M. Cisneros Montemayor; +16 AuthorsGerald G. Singh; Nathalie Hilmi; Joey R. Bernhardt; Andres M. Cisneros Montemayor; Madeline S. Cashion; Yoshitaka Ota; Sevil Acar; Jason Brown; Richard S. Cottrell; Salpie Djoundourian; Pedro C. González‐Espinosa; Vicky W. Y. Lam; Nadine Marshall; Barbara Neumann; Nicolas Pichon; Gabriel Reygondeau; Joacim Rocklöv; Alain Safa; Laura Recuero Virto; William W. L. Cheung;Abstract Climate change is impacting marine ecosystems and their goods and services in diverse ways, which can directly hinder our ability to achieve the Sustainable Development Goals (SDGs), set out under the 2030 Agenda for Sustainable Development. Through expert elicitation and a literature review, we find that most climate change effects have a wide variety of negative consequences across marine ecosystem services, though most studies have highlighted impacts from warming and consequences of marine species. Climate change is expected to negatively influence marine ecosystem services through global stressors—such as ocean warming and acidification—but also by amplifying local and regional stressors such as freshwater runoff and pollution load. Experts indicated that all SDGs would be overwhelmingly negatively affected by these climate impacts on marine ecosystem services, with eliminating hunger being among the most directly negatively affected SDG. Despite these challenges, the SDGs aiming to transform our consumption and production practices and develop clean energy systems are found to be least affected by marine climate impacts. These findings represent a strategic point of entry for countries to achieve sustainable development, given that these two goals are relatively robust to climate impacts and that they are important pre‐requisite for other SDGs. Our results suggest that climate change impacts on marine ecosystems are set to make the SDGs a moving target travelling away from us. Effective and urgent action towards sustainable development, including mitigating and adapting to climate impacts on marine systems are important to achieve the SDGs, but the longer this action stalls the more distant these goals will become. A free Plain Language Summary can be found within the Supporting Information of this article.
Université de Bretag... arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2019Full-Text: https://hal.science/hal-02467633Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02467633Data sources: Bielefeld Academic Search Engine (BASE)Publikationer från Umeå universitetArticle . 2019 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedArchiMer - Institutional Archive of IfremerOther literature type . 2019Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pan3.26&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Université de Bretag... arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2019Full-Text: https://hal.science/hal-02467633Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02467633Data sources: Bielefeld Academic Search Engine (BASE)Publikationer från Umeå universitetArticle . 2019 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedArchiMer - Institutional Archive of IfremerOther literature type . 2019Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pan3.26&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 Germany, Germany, Germany, Germany, Sweden, FrancePublisher:Wiley Authors: Gerald G. Singh; Nathalie Hilmi; Joey R. Bernhardt; Andres M. Cisneros Montemayor; +16 AuthorsGerald G. Singh; Nathalie Hilmi; Joey R. Bernhardt; Andres M. Cisneros Montemayor; Madeline S. Cashion; Yoshitaka Ota; Sevil Acar; Jason Brown; Richard S. Cottrell; Salpie Djoundourian; Pedro C. González‐Espinosa; Vicky W. Y. Lam; Nadine Marshall; Barbara Neumann; Nicolas Pichon; Gabriel Reygondeau; Joacim Rocklöv; Alain Safa; Laura Recuero Virto; William W. L. Cheung;Abstract Climate change is impacting marine ecosystems and their goods and services in diverse ways, which can directly hinder our ability to achieve the Sustainable Development Goals (SDGs), set out under the 2030 Agenda for Sustainable Development. Through expert elicitation and a literature review, we find that most climate change effects have a wide variety of negative consequences across marine ecosystem services, though most studies have highlighted impacts from warming and consequences of marine species. Climate change is expected to negatively influence marine ecosystem services through global stressors—such as ocean warming and acidification—but also by amplifying local and regional stressors such as freshwater runoff and pollution load. Experts indicated that all SDGs would be overwhelmingly negatively affected by these climate impacts on marine ecosystem services, with eliminating hunger being among the most directly negatively affected SDG. Despite these challenges, the SDGs aiming to transform our consumption and production practices and develop clean energy systems are found to be least affected by marine climate impacts. These findings represent a strategic point of entry for countries to achieve sustainable development, given that these two goals are relatively robust to climate impacts and that they are important pre‐requisite for other SDGs. Our results suggest that climate change impacts on marine ecosystems are set to make the SDGs a moving target travelling away from us. Effective and urgent action towards sustainable development, including mitigating and adapting to climate impacts on marine systems are important to achieve the SDGs, but the longer this action stalls the more distant these goals will become. A free Plain Language Summary can be found within the Supporting Information of this article.
