- home
- Advanced Search
- Energy Research
- biological sciences
- US
- AU
- Energy Research
- biological sciences
- US
- AU
description Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:Springer Science and Business Media LLC Mukhtar Ahmed; Claudio O. Stöckle; Roger Nelson; Stewart S. Higgins; Shakeel Ahmad; Muhammad Ali Raza;pmid: 31127159
pmc: PMC6534615
AbstractElevated carbon-dioxide concentration [eCO2] is a key climate change factor affecting plant growth and yield. Conventionally, crop modeling work has evaluated the effect of climatic parameters on crop growth, without considering CO2. It is conjectured that a novel multimodal ensemble approach may improve the accuracy of modelled responses to eCO2. To demonstrate the applicability of a multimodel ensemble of crop models to simulation of eCO2, APSIM, CropSyst, DSSAT, EPIC and STICS were calibrated to observed data for crop phenology, biomass and yield. Significant variability in simulated biomass production was shown among the models particularly at dryland sites (44%) compared to the irrigated site (22%). Increased yield was observed for all models with the highest average yield at dryland site by EPIC (49%) and lowest under irrigated conditions (17%) by APSIM and CropSyst. For the ensemble, maximum yield was 45% for the dryland site and a minimum 22% at the irrigated site. We concluded from our study that process-based crop models have variability in the simulation of crop response to [eCO2] with greater difference under water-stressed conditions. We recommend the use of ensembles to improve accuracy in modeled responses to [eCO2].
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1038/s41598...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1038/s41598...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2012Publisher:Public Library of Science (PLoS) Antonio Di Franco; Marta Sales; Paolo Guidetti; Fiorenza Micheli; David G. Foley; David G. Foley; Alexandros A. Karamanlidis; Francesco Ferretti; Simone Mariani; Kimberly A. Selkoe; Panagiotis Dendrinos; Andrew Rosenberg; Antonio Pais; Mikel Zabala; Alan M. Friedlander; Kristin Riser; Simonetta Fraschetti; Luisa Mangialajo; Fiona Tomas; Enric Ballesteros; Zafer Kizilkaya; Enrique Macpherson; Enric Sala; Bernat Hereu; Richard M. Starr; Richard M. Starr; Benjamin S. Halpern; Harun Güçlüsoy; Joaquim Garrabou;pmid: 22393445
pmc: PMC3290621
handle: 2445/27842 , 10261/49834 , 11588/768572 , 11388/62629 , 11587/364763
pmid: 22393445
pmc: PMC3290621
handle: 2445/27842 , 10261/49834 , 11588/768572 , 11388/62629 , 11587/364763
Historical exploitation of the Mediterranean Sea and the absence of rigorous baselines makes it difficult to evaluate the current health of the marine ecosystems and the efficacy of conservation actions at the ecosystem level. Here we establish the first current baseline and gradient of ecosystem structure of nearshore rocky reefs at the Mediterranean scale. We conducted underwater surveys in 14 marine protected areas and 18 open access sites across the Mediterranean, and across a 31-fold range of fish biomass (from 3.8 to 118 g m(-2)). Our data showed remarkable variation in the structure of rocky reef ecosystems. Multivariate analysis showed three alternative community states: (1) large fish biomass and reefs dominated by non-canopy algae, (2) lower fish biomass but abundant native algal canopies and suspension feeders, and (3) low fish biomass and extensive barrens, with areas covered by turf algae. Our results suggest that the healthiest shallow rocky reef ecosystems in the Mediterranean have both large fish and algal biomass. Protection level and primary production were the only variables significantly correlated to community biomass structure. Fish biomass was significantly larger in well-enforced no-take marine reserves, but there were no significant differences between multi-use marine protected areas (which allow some fishing) and open access areas at the regional scale. The gradients reported here represent a trajectory of degradation that can be used to assess the health of any similar habitat in the Mediterranean, and to evaluate the efficacy of marine protected areas.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedFull-Text: https://doi.org/10.1371/journal.pone.0032742Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2012 . Peer-reviewedFull-Text: https://doi.org/10.1371/journal.pone.0032742Data sources: DIGITAL.CSICRecolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADokuz Eylul University Research Information SystemArticle . 2012Data sources: Dokuz Eylul University Research Information SystemDiposit Digital de la Universitat de BarcelonaArticle . 2012License: PDMData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTAFEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2012Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIRecolector de Ciencia Abierta, RECOLECTAArticle . 2012License: PDMData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 331 citations 331 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 139visibility views 139 download downloads 129 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedFull-Text: https://doi.org/10.1371/journal.pone.0032742Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2012 . Peer-reviewedFull-Text: https://doi.org/10.1371/journal.pone.0032742Data sources: DIGITAL.CSICRecolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADokuz Eylul University Research Information SystemArticle . 2012Data sources: Dokuz Eylul University Research Information SystemDiposit Digital de la Universitat de BarcelonaArticle . 2012License: PDMData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTAFEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2012Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIRecolector de Ciencia Abierta, RECOLECTAArticle . 2012License: PDMData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2015Publisher:MDPI AG Authors: Koo, Kyung; Patten, Bernard; Madden, Marguerite;doi: 10.3390/f6041208
Alpine, subalpine and boreal tree species, of low genetic diversity and adapted to low optimal temperatures, are vulnerable to the warming effects of global climate change. The accurate prediction of these species’ distributions in response to climate change is critical for effective planning and management. The goal of this research is to predict climate change effects on the distribution of red spruce (Picea rubens Sarg.) in the Great Smoky Mountains National Park (GSMNP), eastern USA. Climate change is, however, conflated with other environmental factors, making its assessment a complex systems problem in which indirect effects are significant in causality. Predictions were made by linking a tree growth simulation model, red spruce growth model (ARIM.SIM), to a GIS spatial model, red spruce habitat model (ARIM.HAB). ARIM.SIM quantifies direct and indirect interactions between red spruce and its growth factors, revealing the latter to be dominant. ARIM.HAB spatially distributes the ARIM.SIM simulations under the assumption that greater growth reflects higher probabilities of presence. ARIM.HAB predicts the future habitat suitability of red spruce based on growth predictions of ARIM.SIM under climate change and three air pollution scenarios: 10% increase, no change and 10% decrease. Results show that suitable habitats shrink most when air pollution increases. Higher temperatures cause losses of most low-elevation habitats. Increased precipitation and air pollution produce acid rain, which causes loss of both low- and high-elevation habitats. The general prediction is that climate change will cause contraction of red spruce habitats at both lower and higher elevations in GSMNP, and the effects will be exacerbated by increased air pollution. These predictions provide valuable information for understanding potential impacts of global climate change on the spatiotemporal distribution of red spruce habitats in GSMNP.
