Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEnergy Researcharrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
BioEnergy Research
Article . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Switchgrass Harvest Progression in the North-Central USA

Authors: Kevin J. Shinners; Benjamin K. Sabrowsky; Cameron L. Studer; Rosemary L. Nicholson;

Switchgrass Harvest Progression in the North-Central USA

Abstract

In the North-Central USA, switchgrass to be used as a biomass feedstock typically will be harvested in the autumn. The accumulated area harvested over the harvest season (defined here as the harvest progression) will influence the size of the machinery fleet and seasonal labor required to complete the majority of the harvest before the first lasting snow. A harvest progression model was developed that uses drying rate, mower and baler productivity, and weather conditions as major inputs. Ten years of weather data (2005–2014) from Wisconsin, Iowa, and Nebraska (WI, IA, NE) were used. Harvest progression was modeled for four harvest systems involving conventional and intensive conditioning both swathed and tedded (CC, IC, CCT, and ICT, respectively) and two dates at which harvest began (1 September and after a killing frost). To reduce risk of exposing crop to prolonged periods of inclement weather, mowers were idled when more than 80 ha were cut but not yet baled. For all sites, the harvest start date and the mower idled constraint had greater impact on harvest progression than the type of harvest system. Harvest progression was greatest when mowing started on 1 September and continued whenever weather permitted (i.e., no mower idled constraint). Compared to the harvest system used today (CC), using the IC system resulted in more area harvested with less crop exposed to rain after cutting and considerably less area left to be baled in the spring. Starting harvest on 1 September, using intensive conditioning, and not idling the mowers might be considered the system that best balances the desire for rapid harvest progression, small equipment fleet size, low-capital expenditures, and maximum labor utilization.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average