Université de Bretag... arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2019Full-Text: https://hal.science/hal-02467633Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02467633Data sources: Bielefeld Academic Search Engine (BASE)Publikationer från Umeå universitetArticle . 2019 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedArchiMer - Institutional Archive of IfremerOther literature type . 2019Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pan3.26&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Université de Bretag... arrow_drop_down Université de Bretagne Occidentale: HALArticle . 2019Full-Text: https://hal.science/hal-02467633Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-02467633Data sources: Bielefeld Academic Search Engine (BASE)Publikationer från Umeå universitetArticle . 2019 . Peer-reviewedData sources: Publikationer från Umeå universitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2019 . Peer-reviewedArchiMer - Institutional Archive of IfremerOther literature type . 2019Data sources: ArchiMer - Institutional Archive of Ifremeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pan3.26&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 GermanyPublisher:Frontiers Media SA Funded by:DFG | Climate Engineering: Risk...DFG| Climate Engineering: Risks, Challenges, Opportunities?Malgorzata Borchers; Daniela Thrän; Daniela Thrän; Yaxuan Chi; Nicolaus Dahmen; Roland Dittmeyer; Tobias Dolch; Christian Dold; Johannes Förster; Michael Herbst; Dominik Heß; Aram Kalhori; Ketil Koop-Jakobsen; Zhan Li; Nadine Mengis; Thorsten B. H. Reusch; Imke Rhoden; Torsten Sachs; Cornelia Schmidt-Hattenberger; Angela Stevenson; Terese Thoni; Jiajun Wu; Christopher Yeates;In its latest assessment report the IPCC stresses the need for carbon dioxide removal (CDR) to counterbalance residual emissions to achieve net zero carbon dioxide or greenhouse gas emissions. There are currently a wide variety of CDR measures available. Their potential and feasibility, however, depends on context specific conditions, as among others biophysical site characteristics, or availability of infrastructure and resources. In our study, we selected 13 CDR concepts which we present in the form of exemplary CDR units described in dedicated fact sheets. They cover technical CO2 removal (two concepts of direct air carbon capture), hybrid solutions (six bioenergy with carbon capture technologies) and five options for natural sink enhancement. Our estimates for their CO2 removal potentials in 2050 range from 0.06 to 30 million tons of CO2, depending on the option. Ten of the 13 CDR concepts provide technical removal potentials higher than 1 million tons of CO2 per year. To better understand the potential contribution of analyzed CDR options to reaching net-zero CO2 emissions, we compare our results with the current CO2 emissions and potential residual CO2 emissions in 2050 in Germany. To complement the necessary information on technology-based and hybrid options, we also provide an overview on possible solutions for CO2 storage for Germany. Taking biophysical conditions and infrastructure into account, northern Germany seems a preferable area for deployment of many concepts. However, for their successful implementation further socio-economic analysis, clear regulations, and policy incentives are necessary.
OceanRep arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.810343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.810343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022 GermanyPublisher:Frontiers Media SA Funded by:DFG | Climate Engineering: Risk...DFG| Climate Engineering: Risks, Challenges, Opportunities?Malgorzata Borchers; Daniela Thrän; Daniela Thrän; Yaxuan Chi; Nicolaus Dahmen; Roland Dittmeyer; Tobias Dolch; Christian Dold; Johannes Förster; Michael Herbst; Dominik Heß; Aram Kalhori; Ketil Koop-Jakobsen; Zhan Li; Nadine Mengis; Thorsten B. H. Reusch; Imke Rhoden; Torsten Sachs; Cornelia Schmidt-Hattenberger; Angela Stevenson; Terese Thoni; Jiajun Wu; Christopher Yeates;In its latest assessment report the IPCC stresses the need for carbon dioxide removal (CDR) to counterbalance residual emissions to achieve net zero carbon dioxide or greenhouse gas emissions. There are currently a wide variety of CDR measures available. Their potential and feasibility, however, depends on context specific conditions, as among others biophysical site characteristics, or availability of infrastructure and resources. In our study, we selected 13 CDR concepts which we present in the form of exemplary CDR units described in dedicated fact sheets. They cover technical CO2 removal (two concepts of direct air carbon capture), hybrid solutions (six bioenergy with carbon capture technologies) and five options for natural sink enhancement. Our estimates for their CO2 removal potentials in 2050 range from 0.06 to 30 million tons of CO2, depending on the option. Ten of the 13 CDR concepts provide technical removal potentials higher than 1 million tons of CO2 per year. To better understand the potential contribution of analyzed CDR options to reaching net-zero CO2 emissions, we compare our results with the current CO2 emissions and potential residual CO2 emissions in 2050 in Germany. To complement the necessary information on technology-based and hybrid options, we also provide an overview on possible solutions for CO2 storage for Germany. Taking biophysical conditions and infrastructure into account, northern Germany seems a preferable area for deployment of many concepts. However, for their successful implementation further socio-economic analysis, clear regulations, and policy incentives are necessary.
OceanRep arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.810343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert OceanRep arrow_drop_down GFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for GeosciencesElectronic Publication Information CenterArticle . 2022Data sources: Electronic Publication Information Centeradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.810343&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Argentina, Finland, United States, Australia, Argentina, Spain, United Kingdom, Denmark, NetherlandsPublisher:Wiley Mazor, Tessa; Pitcher, C. Roland; Rochester, Wayne; Kaiser, Michel J.; Hiddink, Jan G.; Jennings, Simon; Amoroso, Ricardo; McConnaughey, Robert A.; Rijnsdorp, Adriaan D.; Parma, Ana M.; Suuronen, Petri; Collie, Jeremy; Sciberras, Marija; Atkinson, Lara; Durholtz, Deon; Ellis, Jim R; Bolam, Stefan G.; Schratzberger, Michaela; Couce, Elena; Eggleton, Jacqueline; Garcia, Clement; Kainge, Paulus; Paulus, Sarah; Kathena, Johannes N.; Gogina, Mayya; van Denderen, P. Daniël; Keller, Aimee A.; Horness, Beth H.; Hilborn; Ray;doi: 10.1111/faf.12506
handle: 10261/226139 , 11336/136595
AbstractBottom trawl fishing is a controversial activity. It yields about a quarter of the world's wild seafood, but also has impacts on the marine environment. Recent advances have quantified and improved understanding of large‐scale impacts of trawling on the seabed. However, such information needs to be coupled with distributions of benthic invertebrates (benthos) to assess whether these populations are being sustained under current trawling regimes. This study collated data from 13 diverse regions of the globe spanning four continents. Within each region, we combined trawl intensity distributions and predicted abundance distributions of benthos groups with impact and recovery parameters for taxonomic classes in a risk assessment model to estimate benthos status. The exposure of 220 predicted benthos‐group distributions to trawling intensity (as swept area ratio) ranged between 0% and 210% (mean = 37%) of abundance. However, benthos status, an indicator of the depleted abundance under chronic trawling pressure as a proportion of untrawled state, ranged between 0.86 and 1 (mean = 0.99), with 78% of benthos groups > 0.95. Mean benthos status was lowest in regions of Europe and Africa, and for taxonomic classes Bivalvia and Gastropoda. Our results demonstrate that while spatial overlap studies can help infer general patterns of potential risk, actual risks cannot be evaluated without using an assessment model that incorporates trawl impact and recovery metrics. These quantitative outputs are essential for sustainability assessments, and together with reference points and thresholds, can help managers ensure use of the marine environment is sustainable under the ecosystem approach to management.