Forests arrow_drop_down ForestsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1999-4907/6/4/1208/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Forests arrow_drop_down ForestsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1999-4907/6/4/1208/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2010Publisher:Wiley Robert F. Denno; Shannon M. Murphy; Gina M. Wimp; Gina M. Wimp; Deborah L. Finke; Andrea F. Huberty;doi: 10.1890/09-1291.1
pmid: 21141191
Numerous studies have examined relationships between primary production and biodiversity at higher trophic levels. However, altered production in plant communities is often tightly linked with concomitant shifts in diversity and composition, and most studies have not disentangled the direct effects of production on consumers. Furthermore, when studies do examine the effects of plant production on animals in terrestrial systems, they are primarily confined to a subset of taxonomic or functional groups instead of investigating the responses of the entire community. Using natural monocultures of the salt marsh cordgrass Spartina alterniflora, we were able to examine the impacts of increased plant production, independent of changes in plant composition and/or diversity, on the trophic structure, composition, and diversity of the entire arthropod community. If arthropod species richness increased with greater plant production, we predicted that it would be driven by: (1) an increase in the number of rare species, and/or (2) an increase in arthropod abundance. Our results largely supported our predictions: species richness of herbivores, detritivores, predators, and parasitoids increased monotonically with increasing levels of plant production, and the diversity of rare species also increased with plant production. However, rare species that accounted for this difference were predators, parasitoids, and detritivores, not herbivores. Herbivore species richness could be simply explained by the relationship between abundance and diversity. Using nonmetric multidimensional scaling (NMDS) and analysis of similarity (ANOSIM), we also found significant changes in arthropod species composition with increasing levels of production. Our findings have important implications in the intertidal salt marsh, where human activities have increased nitrogen runoff into the marsh, and demonstrate that such nitrogen inputs cascade to affect community structure, diversity, and abundance in higher trophic levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.68 citations 68 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Pearce-Higgins, James; Antao, Laura; Bates, Rachel; Bowgen, Katharine; Bradshaw, Catherine; Duffield, Simon; Ffoulkes, Charles; Franco, Aldina; Geschke, J.; Gregory, Richard; Harley, Mike; Hodgson, Jenny; Jenkins, Rhosanna; Kapos, Val; Maltby, Katherine; Watts, Olly; Willis, Steve; Morecroft, Michael;handle: 10138/341846
Impacts of climate change on natural and human systems will become increasingly severe as the magnitude of climate change increases. Climate change adaptation interventions to address current and projected impacts are thus paramount. Yet, evidence on their effectiveness remains limited, highlighting the need for appropriate ecological indicators to measure progress of climate change adaptation for the natural environment. We outline conceptual, analytical, and practical challenges in developing such indicators, before proposing a framework with three process-based and two results-based indicator types to track progress in adapting to climate change. We emphasize the importance of dynamic assessment and modification over time, as new adaptation targets are set and/or as intervention actions are monitored and evaluated. Our framework and proposed indicators are flexible and widely applicable across species, habitats, and monitoring programmes, and could be accommodated within existing national or international frameworks to enable the evaluation of both large-scale policy instruments and local management interventions. We conclude by suggesting further work required to develop these indicators fully, and hope this will stimulate the use of ecological indicators to evaluate the effectiveness of policy interventions for the adaptation of the natural environment across the globe.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2022 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Durham Research OnlineArticle . 2022 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/36038/1/36038.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2022License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/36038/Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen Published in a Diamond OA journal 48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2022 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Durham Research OnlineArticle . 2022 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/36038/1/36038.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2022License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/36038/Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Springer Science and Business Media LLC Funded by:NSF | Dimensions: Collaborative...NSF| Dimensions: Collaborative Research: Community genomic drivers of moss microbiome assembly and function in rapidly changing Alaskan ecosystemsJulia E. M. Stuart; Hannah Holland-Moritz; Mélanie Jean; Samantha N. Miller; José Miguel Ponciano; Stuart F. McDaniel; Michelle C. Mack;pmid: 34319437