Fish and Fisheries arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2021Data sources: Online Research Database In TechnologyFish and FisheriesArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/faf.12506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 56visibility views 56 download downloads 19 Powered bymore_vert Fish and Fisheries arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2021Data sources: Online Research Database In TechnologyFish and FisheriesArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/faf.12506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Argentina, Finland, United States, Australia, Argentina, Spain, United Kingdom, Denmark, NetherlandsPublisher:Wiley Mazor, Tessa; Pitcher, C. Roland; Rochester, Wayne; Kaiser, Michel J.; Hiddink, Jan G.; Jennings, Simon; Amoroso, Ricardo; McConnaughey, Robert A.; Rijnsdorp, Adriaan D.; Parma, Ana M.; Suuronen, Petri; Collie, Jeremy; Sciberras, Marija; Atkinson, Lara; Durholtz, Deon; Ellis, Jim R; Bolam, Stefan G.; Schratzberger, Michaela; Couce, Elena; Eggleton, Jacqueline; Garcia, Clement; Kainge, Paulus; Paulus, Sarah; Kathena, Johannes N.; Gogina, Mayya; van Denderen, P. Daniël; Keller, Aimee A.; Horness, Beth H.; Hilborn; Ray;doi: 10.1111/faf.12506
handle: 10261/226139 , 11336/136595
AbstractBottom trawl fishing is a controversial activity. It yields about a quarter of the world's wild seafood, but also has impacts on the marine environment. Recent advances have quantified and improved understanding of large‐scale impacts of trawling on the seabed. However, such information needs to be coupled with distributions of benthic invertebrates (benthos) to assess whether these populations are being sustained under current trawling regimes. This study collated data from 13 diverse regions of the globe spanning four continents. Within each region, we combined trawl intensity distributions and predicted abundance distributions of benthos groups with impact and recovery parameters for taxonomic classes in a risk assessment model to estimate benthos status. The exposure of 220 predicted benthos‐group distributions to trawling intensity (as swept area ratio) ranged between 0% and 210% (mean = 37%) of abundance. However, benthos status, an indicator of the depleted abundance under chronic trawling pressure as a proportion of untrawled state, ranged between 0.86 and 1 (mean = 0.99), with 78% of benthos groups > 0.95. Mean benthos status was lowest in regions of Europe and Africa, and for taxonomic classes Bivalvia and Gastropoda. Our results demonstrate that while spatial overlap studies can help infer general patterns of potential risk, actual risks cannot be evaluated without using an assessment model that incorporates trawl impact and recovery metrics. These quantitative outputs are essential for sustainability assessments, and together with reference points and thresholds, can help managers ensure use of the marine environment is sustainable under the ecosystem approach to management.
Fish and Fisheries arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2021Data sources: Online Research Database In TechnologyFish and FisheriesArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/faf.12506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 56visibility views 56 download downloads 19 Powered bymore_vert Fish and Fisheries arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAOnline Research Database In TechnologyArticle . 2021Data sources: Online Research Database In TechnologyFish and FisheriesArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Rhode Island: DigitalCommons@URIArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/faf.12506&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011 Italy, Italy, Netherlands, DenmarkPublisher:Elsevier BV Funded by:EC | MESMAEC| MESMAFabio Badalamenti; Giovanni D’Anna; Helena Hulsman; Carlo Pipitone; Sandra Vöge; Patricia Breen; Thomas Kirk Sørensen; Michael Duijn; Guillem Chust; Anke Weber; Tomás Vega Fernández; Sandy Kerr; Stelios Katsanevakis; Susan Portelli; Simone Mirto; Ingrid Kröncke; Argyro Zenetos; Fabio Fiorentino; Dimitris Sakellariou; Vanessa Stelzenmüller; Maria Salomidi; Andy South; Remment ter Hofstede; Kate R. Johnson; Vassiliki Vassilopoulou; Peter J.S. Jones; Henning Reiss; Wanfei Qiu; Aristomenis P. Karageorgis; Tatiana Filatova; Luc van Hoof; Christos Anagnostou;handle: 20.500.14243/161150
Conventional sectoral management and piecemeal governance are considered less and less appropriate in pursuit of sustainable development. Ecosystem based marine spatial management (EB-MSM) is an approach that recognizes the full array of interactions within an ecosystem, including human uses, rather than considering single issues, species, or ecosystem services in isolation. Marine spatial planning and ocean zoning are emerging concepts that can support EB-MSM. EB-MSM is driven by high-level goals that managers aim to achieve through the implementation of measures. High-level goals and objectives need to be translated into more operational objectives before specific targets, limits and measures can be elaborated. Monitoring, evaluation and adaptation are necessary to ensure that marine management measures are both effective and efficient. Solid monitoring frameworks are the foundation of adaptive management, as they provide the necessary information to evaluate performance and the effectiveness of management actions. Marine protected areas (MPAs) - possibly set up in networks - constitute a key component in EB-MSM policies and practises and have been applied as a cornerstone in conservation of marine biodiversity, management of fish populations, development of coastal tourism, etc. Moreover, MPA experiences have provided methods and concepts (such as zoning) to a wider EB-MSM context. The assignment of values to biophysical features of the marine environment allows the direct assessment of related management choices and may assist EB-MSM. A range of monetary valuation techniques have been proposed to reduce attributes of goods and services to a single metric. However, in the marine environment such an approach is often over simplistic, and thus less reductive techniques may be necessary. Rather than producing a single metric, the results of non-monetary assessments guide policy allowing weight to be given as necessary to potential areas of conflict and consensus. Strategies to take into account climate change effects and geohazard risks in EB-MSM have been applied or proposed worldwide. EB-MSM regimes must be alert to such risks and flexible to account for changes.
Ocean & Coastal Mana... arrow_drop_down Ocean & Coastal ManagementArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefOnline Research Database In TechnologyArticle . 2011Data sources: Online Research Database In Technologyhttp://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2011.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 333 citations 333 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Ocean & Coastal Mana... arrow_drop_down Ocean & Coastal ManagementArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefOnline Research Database In TechnologyArticle . 2011Data sources: Online Research Database In Technologyhttp://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2011.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011 Italy, Italy, Netherlands, DenmarkPublisher:Elsevier BV Funded by:EC | MESMAEC| MESMAFabio Badalamenti; Giovanni D’Anna; Helena Hulsman; Carlo Pipitone; Sandra Vöge; Patricia Breen; Thomas Kirk Sørensen; Michael Duijn; Guillem Chust; Anke Weber; Tomás Vega Fernández; Sandy Kerr; Stelios Katsanevakis; Susan Portelli; Simone Mirto; Ingrid Kröncke; Argyro Zenetos; Fabio Fiorentino; Dimitris Sakellariou; Vanessa Stelzenmüller; Maria Salomidi; Andy South; Remment ter Hofstede; Kate R. Johnson; Vassiliki Vassilopoulou; Peter J.S. Jones; Henning Reiss; Wanfei Qiu; Aristomenis P. Karageorgis; Tatiana Filatova; Luc van Hoof; Christos Anagnostou;handle: 20.500.14243/161150
Conventional sectoral management and piecemeal governance are considered less and less appropriate in pursuit of sustainable development. Ecosystem based marine spatial management (EB-MSM) is an approach that recognizes the full array of interactions within an ecosystem, including human uses, rather than considering single issues, species, or ecosystem services in isolation. Marine spatial planning and ocean zoning are emerging concepts that can support EB-MSM. EB-MSM is driven by high-level goals that managers aim to achieve through the implementation of measures. High-level goals and objectives need to be translated into more operational objectives before specific targets, limits and measures can be elaborated. Monitoring, evaluation and adaptation are necessary to ensure that marine management measures are both effective and efficient. Solid monitoring frameworks are the foundation of adaptive management, as they provide the necessary information to evaluate performance and the effectiveness of management actions. Marine protected areas (MPAs) - possibly set up in networks - constitute a key component in EB-MSM policies and practises and have been applied as a cornerstone in conservation of marine biodiversity, management of fish populations, development of coastal tourism, etc. Moreover, MPA experiences have provided methods and concepts (such as zoning) to a wider EB-MSM context. The assignment of values to biophysical features of the marine environment allows the direct assessment of related management choices and may assist EB-MSM. A range of monetary valuation techniques have been proposed to reduce attributes of goods and services to a single metric. However, in the marine environment such an approach is often over simplistic, and thus less reductive techniques may be necessary. Rather than producing a single metric, the results of non-monetary assessments guide policy allowing weight to be given as necessary to potential areas of conflict and consensus. Strategies to take into account climate change effects and geohazard risks in EB-MSM have been applied or proposed worldwide. EB-MSM regimes must be alert to such risks and flexible to account for changes.
Ocean & Coastal Mana... arrow_drop_down Ocean & Coastal ManagementArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefOnline Research Database In TechnologyArticle . 2011Data sources: Online Research Database In Technologyhttp://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2011.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 333 citations 333 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Ocean & Coastal Mana... arrow_drop_down Ocean & Coastal ManagementArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefOnline Research Database In TechnologyArticle . 2011Data sources: Online Research Database In Technologyhttp://dx.doi.org/http://dx.do...Other literature typeData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ocecoaman.2011.09.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | ECCO-MATEEC| ECCO-MATEAuthors: LION, SIMONE; Michos, Constantine N.; Vlaskos, Ioannis; TACCANI, RODOLFO;handle: 11368/2904788 , 11368/2884115
This work assesses the possibility of fitting an organic Rankine cycle (ORC) system in a commercial agricultural tractor, recovering waste heat from a 300-kW brake power heavy-duty diesel engine. Two different cycle architectures are considered: a single evaporator layout to recover tail-pipe exhaust heat, and a parallel evaporator configuration to recover both exhaust and exhaust gas recirculation (EGR) heat. A second lower-temperature cooling circuit is also considered as possible different heat sink for the ORC system. Ten different working fluids have been assessed, and the optimum system configuration, in terms of fuel consumption, has been obtained applying an optimization algorithm to a process simulation model. A preliminary study has been carried out to evaluate the impact of the ORC system on the engine–vehicle-cooling system. A maximum fuel consumption reduction of 10.6% has been obtained using methanol and recovering heat from tail-pipe and EGR. However, considering also components and heat rejection performance, water steam, toluene and ethanol allow to obtain the best compromises between thermodynamic performance and engine–vehicle-cooling circuit impact.