Moss-associated N2 fixation by epiphytic microbes is a key biogeochemical process in nutrient-limited high-latitude ecosystems. Abiotic drivers, such as temperature and moisture, and the identity of host mosses are critical sources of variation in N2 fixation rates. An understanding of the potential interaction between these factors is essential for predicting N inputs as moss communities change with the climate. To further understand the drivers and results of N2 fixation rate variation, we obtained natural abundance values of C and N isotopes and an associated rate of N2 fixation with 15N2 gas incubations in 34 moss species collected in three regions across Alaska, USA. We hypothesized that δ15N values would increase toward 0‰ with higher N2 fixation to reflect the increasing contribution of fixed N2 in moss biomass. Second, we hypothesized that δ13C and N2 fixation would be positively related, as enriched δ13C signatures reflect abiotic conditions favorable to N2 fixation. We expected that the magnitude of these relationships would vary among types of host mosses, reflecting differences in anatomy and habitat. We found little support for our first hypothesis, with only a modest positive relationship between N2 fixation rates and δ15N in a structural equation model. We found a significant positive relationship between δ13C and N2 fixation only in Hypnales, where the probability of N2 fixation activity reached 95% when δ13C values exceeded - 30.4‰. We conclude that moisture and temperature interact strongly with host moss identity in determining the extent to which abiotic conditions impact associated N2 fixation rates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:Wiley Funded by:SNSF | Population Genomic Basis ..., EC | APODYNA, NSF | Costs and Benefits of Bip... +8 projectsSNSF| Population Genomic Basis of Evolutionary Change in Drosophila Aging and Life History ,EC| APODYNA ,NSF| Costs and Benefits of Biparental Care in Monogamous Owl Monkeys ,NIH| EXTERNAL INNOVATIVE NETWORK CORE ,EC| LEED ,NIH| Mechanisms and Consequences of Social Connectedness in a Wild Primate Population ,NIH| SEX DIFFERENCES IN HEALTH AND SURVIVAL IN A WILD PRIMATE POPULATION ,NSF| RAPID Twinning in Monogamous Owl Monkeys of the Argentinean Chaco: Developmental and Behavioral Consequences ,NSF| LTREB: Long-term behavioral and genetic analyses of a wild primate population ,DFG ,NSF| Social Monogamy in Free-ranging Owl Monkeys (Aotus azarai azarai) of ArgentinaAuthors: Peter H. Becker; Henri Weimerskirch; Kristel M. De Vleeschouwer; Fernando Colchero; +30 AuthorsPeter H. Becker; Henri Weimerskirch; Kristel M. De Vleeschouwer; Fernando Colchero; Craig Packer; Owen R. Jones; Aurelio F. Malo; Aurelio F. Malo; Richard J. Delahay; Jennifer McDonald; Martin Hesselsøe; Jean-François Lemaître; Becky E. Raboy; Chris J. Reading; Dalia Amor Conde; David Miller; Colin O'Donnell; Felix Zajitschek; Anne M. Bronikowski; Jean-Michel Gaillard; Sam M. Larson; Sandra Bouwhuis; Annette Baudisch; Thomas Flatt; Eduardo Fernandez-Duque; David J. Hodgson; Stefan Dummermuth; Benedikt R. Schmidt; Geoffrey M. While; Geoffrey M. While; John Frisenvænge; Susan C. Alberts; Tim Coulson; Erik Wapstra;AbstractThe current extinction and climate change crises pressure us to predict population dynamics with ever‐greater accuracy. Although predictions rest on the well‐advanced theory of age‐structured populations, two key issues remain poorly explored. Specifically, how the age‐dependency in demographic rates and the year‐to‐year interactions between survival and fecundity affect stochastic population growth rates. We use inference, simulations and mathematical derivations to explore how environmental perturbations determine population growth rates for populations with different age‐specific demographic rates and when ages are reduced to stages. We find that stage‐ vs. age‐based models can produce markedly divergent stochastic population growth rates. The differences are most pronounced when there are survival‐fecundity‐trade‐offs, which reduce the variance in the population growth rate. Finally, the expected value and variance of the stochastic growth rates of populations with different age‐specific demographic rates can diverge to the extent that, while some populations may thrive, others will inevitably go extinct.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/36423Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAOxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research ArchiveEcology LettersArticle . 2019License: CC BYData sources: University of Southern Denmark Research OutputUniversity of Southern Denmark Research OutputArticle . 2019Data sources: University of Southern Denmark Research OutputBiblioteca Digital de la Universidad de AlcaláArticle . 2019License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 190visibility views 190 download downloads 39 Powered by
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/36423Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAOxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research ArchiveEcology LettersArticle . 2019License: CC BYData sources: University of Southern Denmark Research OutputUniversity of Southern Denmark Research OutputArticle . 2019Data sources: University of Southern Denmark Research OutputBiblioteca Digital de la Universidad de AlcaláArticle . 2019License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:MDPI AG Steven M. Grodsky; Rebecca R. Hernandez; Joshua W. Campbell; Kevin R. Hinson; Oliver Keller; Sarah R. Fritts; Jessica A. Homyack; Christopher E. Moorman;doi: 10.3390/f11010048
Research Highlights: Our study adds to the scant literature on the effects of forest bioenergy on ground beetles (Coleoptera: Carabidae) and contributes new insights into the responses of ground beetle species and functional groups to operational harvest residue retention. We discovered that count of Harpalus pensylvanicus (DeGeer)—a habitat generalist—increased owing to clear-cut harvests but decreased due to harvest residue reductions; these observations uniquely allowed us to separate effects of additive forest disturbances to demonstrate that, contrarily to predictions, a generalist species considered to be adapted to disturbance may be negatively affected by altered habitat elements associated with disturbances from renewable energy development. Background and Objectives: Despite the potential environmental benefits of forest bioenergy, woody biomass harvests raise forest sustainability concerns for some stakeholders. Ground beetles are well established ecological indicators of forest ecosystem health and their life history characteristics are connected to habitat elements that are altered by forest harvesting. Thus, we evaluated the effects of harvest residue retention following woody biomass harvest for forest bioenergy on ground beetles in an operational field experiment. Materials and Methods: We sampled ground beetles using pitfall traps in harvest residue removal treatments representing variable woody biomass retention prescriptions, ranging from no retention to complete retention of all merchantable woody biomass. We replicated treatments in eight clear-cut stands in intensively managed loblolly pine (Pinus taeda L.) forests in North Carolina and Georgia. Results: Harvest residue retention had no effect on ground beetle richness and diversity. However, counts of H. pensylvanicus, Anisodactylus spp., and “burrower” and “fast runner” functional groups, among others, were greater in treatments with no woody biomass harvest than those with no harvest residue retention; all of these ground beetles may confer ecosystem services in forests. We suggest that H. pensylvanicus is a useful indicator species for burrowing and granivorous ground beetle response to harvest residue reductions in recently harvested stands. Lastly, we propose that retaining 15% retention of total harvest residues or more, depending on regional and operational variables, may support beneficial ground beetle populations.
Forests arrow_drop_down ForestsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1999-4907/11/1/48/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Forests arrow_drop_down ForestsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1999-4907/11/1/48/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2017Publisher:Springer Science and Business Media LLC Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthAuthors: Kevin J. Shinners; Benjamin K. Sabrowsky; Cameron L. Studer; Rosemary L. Nicholson;In the North-Central USA, switchgrass to be used as a biomass feedstock typically will be harvested in the autumn. The accumulated area harvested over the harvest season (defined here as the harvest progression) will influence the size of the machinery fleet and seasonal labor required to complete the majority of the harvest before the first lasting snow. A harvest progression model was developed that uses drying rate, mower and baler productivity, and weather conditions as major inputs. Ten years of weather data (2005–2014) from Wisconsin, Iowa, and Nebraska (WI, IA, NE) were used. Harvest progression was modeled for four harvest systems involving conventional and intensive conditioning both swathed and tedded (CC, IC, CCT, and ICT, respectively) and two dates at which harvest began (1 September and after a killing frost). To reduce risk of exposing crop to prolonged periods of inclement weather, mowers were idled when more than 80 ha were cut but not yet baled. For all sites, the harvest start date and the mower idled constraint had greater impact on harvest progression than the type of harvest system. Harvest progression was greatest when mowing started on 1 September and continued whenever weather permitted (i.e., no mower idled constraint). Compared to the harvest system used today (CC), using the IC system resulted in more area harvested with less crop exposed to rain after cutting and considerably less area left to be baled in the spring. Starting harvest on 1 September, using intensive conditioning, and not idling the mowers might be considered the system that best balances the desire for rapid harvest progression, small equipment fleet size, low-capital expenditures, and maximum labor utilization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2008Publisher:Oxford University Press (OUP) Authors: Anthony M. Shelton; Brian A. Nault; J. Plate; E. Larentzaki;Development of insecticide resistance in onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), populations in onion (Allium spp.) fields and the incidence of the T. tabaci transmitted Iris yellow spot virus have stimulated interest in evaluating alternative management tactics. Effects of straw mulch applied in commercial onion fields in muck areas of western New York were assessed in 2006 and 2007 as a possible onion thrips management strategy. In trials in which no insecticides were applied for thrips control, straw mulch-treated plots supported significantly lower T. tabaci populations compared with control plots. In both years, the action thresholds of one or three larvae per leaf were reached in straw mulch treatments between 7 and 14 d later than in the control. Ground predatory fauna, as evaluated by pitfall trapping, was not increased by straw mulch in 2006; however, populations of the common predatory thrips Aeolothrips fasciatus (L.) (Thysanoptera: Aeolothripidae) were significantly lower in straw mulch plots in both years. Interference of straw mulch in the pupation and emergence of T. tabaci was investigated in the lab and their emergence was reduced by 54% compared with bare soil. In the field the overall yield of onions was not affected by the straw mulch treatment; however, the presence of jumbo grade onions (>77 mm) was increased in 2006, but not in 2007. These results indicate that populations of T. tabaci adults and larvae can be significantly reduced by the use of straw mulch without compromising overall onion yield. The use of this cultural practice in an onion integrated pest management program seems promising.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:Springer Science and Business Media LLC Mukhtar Ahmed; Claudio O. Stöckle; Roger Nelson; Stewart S. Higgins; Shakeel Ahmad; Muhammad Ali Raza;pmid: 31127159
pmc: PMC6534615
AbstractElevated carbon-dioxide concentration [eCO2] is a key climate change factor affecting plant growth and yield. Conventionally, crop modeling work has evaluated the effect of climatic parameters on crop growth, without considering CO2. It is conjectured that a novel multimodal ensemble approach may improve the accuracy of modelled responses to eCO2. To demonstrate the applicability of a multimodel ensemble of crop models to simulation of eCO2, APSIM, CropSyst, DSSAT, EPIC and STICS were calibrated to observed data for crop phenology, biomass and yield. Significant variability in simulated biomass production was shown among the models particularly at dryland sites (44%) compared to the irrigated site (22%). Increased yield was observed for all models with the highest average yield at dryland site by EPIC (49%) and lowest under irrigated conditions (17%) by APSIM and CropSyst. For the ensemble, maximum yield was 45% for the dryland site and a minimum 22% at the irrigated site. We concluded from our study that process-based crop models have variability in the simulation of crop response to [eCO2] with greater difference under water-stressed conditions. We recommend the use of ensembles to improve accuracy in modeled responses to [eCO2].
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1038/s41598...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1038/s41598...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2012Publisher:Public Library of Science (PLoS) Antonio Di Franco; Marta Sales; Paolo Guidetti; Fiorenza Micheli; David G. Foley; David G. Foley; Alexandros A. Karamanlidis; Francesco Ferretti; Simone Mariani; Kimberly A. Selkoe; Panagiotis Dendrinos; Andrew Rosenberg; Antonio Pais; Mikel Zabala; Alan M. Friedlander; Kristin Riser; Simonetta Fraschetti; Luisa Mangialajo; Fiona Tomas; Enric Ballesteros; Zafer Kizilkaya; Enrique Macpherson; Enric Sala; Bernat Hereu; Richard M. Starr; Richard M. Starr; Benjamin S. Halpern; Harun Güçlüsoy; Joaquim Garrabou;pmid: 22393445
pmc: PMC3290621
handle: 2445/27842 , 10261/49834 , 11588/768572 , 11388/62629 , 11587/364763
pmid: 22393445
pmc: PMC3290621
handle: 2445/27842 , 10261/49834 , 11588/768572 , 11388/62629 , 11587/364763
Historical exploitation of the Mediterranean Sea and the absence of rigorous baselines makes it difficult to evaluate the current health of the marine ecosystems and the efficacy of conservation actions at the ecosystem level. Here we establish the first current baseline and gradient of ecosystem structure of nearshore rocky reefs at the Mediterranean scale. We conducted underwater surveys in 14 marine protected areas and 18 open access sites across the Mediterranean, and across a 31-fold range of fish biomass (from 3.8 to 118 g m(-2)). Our data showed remarkable variation in the structure of rocky reef ecosystems. Multivariate analysis showed three alternative community states: (1) large fish biomass and reefs dominated by non-canopy algae, (2) lower fish biomass but abundant native algal canopies and suspension feeders, and (3) low fish biomass and extensive barrens, with areas covered by turf algae. Our results suggest that the healthiest shallow rocky reef ecosystems in the Mediterranean have both large fish and algal biomass. Protection level and primary production were the only variables significantly correlated to community biomass structure. Fish biomass was significantly larger in well-enforced no-take marine reserves, but there were no significant differences between multi-use marine protected areas (which allow some fishing) and open access areas at the regional scale. The gradients reported here represent a trajectory of degradation that can be used to assess the health of any similar habitat in the Mediterranean, and to evaluate the efficacy of marine protected areas.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedFull-Text: https://doi.org/10.1371/journal.pone.0032742Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2012 . Peer-reviewedFull-Text: https://doi.org/10.1371/journal.pone.0032742Data sources: DIGITAL.CSICRecolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADokuz Eylul University Research Information SystemArticle . 2012Data sources: Dokuz Eylul University Research Information SystemDiposit Digital de la Universitat de BarcelonaArticle . 2012License: PDMData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTAFEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2012Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIRecolector de Ciencia Abierta, RECOLECTAArticle . 2012License: PDMData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 331 citations 331 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 139visibility views 139 download downloads 129 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedFull-Text: https://doi.org/10.1371/journal.pone.0032742Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2012 . Peer-reviewedFull-Text: https://doi.org/10.1371/journal.pone.0032742Data sources: DIGITAL.CSICRecolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADokuz Eylul University Research Information SystemArticle . 2012Data sources: Dokuz Eylul University Research Information SystemDiposit Digital de la Universitat de BarcelonaArticle . 2012License: PDMData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTAFEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2012Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIRecolector de Ciencia Abierta, RECOLECTAArticle . 2012License: PDMData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2015Publisher:MDPI AG Authors: Koo, Kyung; Patten, Bernard; Madden, Marguerite;doi: 10.3390/f6041208
Alpine, subalpine and boreal tree species, of low genetic diversity and adapted to low optimal temperatures, are vulnerable to the warming effects of global climate change. The accurate prediction of these species’ distributions in response to climate change is critical for effective planning and management. The goal of this research is to predict climate change effects on the distribution of red spruce (Picea rubens Sarg.) in the Great Smoky Mountains National Park (GSMNP), eastern USA. Climate change is, however, conflated with other environmental factors, making its assessment a complex systems problem in which indirect effects are significant in causality. Predictions were made by linking a tree growth simulation model, red spruce growth model (ARIM.SIM), to a GIS spatial model, red spruce habitat model (ARIM.HAB). ARIM.SIM quantifies direct and indirect interactions between red spruce and its growth factors, revealing the latter to be dominant. ARIM.HAB spatially distributes the ARIM.SIM simulations under the assumption that greater growth reflects higher probabilities of presence. ARIM.HAB predicts the future habitat suitability of red spruce based on growth predictions of ARIM.SIM under climate change and three air pollution scenarios: 10% increase, no change and 10% decrease. Results show that suitable habitats shrink most when air pollution increases. Higher temperatures cause losses of most low-elevation habitats. Increased precipitation and air pollution produce acid rain, which causes loss of both low- and high-elevation habitats. The general prediction is that climate change will cause contraction of red spruce habitats at both lower and higher elevations in GSMNP, and the effects will be exacerbated by increased air pollution. These predictions provide valuable information for understanding potential impacts of global climate change on the spatiotemporal distribution of red spruce habitats in GSMNP.
Forests arrow_drop_down ForestsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1999-4907/6/4/1208/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Forests arrow_drop_down ForestsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1999-4907/6/4/1208/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2010Publisher:Wiley Robert F. Denno; Shannon M. Murphy; Gina M. Wimp; Gina M. Wimp; Deborah L. Finke; Andrea F. Huberty;doi: 10.1890/09-1291.1
pmid: 21141191
Numerous studies have examined relationships between primary production and biodiversity at higher trophic levels. However, altered production in plant communities is often tightly linked with concomitant shifts in diversity and composition, and most studies have not disentangled the direct effects of production on consumers. Furthermore, when studies do examine the effects of plant production on animals in terrestrial systems, they are primarily confined to a subset of taxonomic or functional groups instead of investigating the responses of the entire community. Using natural monocultures of the salt marsh cordgrass Spartina alterniflora, we were able to examine the impacts of increased plant production, independent of changes in plant composition and/or diversity, on the trophic structure, composition, and diversity of the entire arthropod community. If arthropod species richness increased with greater plant production, we predicted that it would be driven by: (1) an increase in the number of rare species, and/or (2) an increase in arthropod abundance. Our results largely supported our predictions: species richness of herbivores, detritivores, predators, and parasitoids increased monotonically with increasing levels of plant production, and the diversity of rare species also increased with plant production. However, rare species that accounted for this difference were predators, parasitoids, and detritivores, not herbivores. Herbivore species richness could be simply explained by the relationship between abundance and diversity. Using nonmetric multidimensional scaling (NMDS) and analysis of similarity (ANOSIM), we also found significant changes in arthropod species composition with increasing levels of production. Our findings have important implications in the intertidal salt marsh, where human activities have increased nitrogen runoff into the marsh, and demonstrate that such nitrogen inputs cascade to affect community structure, diversity, and abundance in higher trophic levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.68 citations 68 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Pearce-Higgins, James; Antao, Laura; Bates, Rachel; Bowgen, Katharine; Bradshaw, Catherine; Duffield, Simon; Ffoulkes, Charles; Franco, Aldina; Geschke, J.; Gregory, Richard; Harley, Mike; Hodgson, Jenny; Jenkins, Rhosanna; Kapos, Val; Maltby, Katherine; Watts, Olly; Willis, Steve; Morecroft, Michael;handle: 10138/341846
Impacts of climate change on natural and human systems will become increasingly severe as the magnitude of climate change increases. Climate change adaptation interventions to address current and projected impacts are thus paramount. Yet, evidence on their effectiveness remains limited, highlighting the need for appropriate ecological indicators to measure progress of climate change adaptation for the natural environment. We outline conceptual, analytical, and practical challenges in developing such indicators, before proposing a framework with three process-based and two results-based indicator types to track progress in adapting to climate change. We emphasize the importance of dynamic assessment and modification over time, as new adaptation targets are set and/or as intervention actions are monitored and evaluated. Our framework and proposed indicators are flexible and widely applicable across species, habitats, and monitoring programmes, and could be accommodated within existing national or international frameworks to enable the evaluation of both large-scale policy instruments and local management interventions. We conclude by suggesting further work required to develop these indicators fully, and hope this will stimulate the use of ecological indicators to evaluate the effectiveness of policy interventions for the adaptation of the natural environment across the globe.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2022 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Durham Research OnlineArticle . 2022 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/36038/1/36038.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2022License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/36038/Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen Published in a Diamond OA journal 48 citations 48 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2022 . Peer-reviewedLicense: CC BY NC NDData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2022 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Durham Research OnlineArticle . 2022 . Peer-reviewedFull-Text: http://dro.dur.ac.uk/36038/1/36038.pdfData sources: Durham Research OnlineDurham University: Durham Research OnlineArticle . 2022License: CC BY NC NDFull-Text: http://dro.dur.ac.uk/36038/Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)HELDA - Digital Repository of the University of HelsinkiArticle . 2022 . Peer-reviewedData sources: HELDA - Digital Repository of the University of Helsinkiadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Springer Science and Business Media LLC Funded by:NSF | Dimensions: Collaborative...NSF| Dimensions: Collaborative Research: Community genomic drivers of moss microbiome assembly and function in rapidly changing Alaskan ecosystemsJulia E. M. Stuart; Hannah Holland-Moritz; Mélanie Jean; Samantha N. Miller; José Miguel Ponciano; Stuart F. McDaniel; Michelle C. Mack;pmid: 34319437
Moss-associated N2 fixation by epiphytic microbes is a key biogeochemical process in nutrient-limited high-latitude ecosystems. Abiotic drivers, such as temperature and moisture, and the identity of host mosses are critical sources of variation in N2 fixation rates. An understanding of the potential interaction between these factors is essential for predicting N inputs as moss communities change with the climate. To further understand the drivers and results of N2 fixation rate variation, we obtained natural abundance values of C and N isotopes and an associated rate of N2 fixation with 15N2 gas incubations in 34 moss species collected in three regions across Alaska, USA. We hypothesized that δ15N values would increase toward 0‰ with higher N2 fixation to reflect the increasing contribution of fixed N2 in moss biomass. Second, we hypothesized that δ13C and N2 fixation would be positively related, as enriched δ13C signatures reflect abiotic conditions favorable to N2 fixation. We expected that the magnitude of these relationships would vary among types of host mosses, reflecting differences in anatomy and habitat. We found little support for our first hypothesis, with only a modest positive relationship between N2 fixation rates and δ15N in a structural equation model. We found a significant positive relationship between δ13C and N2 fixation only in Hypnales, where the probability of N2 fixation activity reached 95% when δ13C values exceeded - 30.4‰. We conclude that moisture and temperature interact strongly with host moss identity in determining the extent to which abiotic conditions impact associated N2 fixation rates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2018Publisher:Wiley Funded by:SNSF | Population Genomic Basis ..., EC | APODYNA, NSF | Costs and Benefits of Bip... +8 projectsSNSF| Population Genomic Basis of Evolutionary Change in Drosophila Aging and Life History ,EC| APODYNA ,NSF| Costs and Benefits of Biparental Care in Monogamous Owl Monkeys ,NIH| EXTERNAL INNOVATIVE NETWORK CORE ,EC| LEED ,NIH| Mechanisms and Consequences of Social Connectedness in a Wild Primate Population ,NIH| SEX DIFFERENCES IN HEALTH AND SURVIVAL IN A WILD PRIMATE POPULATION ,NSF| RAPID Twinning in Monogamous Owl Monkeys of the Argentinean Chaco: Developmental and Behavioral Consequences ,NSF| LTREB: Long-term behavioral and genetic analyses of a wild primate population ,DFG ,NSF| Social Monogamy in Free-ranging Owl Monkeys (Aotus azarai azarai) of ArgentinaAuthors: Peter H. Becker; Henri Weimerskirch; Kristel M. De Vleeschouwer; Fernando Colchero; +30 AuthorsPeter H. Becker; Henri Weimerskirch; Kristel M. De Vleeschouwer; Fernando Colchero; Craig Packer; Owen R. Jones; Aurelio F. Malo; Aurelio F. Malo; Richard J. Delahay; Jennifer McDonald; Martin Hesselsøe; Jean-François Lemaître; Becky E. Raboy; Chris J. Reading; Dalia Amor Conde; David Miller; Colin O'Donnell; Felix Zajitschek; Anne M. Bronikowski; Jean-Michel Gaillard; Sam M. Larson; Sandra Bouwhuis; Annette Baudisch; Thomas Flatt; Eduardo Fernandez-Duque; David J. Hodgson; Stefan Dummermuth; Benedikt R. Schmidt; Geoffrey M. While; Geoffrey M. While; John Frisenvænge; Susan C. Alberts; Tim Coulson; Erik Wapstra;AbstractThe current extinction and climate change crises pressure us to predict population dynamics with ever‐greater accuracy. Although predictions rest on the well‐advanced theory of age‐structured populations, two key issues remain poorly explored. Specifically, how the age‐dependency in demographic rates and the year‐to‐year interactions between survival and fecundity affect stochastic population growth rates. We use inference, simulations and mathematical derivations to explore how environmental perturbations determine population growth rates for populations with different age‐specific demographic rates and when ages are reduced to stages. We find that stage‐ vs. age‐based models can produce markedly divergent stochastic population growth rates. The differences are most pronounced when there are survival‐fecundity‐trade‐offs, which reduce the variance in the population growth rate. Finally, the expected value and variance of the stochastic growth rates of populations with different age‐specific demographic rates can diverge to the extent that, while some populations may thrive, others will inevitably go extinct.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/36423Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAOxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research ArchiveEcology LettersArticle . 2019License: CC BYData sources: University of Southern Denmark Research OutputUniversity of Southern Denmark Research OutputArticle . 2019Data sources: University of Southern Denmark Research OutputBiblioteca Digital de la Universidad de AlcaláArticle . 2019License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 52 citations 52 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 190visibility views 190 download downloads 39 Powered by
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/36423Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTAOxford University Research ArchiveArticle . 2018License: CC BYData sources: Oxford University Research ArchiveEcology LettersArticle . 2019License: CC BYData sources: University of Southern Denmark Research OutputUniversity of Southern Denmark Research OutputArticle . 2019Data sources: University of Southern Denmark Research OutputBiblioteca Digital de la Universidad de AlcaláArticle . 2019License: CC BY NC NDData sources: Biblioteca Digital de la Universidad de AlcaláInstitut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:MDPI AG Steven M. Grodsky; Rebecca R. Hernandez; Joshua W. Campbell; Kevin R. Hinson; Oliver Keller; Sarah R. Fritts; Jessica A. Homyack; Christopher E. Moorman;doi: 10.3390/f11010048
Research Highlights: Our study adds to the scant literature on the effects of forest bioenergy on ground beetles (Coleoptera: Carabidae) and contributes new insights into the responses of ground beetle species and functional groups to operational harvest residue retention. We discovered that count of Harpalus pensylvanicus (DeGeer)—a habitat generalist—increased owing to clear-cut harvests but decreased due to harvest residue reductions; these observations uniquely allowed us to separate effects of additive forest disturbances to demonstrate that, contrarily to predictions, a generalist species considered to be adapted to disturbance may be negatively affected by altered habitat elements associated with disturbances from renewable energy development. Background and Objectives: Despite the potential environmental benefits of forest bioenergy, woody biomass harvests raise forest sustainability concerns for some stakeholders. Ground beetles are well established ecological indicators of forest ecosystem health and their life history characteristics are connected to habitat elements that are altered by forest harvesting. Thus, we evaluated the effects of harvest residue retention following woody biomass harvest for forest bioenergy on ground beetles in an operational field experiment. Materials and Methods: We sampled ground beetles using pitfall traps in harvest residue removal treatments representing variable woody biomass retention prescriptions, ranging from no retention to complete retention of all merchantable woody biomass. We replicated treatments in eight clear-cut stands in intensively managed loblolly pine (Pinus taeda L.) forests in North Carolina and Georgia. Results: Harvest residue retention had no effect on ground beetle richness and diversity. However, counts of H. pensylvanicus, Anisodactylus spp., and “burrower” and “fast runner” functional groups, among others, were greater in treatments with no woody biomass harvest than those with no harvest residue retention; all of these ground beetles may confer ecosystem services in forests. We suggest that H. pensylvanicus is a useful indicator species for burrowing and granivorous ground beetle response to harvest residue reductions in recently harvested stands. Lastly, we propose that retaining 15% retention of total harvest residues or more, depending on regional and operational variables, may support beneficial ground beetle populations.
Forests arrow_drop_down ForestsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1999-4907/11/1/48/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Forests arrow_drop_down ForestsOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1999-4907/11/1/48/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2017Publisher:Springer Science and Business Media LLC Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthAuthors: Kevin J. Shinners; Benjamin K. Sabrowsky; Cameron L. Studer; Rosemary L. Nicholson;In the North-Central USA, switchgrass to be used as a biomass feedstock typically will be harvested in the autumn. The accumulated area harvested over the harvest season (defined here as the harvest progression) will influence the size of the machinery fleet and seasonal labor required to complete the majority of the harvest before the first lasting snow. A harvest progression model was developed that uses drying rate, mower and baler productivity, and weather conditions as major inputs. Ten years of weather data (2005–2014) from Wisconsin, Iowa, and Nebraska (WI, IA, NE) were used. Harvest progression was modeled for four harvest systems involving conventional and intensive conditioning both swathed and tedded (CC, IC, CCT, and ICT, respectively) and two dates at which harvest began (1 September and after a killing frost). To reduce risk of exposing crop to prolonged periods of inclement weather, mowers were idled when more than 80 ha were cut but not yet baled. For all sites, the harvest start date and the mower idled constraint had greater impact on harvest progression than the type of harvest system. Harvest progression was greatest when mowing started on 1 September and continued whenever weather permitted (i.e., no mower idled constraint). Compared to the harvest system used today (CC), using the IC system resulted in more area harvested with less crop exposed to rain after cutting and considerably less area left to be baled in the spring. Starting harvest on 1 September, using intensive conditioning, and not idling the mowers might be considered the system that best balances the desire for rapid harvest progression, small equipment fleet size, low-capital expenditures, and maximum labor utilization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2008Publisher:Oxford University Press (OUP) Authors: Anthony M. Shelton; Brian A. Nault; J. Plate; E. Larentzaki;Development of insecticide resistance in onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae), populations in onion (Allium spp.) fields and the incidence of the T. tabaci transmitted Iris yellow spot virus have stimulated interest in evaluating alternative management tactics. Effects of straw mulch applied in commercial onion fields in muck areas of western New York were assessed in 2006 and 2007 as a possible onion thrips management strategy. In trials in which no insecticides were applied for thrips control, straw mulch-treated plots supported significantly lower T. tabaci populations compared with control plots. In both years, the action thresholds of one or three larvae per leaf were reached in straw mulch treatments between 7 and 14 d later than in the control. Ground predatory fauna, as evaluated by pitfall trapping, was not increased by straw mulch in 2006; however, populations of the common predatory thrips Aeolothrips fasciatus (L.) (Thysanoptera: Aeolothripidae) were significantly lower in straw mulch plots in both years. Interference of straw mulch in the pupation and emergence of T. tabaci was investigated in the lab and their emergence was reduced by 54% compared with bare soil. In the field the overall yield of onions was not affected by the straw mulch treatment; however, the presence of jumbo grade onions (>77 mm) was increased in 2006, but not in 2007. These results indicate that populations of T. tabaci adults and larvae can be significantly reduced by the use of straw mulch without compromising overall onion yield. The use of this cultural practice in an onion integrated pest management program seems promising.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