Archivio istituziona... arrow_drop_down International Journal of Energy and Environmental EngineeringArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Energy and Environmental EngineeringArticleLicense: CC BYData sources: UnpayWallArchivio istituzionale della ricerca - Università di TriesteConference object . 2016International Journal of Energy and Environmental EngineeringJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40095-017-0234-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down International Journal of Energy and Environmental EngineeringArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Energy and Environmental EngineeringArticleLicense: CC BYData sources: UnpayWallArchivio istituzionale della ricerca - Università di TriesteConference object . 2016International Journal of Energy and Environmental EngineeringJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40095-017-0234-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017 ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | ECCO-MATEEC| ECCO-MATEAuthors: LION, SIMONE; Michos, Constantine N.; Vlaskos, Ioannis; TACCANI, RODOLFO;handle: 11368/2904788 , 11368/2884115
This work assesses the possibility of fitting an organic Rankine cycle (ORC) system in a commercial agricultural tractor, recovering waste heat from a 300-kW brake power heavy-duty diesel engine. Two different cycle architectures are considered: a single evaporator layout to recover tail-pipe exhaust heat, and a parallel evaporator configuration to recover both exhaust and exhaust gas recirculation (EGR) heat. A second lower-temperature cooling circuit is also considered as possible different heat sink for the ORC system. Ten different working fluids have been assessed, and the optimum system configuration, in terms of fuel consumption, has been obtained applying an optimization algorithm to a process simulation model. A preliminary study has been carried out to evaluate the impact of the ORC system on the engine–vehicle-cooling system. A maximum fuel consumption reduction of 10.6% has been obtained using methanol and recovering heat from tail-pipe and EGR. However, considering also components and heat rejection performance, water steam, toluene and ethanol allow to obtain the best compromises between thermodynamic performance and engine–vehicle-cooling circuit impact.
Archivio istituziona... arrow_drop_down International Journal of Energy and Environmental EngineeringArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Energy and Environmental EngineeringArticleLicense: CC BYData sources: UnpayWallArchivio istituzionale della ricerca - Università di TriesteConference object . 2016International Journal of Energy and Environmental EngineeringJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40095-017-0234-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down International Journal of Energy and Environmental EngineeringArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Energy and Environmental EngineeringArticleLicense: CC BYData sources: UnpayWallArchivio istituzionale della ricerca - Università di TriesteConference object . 2016International Journal of Energy and Environmental EngineeringJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40095-017-0234-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Funded by:EC | ECCO-MATEEC| ECCO-MATEAuthors: Lion, Simone; Vlaskos, Ioannis; Rouaud, Cedric; Taccani, Rodolfo;handle: 11368/2913172
The ECCO-MATE Project is a European Union funded project aimed to develop a synergistic framework for cutting edge research on novel engine technologies for higher energy efficiency and lower emissions. The project partners, Ricardo plc, an engineering consulting company, and the University of Trieste, focus the research attention on waste heat recovery systems, such as Organic Rankine Cycles (ORC), which are gaining increasing interest by engine manufacturers, vehicles and ships fleet operators, because of their potential for further increasing engine efficiency and decreasing fuel consumption. In particular, in the frame of the developed research activity, the 1-D Ricardo engine simulation software WAVE has been used in order to assess novel engine concepts, both in the commercial vehicles and marine sectors. A combined engine-ORC system First and Second Law of Thermodynamics analysis has been proposed in order to study where system inefficiencies are concentrated and propose improvements, with particular focus on commercial vehicle heavy duty diesel engines. A thermo-economic analysis has been also considered. In collaboration with the project partners National Technical University of Athens (NTUA) and Winterthur Gas & Diesel, an innovative low pressure Exhaust Gas Recirculation (EGR) configuration for low speed 2-stroke ship propulsion units has also been studied with the aim of reducing NOx in order to meet IMO Tier III emissions limits. ORC systems are, in this application also, a promising technology that can be used, in synergy with emission reduction systems, to recover, in particular, low temperature heat sources such as engine coolant and scavenging air, always with the aim of improving overall system efficiency while respecting new stringent emission reduction targets. The first results of the research activity show that a fuel consumption improvement up to 10% could be achieved both for commercial vehicles off-highway applications and in the marine sector, depending on the type of ORC and waste heat recovery architecture chosen and the engine considered.
Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 ItalyPublisher:Elsevier BV Funded by:EC | ECCO-MATEEC| ECCO-MATEAuthors: Lion, Simone; Vlaskos, Ioannis; Rouaud, Cedric; Taccani, Rodolfo;handle: 11368/2913172
The ECCO-MATE Project is a European Union funded project aimed to develop a synergistic framework for cutting edge research on novel engine technologies for higher energy efficiency and lower emissions. The project partners, Ricardo plc, an engineering consulting company, and the University of Trieste, focus the research attention on waste heat recovery systems, such as Organic Rankine Cycles (ORC), which are gaining increasing interest by engine manufacturers, vehicles and ships fleet operators, because of their potential for further increasing engine efficiency and decreasing fuel consumption. In particular, in the frame of the developed research activity, the 1-D Ricardo engine simulation software WAVE has been used in order to assess novel engine concepts, both in the commercial vehicles and marine sectors. A combined engine-ORC system First and Second Law of Thermodynamics analysis has been proposed in order to study where system inefficiencies are concentrated and propose improvements, with particular focus on commercial vehicle heavy duty diesel engines. A thermo-economic analysis has been also considered. In collaboration with the project partners National Technical University of Athens (NTUA) and Winterthur Gas & Diesel, an innovative low pressure Exhaust Gas Recirculation (EGR) configuration for low speed 2-stroke ship propulsion units has also been studied with the aim of reducing NOx in order to meet IMO Tier III emissions limits. ORC systems are, in this application also, a promising technology that can be used, in synergy with emission reduction systems, to recover, in particular, low temperature heat sources such as engine coolant and scavenging air, always with the aim of improving overall system efficiency while respecting new stringent emission reduction targets. The first results of the research activity show that a fuel consumption improvement up to 10% could be achieved both for commercial vehicles off-highway applications and in the marine sector, depending on the type of ORC and waste heat recovery architecture chosen and the engine considered.
Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Archivio istituziona... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.egypro.2017.09.136&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 NorwayPublisher:Springer Science and Business Media LLC Wutiporn Phromkunthong; Ian Archibald; Supis Thongrod; Viswanath Kiron; Colin M. Beal; Charles H. Greene; Charles H. Greene; Joe Granados; Mark E. Huntley; Mark E. Huntley; Léda N. Gerber;AbstractA method is described for saving 30% of the world fish catch by producing fishmeal and fish oil replacement products from marine microalgae, the natural source of proteins and oils in the marine food web. To examine the commercial aspects of such a method, we adapt a model based on results of microalgae production in Hawaii and apply it to Thailand, the world’s fourth largest producer of fishmeal. A model facility of 111 ha would produce 2,750 tonnes yr−1 of protein and 2,330 tonnes yr−1 of algal oil, at a capital cost of $29.3 M. Such a facility would generate $5.5 M in average annual net income over its 30-year lifetime. Deployment of 100 such facilities in Thailand would replace all domestic production of fishmeal, 10% of world production, on ~1.5% of the land now used to cultivate oil palm. Such a global industry would generate ~$6.5 billion in annual net income.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-33504-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-33504-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2018 NorwayPublisher:Springer Science and Business Media LLC Wutiporn Phromkunthong; Ian Archibald; Supis Thongrod; Viswanath Kiron; Colin M. Beal; Charles H. Greene; Charles H. Greene; Joe Granados; Mark E. Huntley; Mark E. Huntley; Léda N. Gerber;AbstractA method is described for saving 30% of the world fish catch by producing fishmeal and fish oil replacement products from marine microalgae, the natural source of proteins and oils in the marine food web. To examine the commercial aspects of such a method, we adapt a model based on results of microalgae production in Hawaii and apply it to Thailand, the world’s fourth largest producer of fishmeal. A model facility of 111 ha would produce 2,750 tonnes yr−1 of protein and 2,330 tonnes yr−1 of algal oil, at a capital cost of $29.3 M. Such a facility would generate $5.5 M in average annual net income over its 30-year lifetime. Deployment of 100 such facilities in Thailand would replace all domestic production of fishmeal, 10% of world production, on ~1.5% of the land now used to cultivate oil palm. Such a global industry would generate ~$6.5 billion in annual net income.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-33504-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 75 citations 75 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-018-33504-w&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Review , Journal 2017 France, United Kingdom, France, France, United Kingdom, Germany, Germany, France, Netherlands, Germany, Australia, Spain, Austria, France, Australia, Switzerland, France, France, United KingdomPublisher:Copernicus GmbH Funded by:NWO | The distribution and evol..., EC | IMBALANCE-P, EC | RINGO +9 projectsNWO| The distribution and evolution of inert and reactant scalars: from the atmospheric boundary layer to continental scales ,EC| IMBALANCE-P ,EC| RINGO ,RCN| Jordsystem-modellering av klimaforandringer i den antroposene tidsalder; Earth system modelling of climate Variations in the Anthropocene ,EC| CRESCENDO ,EC| HELIX ,EC| QUINCY ,EC| LUC4C ,EC| FIBER ,SNSF| Geschichte der Bausteinbearbeitung, insbesondere in der westlichen Schweiz ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,RCN| CICEP-Strategic Challenges in International Climate and Energy PolicyBronte Tilbrook; Bronte Tilbrook; Jessica N. Cross; Guido R. van der Werf; Yukihiro Nojiri; Denis Pierrot; Denis Pierrot; Arne Körtzinger; Andrew J. Watson; Nathalie Lefèvre; Nicolas Metzl; Andrew Lenton; Andrew Lenton; X. Antonio Padin; David R. Munro; Andrew C. Manning; Philippe Ciais; Leticia Barbero; Leticia Barbero; Kees Klein Goldewijk; Kees Klein Goldewijk; Markus Kautz; Ivan D. Lima; Benjamin Poulter; Benjamin Poulter; Sebastian Lienert; Sebastian Lienert; Pieter P. Tans; Oliver Andrews; George C. Hurtt; Janet J. Reimer; Ingunn Skjelvan; Peter Landschützer; Francesco N. Tubiello; Thomas A. Boden; Anthony P. Walker; Pedro M. S. Monteiro; Kim I. Currie; Robert B. Jackson; Vivek K. Arora; Meike Becker; Meike Becker; Benjamin D. Stocker; Nicolas Vuichard; Tatiana Ilyina; Richard A. Houghton; Stephen Sitch; Sönke Zaehle; Christian Rödenbeck; Dorothee C. E. Bakker; Judith Hauck; Jörg Schwinger; Julia E. M. S. Nabel; Jan Ivar Korsbakken; Frédéric Chevallier; Andy Wiltshire; Ralph F. Keeling; Catherine E Cosca; Thomas Gasser; Ingrid T. van der Laan-Luijkx; Richard Betts; Richard Betts; Shin-Ichiro Nakaoka; Ian Harris; Robbie M. Andrew; Roland Séférian; Pierre Friedlingstein; Steven van Heuven; Christopher W. Hunt; Laurent Bopp; Dan Zhu; Julia Pongratz; Gregor Rehder; Louise Chini; Nicolas Viovy; Frank J. Millero; Etsushi Kato; Benjamin Pfeil; Benjamin Pfeil; Glen P. Peters; Josep G. Canadell; Anna Peregon; Atul K. Jain; Corinne Le Quéré; Danica Lombardozzi; Vanessa Haverd; Hanqin Tian;Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the "global carbon budget" – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of our imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016), EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1 and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007–2016), reflecting in part the higher fossil emissions and smaller SLAND for that year consistent with El Niño conditions. The global atmospheric CO2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data indicate a renewed growth in EFF of +2.0 % (range of 0.8 % to 3.0 %) based on national emissions projections for China, USA, and India, and projections of Gross Domestic Product corrected for recent changes in the carbon intensity of the economy for the rest of the world. For 2017, initial data indicate an increase in atmospheric CO2 concentration of around 5.3 GtC (2.5 ppm), attributed to a combination of increasing emissions and receding El Niño conditions. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quéré et al., 2016; 2015b; 2015a; 2014; 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/32317Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2018License: CC BYFull-Text: https://doi.org/10.18160/GCP-2017Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEarth System Science Data (ESSD)Article . 2018Earth System Science Data (ESSD)Review . 2018License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of Ifremerhttp://dx.doi.org/10.5194/essd...Other literature typeData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2017-123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1K citations 1,019 popularity Top 0.1% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/32317Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2018License: CC BYFull-Text: https://doi.org/10.18160/GCP-2017Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEarth System Science Data (ESSD)Article . 2018Earth System Science Data (ESSD)Review . 2018License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of Ifremerhttp://dx.doi.org/10.5194/essd...Other literature typeData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2017-123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Review , Journal 2017 France, United Kingdom, France, France, United Kingdom, Germany, Germany, France, Netherlands, Germany, Australia, Spain, Austria, France, Australia, Switzerland, France, France, United KingdomPublisher:Copernicus GmbH Funded by:NWO | The distribution and evol..., EC | IMBALANCE-P, EC | RINGO +9 projectsNWO| The distribution and evolution of inert and reactant scalars: from the atmospheric boundary layer to continental scales ,EC| IMBALANCE-P ,EC| RINGO ,RCN| Jordsystem-modellering av klimaforandringer i den antroposene tidsalder; Earth system modelling of climate Variations in the Anthropocene ,EC| CRESCENDO ,EC| HELIX ,EC| QUINCY ,EC| LUC4C ,EC| FIBER ,SNSF| Geschichte der Bausteinbearbeitung, insbesondere in der westlichen Schweiz ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,RCN| CICEP-Strategic Challenges in International Climate and Energy PolicyBronte Tilbrook; Bronte Tilbrook; Jessica N. Cross; Guido R. van der Werf; Yukihiro Nojiri; Denis Pierrot; Denis Pierrot; Arne Körtzinger; Andrew J. Watson; Nathalie Lefèvre; Nicolas Metzl; Andrew Lenton; Andrew Lenton; X. Antonio Padin; David R. Munro; Andrew C. Manning; Philippe Ciais; Leticia Barbero; Leticia Barbero; Kees Klein Goldewijk; Kees Klein Goldewijk; Markus Kautz; Ivan D. Lima; Benjamin Poulter; Benjamin Poulter; Sebastian Lienert; Sebastian Lienert; Pieter P. Tans; Oliver Andrews; George C. Hurtt; Janet J. Reimer; Ingunn Skjelvan; Peter Landschützer; Francesco N. Tubiello; Thomas A. Boden; Anthony P. Walker; Pedro M. S. Monteiro; Kim I. Currie; Robert B. Jackson; Vivek K. Arora; Meike Becker; Meike Becker; Benjamin D. Stocker; Nicolas Vuichard; Tatiana Ilyina; Richard A. Houghton; Stephen Sitch; Sönke Zaehle; Christian Rödenbeck; Dorothee C. E. Bakker; Judith Hauck; Jörg Schwinger; Julia E. M. S. Nabel; Jan Ivar Korsbakken; Frédéric Chevallier; Andy Wiltshire; Ralph F. Keeling; Catherine E Cosca; Thomas Gasser; Ingrid T. van der Laan-Luijkx; Richard Betts; Richard Betts; Shin-Ichiro Nakaoka; Ian Harris; Robbie M. Andrew; Roland Séférian; Pierre Friedlingstein; Steven van Heuven; Christopher W. Hunt; Laurent Bopp; Dan Zhu; Julia Pongratz; Gregor Rehder; Louise Chini; Nicolas Viovy; Frank J. Millero; Etsushi Kato; Benjamin Pfeil; Benjamin Pfeil; Glen P. Peters; Josep G. Canadell; Anna Peregon; Atul K. Jain; Corinne Le Quéré; Danica Lombardozzi; Vanessa Haverd; Hanqin Tian;Abstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere – the "global carbon budget" – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, respectively, while emissions from land-use change (ELUC), mainly deforestation, are based on land-cover change data and bookkeeping models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of our imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2007–2016), EFF was 9.4 ± 0.5 GtC yr−1, ELUC 1.3 ± 0.7 GtC yr−1, GATM 4.7 ± 0.1 GtC yr−1, SOCEAN 2.4 ± 0.5 GtC yr−1, and SLAND 3.0 ± 0.8 GtC yr−1, with a budget imbalance BIM of 0.6 GtC yr−1 indicating overestimated emissions and/or underestimated sinks. For year 2016 alone, the growth in EFF was approximately zero and emissions remained at 9.9 ± 0.5 GtC yr−1. Also for 2016, ELUC was 1.3 ± 0.7 GtC yr−1, GATM was 6.1 ± 0.2 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1 and SLAND was 2.7 ± 1.0 GtC yr−1, with a small BIM of −0.3 GtC. GATM continued to be higher in 2016 compared to the past decade (2007–2016), reflecting in part the higher fossil emissions and smaller SLAND for that year consistent with El Niño conditions. The global atmospheric CO2 concentration reached 402.8 ± 0.1 ppm averaged over 2016. For 2017, preliminary data indicate a renewed growth in EFF of +2.0 % (range of 0.8 % to 3.0 %) based on national emissions projections for China, USA, and India, and projections of Gross Domestic Product corrected for recent changes in the carbon intensity of the economy for the rest of the world. For 2017, initial data indicate an increase in atmospheric CO2 concentration of around 5.3 GtC (2.5 ppm), attributed to a combination of increasing emissions and receding El Niño conditions. This living data update documents changes in the methods and data sets used in this new global carbon budget compared with previous publications of this data set (Le Quéré et al., 2016; 2015b; 2015a; 2014; 2013). All results presented here can be downloaded from https://doi.org/10.18160/GCP-2017.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/32317Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2018License: CC BYFull-Text: https://doi.org/10.18160/GCP-2017Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEarth System Science Data (ESSD)Article . 2018Earth System Science Data (ESSD)Review . 2018License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of Ifremerhttp://dx.doi.org/10.5194/essd...Other literature typeData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2017-123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1K citations 1,019 popularity Top 0.1% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2018 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2018 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)KITopen (Karlsruhe Institute of Technologie)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/32317Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Woods Hole Open Access ServerArticle . 2018License: CC BYFull-Text: https://doi.org/10.18160/GCP-2017Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Other literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Earth System Science Data (ESSD)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEarth System Science Data (ESSD)Article . 2018Earth System Science Data (ESSD)Review . 2018License: CC BYData sources: University of Groningen Research PortalWageningen Staff PublicationsArticle . 2018License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2017Data sources: Electronic Publication Information CenterElectronic Publication Information CenterArticle . 2018Data sources: Electronic Publication Information CenterEarth System Science Data (ESSD)Article . 2018 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Bristol: Bristol ResearchArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)ArchiMer - Institutional Archive of IfremerOther literature type . 2018Data sources: ArchiMer - Institutional Archive of Ifremerhttp://dx.doi.org/10.5194/essd...Other literature typeData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2017-123&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Public Library of Science (PLoS) Funded by:EC | TOPIOS, EC | TRIATLASEC| TOPIOS ,EC| TRIATLASErin V. Satterthwaite; Valeriya Komyakova; Natalia Erazo; Louise Carin Gammage; Gabriel A. Juma; Rachel Kelly; Daniel Lee Kleinman; Delphine Lobelle; Rachel Sapery James; Norlaila Binti Mohd Zanuri;pmid: 36251638
pmc: PMC9576046
Solutions to complex and unprecedented global challenges are urgently needed. Overcoming these challenges requires input and innovative solutions from all experts, including Early Career Ocean Professionals (ECOPs). To achieve diverse inclusion from ECOPs, fundamental changes must occur at all levels—from individuals to organizations. Drawing on insights from across the globe, we propose 5 actionable pillars that support the engagement of ECOPs in co-design processes that address ocean sustainability: sharing knowledge through networks and mentorship, providing cross-boundary training and opportunities, incentivizing and celebrating knowledge co-design, creating inclusive and participatory governance structures, and catalyzing culture change for inclusivity. Foundational to all actions are the cross-cutting principles of justice, equity, diversity, and inclusivity. In addition, the pillars are cross-boundary in nature, including collaboration and innovation across sectors, disciplines, regions, generations, and backgrounds. Together, these recommendations provide an actionable and iterative path toward inclusive engagement and intergenerational exchange that can develop ocean solutions for a sustainable future.
PLoS Biology arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3001832&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PLoS Biology arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3001832&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Public Library of Science (PLoS) Funded by:EC | TOPIOS, EC | TRIATLASEC| TOPIOS ,EC| TRIATLASErin V. Satterthwaite; Valeriya Komyakova; Natalia Erazo; Louise Carin Gammage; Gabriel A. Juma; Rachel Kelly; Daniel Lee Kleinman; Delphine Lobelle; Rachel Sapery James; Norlaila Binti Mohd Zanuri;pmid: 36251638
pmc: PMC9576046
Solutions to complex and unprecedented global challenges are urgently needed. Overcoming these challenges requires input and innovative solutions from all experts, including Early Career Ocean Professionals (ECOPs). To achieve diverse inclusion from ECOPs, fundamental changes must occur at all levels—from individuals to organizations. Drawing on insights from across the globe, we propose 5 actionable pillars that support the engagement of ECOPs in co-design processes that address ocean sustainability: sharing knowledge through networks and mentorship, providing cross-boundary training and opportunities, incentivizing and celebrating knowledge co-design, creating inclusive and participatory governance structures, and catalyzing culture change for inclusivity. Foundational to all actions are the cross-cutting principles of justice, equity, diversity, and inclusivity. In addition, the pillars are cross-boundary in nature, including collaboration and innovation across sectors, disciplines, regions, generations, and backgrounds. Together, these recommendations provide an actionable and iterative path toward inclusive engagement and intergenerational exchange that can develop ocean solutions for a sustainable future.
PLoS Biology arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3001832&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert PLoS Biology arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pbio.3001832&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu