- home
- Advanced Search
- Energy Research
- natural sciences
- 13. Climate action
- 11. Sustainability
- 3. Good health
- AU
- Energy Research
- natural sciences
- 13. Climate action
- 11. Sustainability
- 3. Good health
- AU
description Publicationkeyboard_double_arrow_right Article 2022 AustraliaPublisher:MDPI AG Authors:Anne Rolton;
Lesley Rhodes;Anne Rolton
Anne Rolton in OpenAIREKate S. Hutson;
Kate S. Hutson
Kate S. Hutson in OpenAIRELaura Biessy;
+4 AuthorsLaura Biessy
Laura Biessy in OpenAIREAnne Rolton;
Lesley Rhodes;Anne Rolton
Anne Rolton in OpenAIREKate S. Hutson;
Kate S. Hutson
Kate S. Hutson in OpenAIRELaura Biessy;
Tony Bui; Lincoln MacKenzie;Laura Biessy
Laura Biessy in OpenAIREJane E. Symonds;
Kirsty F. Smith;Jane E. Symonds
Jane E. Symonds in OpenAIREHarmful algal blooms (HABs) have wide-ranging environmental impacts, including on aquatic species of social and commercial importance. In New Zealand (NZ), strategic growth of the aquaculture industry could be adversely affected by the occurrence of HABs. This review examines HAB species which are known to bloom both globally and in NZ and their effects on commercially important shellfish and fish species. Blooms of Karenia spp. have frequently been associated with mortalities of both fish and shellfish in NZ and the sub-lethal effects of other genera, notably Alexandrium spp., on shellfish (which includes paralysis, a lack of byssus production, and reduced growth) are also of concern. Climate change and anthropogenic impacts may alter HAB population structure and dynamics, as well as the physiological responses of fish and shellfish, potentially further compromising aquatic species. Those HAB species which have been detected in NZ and have the potential to bloom and harm marine life in the future are also discussed. The use of environmental DNA (eDNA) and relevant bioassays are practical tools which enable early detection of novel, problem HAB species and rapid toxin/HAB screening, and new data from HAB monitoring of aquaculture production sites using eDNA are presented. As aquaculture grows to supply a sizable proportion of the world’s protein, the effects of HABs in reducing productivity is of increasing significance. Research into the multiple stressor effects of climate change and HABs on cultured species and using local, recent, HAB strains is needed to accurately assess effects and inform stock management strategies.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2022Full-Text: https://doi.org/10.3390/toxins14050341Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/toxins14050341&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 39 citations 39 popularity Top 10% influence Average impulse Top 1% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2022Full-Text: https://doi.org/10.3390/toxins14050341Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/toxins14050341&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:MDPI AG Jing Ma;
Zhanbin Luo;Fu Chen;
Qianlin Zhu;Shaoliang Zhang;
Shaoliang Zhang
Shaoliang Zhang in OpenAIREGang-Jun Liu;
Gang-Jun Liu
Gang-Jun Liu in OpenAIREdoi: 10.3390/su10082804
A new environmental ban has forced the restructure of open dumps in China since 1 July 2011. A technical process was established in this study that is feasible for the upgrade of open dumps through restructuring. The feasibility of restructuring and the benefit of greenhouse gas emission reductions were assessed according to field surveys of five landfills and four dumps in Nanjing. The results showed that the daily processing capacities of the existing landfills have been unable to meet the growth of municipal solid waste (MSW), making restructuring of the landfills imperative. According to an assessment of the technical process, only four sites in Nanjing were suitable for upgrading. Restructuring the Jiaozishan landfill effectively reduced the leachate generation rate by 5.84% under its scale when expanded by 60.7% in 2015. CO2 emissions were reduced by approximately 55,000–86,000 tons per year, in which biogas power generation replaced fossil fuels Fossil fuels accounted for the largest proportion, up to 45,000–60,000 tons. Photovoltaic power generation on the overlying land has not only reduced CO2 emissions to 26,000–30,000 tons per year but has also brought in continuing income from the sale of electricity. The funds are essential for developing countries such as China, which lack long-term financial support for landfill management after closure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10082804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10082804&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2020 Belgium, Netherlands, France, United KingdomPublisher:Copernicus GmbH Authors:Frédéric Chevallier;
Pierre Regnier; Julia Pongratz;Frédéric Chevallier
Frédéric Chevallier in OpenAIREAtul K. Jain;
+30 AuthorsAtul K. Jain
Atul K. Jain in OpenAIREFrédéric Chevallier;
Pierre Regnier; Julia Pongratz;Frédéric Chevallier
Frédéric Chevallier in OpenAIREAtul K. Jain;
Atul K. Jain
Atul K. Jain in OpenAIRERoxana Petrescu;
Roxana Petrescu
Roxana Petrescu in OpenAIRERobert J. Scholes;
Robert J. Scholes
Robert J. Scholes in OpenAIREPep Canadell;
Pep Canadell
Pep Canadell in OpenAIREMasayuki Kondo;
Hui Yang;Masayuki Kondo
Masayuki Kondo in OpenAIREMarielle Saunois;
Marielle Saunois
Marielle Saunois in OpenAIREBo Zheng;
Wouter Peters; Wouter Peters;Bo Zheng
Bo Zheng in OpenAIREBenjamin Poulter;
Benjamin Poulter; Benjamin Poulter;Benjamin Poulter
Benjamin Poulter in OpenAIREMatthew W. Jones;
Matthew W. Jones
Matthew W. Jones in OpenAIREHanqin Tian;
Hanqin Tian
Hanqin Tian in OpenAIREXuhui Wang;
Shilong Piao; Shilong Piao; Ronny Lauerwald; Ronny Lauerwald;Xuhui Wang
Xuhui Wang in OpenAIREIngrid T. Luijkx;
Anatoli Shvidenko; Anatoli Shvidenko; Gustaf Hugelius; Celso von Randow;Ingrid T. Luijkx
Ingrid T. Luijkx in OpenAIREChunjing Qiu;
Robert B. Jackson; Robert B. Jackson; Prabir K. Patra; Philippe Ciais;Chunjing Qiu
Chunjing Qiu in OpenAIREAna Bastos;
Ana Bastos
Ana Bastos in OpenAIREAbstract. Regional land carbon budgets provide insights on the spatial distribution of the land uptake of atmospheric carbon dioxide, and can be used to evaluate carbon cycle models and to define baselines for land-based additional mitigation efforts. The scientific community has been involved in providing observation-based estimates of regional carbon budgets either by downscaling atmospheric CO2 observations into surface fluxes with atmospheric inversions, by using inventories of carbon stock changes in terrestrial ecosystems, by upscaling local field observations such as flux towers with gridded climate and remote sensing fields or by integrating data-driven or process-oriented terrestrial carbon cycle models. The first coordinated attempt to collect regional carbon budgets for nine regions covering the entire globe in the RECCAP-1 project has delivered estimates for the decade 2000–2009, but these budgets were not comparable between regions, due to different definitions and component fluxes reported or omitted. The recent recognition of lateral fluxes of carbon by human activities and rivers, that connect CO2 uptake in one area with its release in another also requires better definition and protocols to reach harmonized regional budgets that can be summed up to the globe and compared with the atmospheric CO2 growth rate and inversion results. In this study, for the international initiative RECCAP-2 coordinated by the Global Carbon Project, which aims as an update of regional carbon budgets over the last two decades based on observations, for 10 regions covering the globe, with a better harmonization that the precursor project, we provide recommendations for using atmospheric inversions results to match bottom-up carbon accounting and models, and we define the different component fluxes of the net land atmosphere carbon exchange that should be reported by each research group in charge of each region. Special attention is given to lateral fluxes, inland water fluxes and land use fluxes.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model Development (GMD)Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2020-259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 13 Powered bymore_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-03604087Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmd-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model Development (GMD)Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefWageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmd-2020-259&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Australia, United StatesPublisher:Elsevier BV Aganto Seno; Irwan Isnain; Steven Victor; Miguel D. Fortes; Rob Coles; Maxwell Salik; Frederick T. Short; Frederick T. Short; Jay Andrew;pmid: 24746094
Seagrass systems of the Western Pacific region are biodiverse habitats, providing vital services to ecosystems and humans over a vast geographic range. SeagrassNet is a worldwide monitoring program that collects data on seagrass habitats, including the ten locations across the Western Pacific reported here where change at various scales was rapidly detected. Three sites remote from human influence were stable. Seagrasses declined largely due to increased nutrient loading (4 sites) and increased sedimentation (3 sites), the two most common stressors of seagrass worldwide. Two sites experienced near-total loss from of excess sedimentation, followed by partial recovery once sedimentation was reduced. Species shifts were observed at every site with recovering sites colonized by pioneer species. Regulation of watersheds is essential if marine protected areas are to preserve seagrass meadows. Seagrasses in the Western Pacific experience stress due to human impacts despite the vastness of the ocean area and low development pressures.
Marine Pollution Bul... arrow_drop_down Marine Pollution BulletinArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of New Hampshire: Scholars RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpolbul.2014.03.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 64 citations 64 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Marine Pollution Bul... arrow_drop_down Marine Pollution BulletinArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefJames Cook University, Australia: ResearchOnline@JCUArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of New Hampshire: Scholars RepositoryArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.marpolbul.2014.03.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2020Embargo end date: 02 Sep 2024 United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Inter-Hemispheric Climate..., NSF | Collaborative Research: A..., NSF | Collaborative Research: I... +3 projectsNSF| Inter-Hemispheric Climate Teleconnections in response to Massive Iceberg Discharge in the North Atlantic ,NSF| Collaborative Research: A "Horizontal Ice Core" for Large-Volume Samples of the Past Atmosphere, Taylor Glacier, Antarctica ,NSF| Collaborative Research: Investigating the potential of carbon-14 in polar firn and ice as a tracer of past cosmic ray flux and an absolute dating tool ,NSF| Collaborative Research: Investigating the potential of carbon-14 in polar firn and ice as a tracer of past cosmic ray flux and an absolute dating tool ,NSF| Collaborative Research: Investigating the potential of carbon-14 in polar firn and ice as a tracer of past cosmic ray flux and an absolute dating tool ,NSF| How Thick Is the Convective Zone: A Study of Firn Air in the Megadunes Near Vostok, AntarcticaAuthors:Hmiel, B.;
Petrenko, V. V.; Dyonisius, M. N.; Buizert, C.; +15 AuthorsHmiel, B.
Hmiel, B. in OpenAIREHmiel, B.;
Petrenko, V. V.; Dyonisius, M. N.; Buizert, C.;Hmiel, B.
Hmiel, B. in OpenAIRESmith, A. M.;
Smith, A. M.
Smith, A. M. in OpenAIREPlace, P. F.;
Harth, C.; Beaudette, R.; Hua, Q.; Yang, B.;Place, P. F.
Place, P. F. in OpenAIREVimont, I.;
Michel, S. E.; Severinghaus, J. P.;Vimont, I.
Vimont, I. in OpenAIREEtheridge, D.;
Bromley, T.;Etheridge, D.
Etheridge, D. in OpenAIRESchmitt, Jochen;
Fain, X.;Schmitt, Jochen
Schmitt, Jochen in OpenAIREWeiss, R. F.;
Dlugokencky, E.;Weiss, R. F.
Weiss, R. F. in OpenAIREpmid: 32076219
Atmospheric methane (CH4) is a potent greenhouse gas, and its mole fraction has more than doubled since the preindustrial era. Fossil fuel extraction and use are among the largest anthropogenic sources of CH4 emissions, but the precise magnitude of these contributions is a subject of debate. Carbon-14 in CH4 (14CH4) can be used to distinguish between fossil (14C-free) CH4 emissions and contemporaneous biogenic sources; however, poorly constrained direct 14CH4 emissions from nuclear reactors have complicated this approach since the middle of the 20th century. Moreover, the partitioning of total fossil CH4 emissions (presently 172 to 195 teragrams CH4 per year) between anthropogenic and natural geological sources (such as seeps and mud volcanoes) is under debate; emission inventories suggest that the latter account for about 40 to 60 teragrams CH4 per year. Geological emissions were less than 15.4 teragrams CH4 per year at the end of the Pleistocene, about 11,600 years ago, but that period is an imperfect analogue for present-day emissions owing to the large terrestrial ice sheet cover, lower sea level and extensive permafrost. Here we use preindustrial-era ice core 14CH4 measurements to show that natural geological CH4 emissions to the atmosphere were about 1.6 teragrams CH4 per year, with a maximum of 5.4 teragrams CH4 per year (95 per cent confidence limit)—an order of magnitude lower than the currently used estimates. This result indicates that anthropogenic fossil CH4 emissions are underestimated by about 38 to 58 teragrams CH4 per year, or about 25 to 40 per cent of recent estimates. Our record highlights the human impact on the atmosphere and climate, provides a firm target for inventories of the global CH4 budget, and will help to inform strategies for targeted emission reductions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-020-1991-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 186 citations 186 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-020-1991-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Royal Society of Chemistry (RSC) doi: 10.1039/c8se00538a
Highly efficient nanocatalysts which can selectively decompose hydrous hydrazine for hydrogen production are introduced.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8se00538a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2019 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8se00538a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 AustraliaPublisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP140100323Authors: Hasintha Wijesekara;Nanthi S. Bolan;
Ramesh Thangavel; Balaji Seshadri; +5 AuthorsNanthi S. Bolan
Nanthi S. Bolan in OpenAIREHasintha Wijesekara;Nanthi S. Bolan;
Ramesh Thangavel; Balaji Seshadri; Aravind Surapaneni; Christopher Saint; Chris Hetherington; Peter Matthews;Nanthi S. Bolan
Nanthi S. Bolan in OpenAIREMeththika Vithanage;
Meththika Vithanage
Meththika Vithanage in OpenAIREA field study was conducted on two texturally different soils to determine the influences of biosolids application on selected soil chemical properties and carbon dioxide fluxes. Two sites, located in Manildra (clay loam) and Grenfell (sandy loam), in Australia, were treated at a single level of 70 Mg ha-1 biosolids. Soil samples were analyzed for SOC fractions, including total organic carbon (TOC), labile, and non-labile carbon contents. The natural abundances of soil δ13C and δ15N were measured as isotopic tracers to fingerprint carbon derived from biosolids. An automated soil respirometer was used to measure in-situ diurnal CO2 fluxes, soil moisture, and temperature. Application of biosolids increased the surface (0-15 cm) soil TOC by > 45% at both sites, which was attributed to the direct contribution from residual carbon in the biosolids and also from the increased biomass production. At both sites application of biosolids increased the non-labile carbon fraction that is stable against microbial decomposition, which indicated the soil carbon sequestration potential of biosolids. Soils amended with biosolids showed depleted δ13C, and enriched δ15N indicating the accumulation of biosolids residual carbon in soils. The in-situ respirometer data demonstrated enhanced CO2 fluxes at the sites treated with biosolids, indicating limited carbon sequestration potential. However, addition of biosolids on both the clay loam and sandy loam soils found to be effective in building SOC than reducing it. Soil temperature and CO2 fluxes, indicating that temperature was more important for microbial degradation of carbon in biosolids than soil moisture.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2017.09.090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 45 citations 45 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chemosphere.2017.09.090&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 New Zealand, Australia, AustraliaPublisher:Wiley Rigosi, A.; Hanson, P.; Hamilton, D.; Hipsey, M.;Rusak, J.;
Bois, J.; Sparber, K.; Chorus, I.; Watkinson, A.; Qin, B.; Kim, B.;Rusak, J.
Rusak, J. in OpenAIREBrookes, J.;
Brookes, J.
Brookes, J. in OpenAIREA Bayesian network model was developed to assess the combined influence of nutrient conditions and climate on the occurrence of cyanobacterial blooms within lakes of diverse hydrology and nutrient supply. Physicochemical, biological, and meteorological observations were collated from 20 lakes located at different latitudes and characterized by a range of sizes and trophic states. Using these data, we built a Bayesian network to (1) analyze the sensitivity of cyanobacterial bloom development to different environmental factors and (2) determine the probability that cyanobacterial blooms would occur. Blooms were classified in three categories of hazard (low, moderate, and high) based on cell abundances. The most important factors determining cyanobacterial bloom occurrence were water temperature, nutrient availability, and the ratio of mixing depth to euphotic depth. The probability of cyanobacterial blooms was evaluated under different combinations of total phosphorus and water temperature. The Bayesian network was then applied to quantify the probability of blooms under a future climate warming scenario. The probability of the “high hazardous” category of cyanobacterial blooms increased 5% in response to either an increase in water temperature of 0.8°C (initial water temperature above 24°C) or an increase in total phosphorus from 0.01 mg/L to 0.02 mg/L. Mesotrophic lakes were particularly vulnerable to warming. Reducing nutrient concentrations counteracts the increased cyanobacterial risk associated with higher temperatures.
Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Waikato: Research CommonsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/13-1677.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 114 citations 114 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Ecological Applicati... arrow_drop_down Ecological ApplicationsArticle . 2015 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Waikato: Research CommonsArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1890/13-1677.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:MDPI AG Authors:Michael Crilly;
Michael Crilly
Michael Crilly in OpenAIREChandra Mouli Vemury;
Richard Humphrey;Chandra Mouli Vemury
Chandra Mouli Vemury in OpenAIRESergio Rodriguez;
+4 AuthorsSergio Rodriguez
Sergio Rodriguez in OpenAIREMichael Crilly;
Michael Crilly
Michael Crilly in OpenAIREChandra Mouli Vemury;
Richard Humphrey;Chandra Mouli Vemury
Chandra Mouli Vemury in OpenAIRESergio Rodriguez;
Sergio Rodriguez
Sergio Rodriguez in OpenAIRETracey Crosbie;
Karen Johnson;Tracey Crosbie
Tracey Crosbie in OpenAIREAlexander Wilson;
Alexander Wilson
Alexander Wilson in OpenAIREOliver Heidrich;
Oliver Heidrich
Oliver Heidrich in OpenAIREdoi: 10.3390/en13225860
One of the repeating themes around the provision of the knowledge and skills needed for delivering sustainable communities is the idea of a “common language” for all built environment professionals. This suggestion has been repeated regularly with each new political and professional review within and between different sectors responsible for the delivery of sustainable communities. There have been multiple efforts to address academic limitations, industry fragmentation and promote more interdisciplinary working and sector collaboration. This research explored the role of skills for sustainable communities, particularly within the higher education (HE) sector, and the responses to support the development of a “common language of sustainability” that can be shared between different sectors, professional disciplines and stakeholders. As an interdisciplinary group of academics and practitioners working with the HE sector in the North East of England, we evaluate the progression of sector collaboration to develop a quintuple helix model for HE. We use this as a suitable framework for systematically “mapping” out the mixed sector (academic, public, business, community and environmental organisations) inputs and influences into a representative sample of HE degree modules that are delivered from foundation and undergraduate to postgraduate levels, including examples of part-time and distance-learning modules. We developed a cascade of models which demonstrate increasing levels of collaboration and their potential positive impact on the effectiveness of education on sustainable communities. The methodological assessments of modules were followed by semi-structured group reflective analysis undertaken through a series of online workshops (recorded during the Covid19 lockdown) to set out a collective understanding of the generic skills needed for the delivery of sustainable communities. These generic skills for sustainable communities are presented as a pedagogical progression model of teaching activities and learning outcomes applied to the levels within HE. We propose sustainability education principles and progressions with the hope that they can have an impact on the design or review of current degree modules and programmes. The paper informs future sustainability research to be grounded in holism and systems thinking; better understanding of values, ethics, influencing and political impact; and procedural authenticity.
CORE arrow_drop_down Durham University: Durham Research OnlineArticle . 2020License: CC BYFull-Text: http://dro.dur.ac.uk/32163/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13225860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 3visibility views 3 download downloads 4 Powered bymore_vert CORE arrow_drop_down Durham University: Durham Research OnlineArticle . 2020License: CC BYFull-Text: http://dro.dur.ac.uk/32163/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13225860&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 Australia, United Kingdom, Denmark, Australia, Australia, Netherlands, GermanyPublisher:Springer Science and Business Media LLC Authors: Peter K. Snyder; Brian Walker; Brian Walker;Hans Joachim Schellnhuber;
+37 AuthorsHans Joachim Schellnhuber
Hans Joachim Schellnhuber in OpenAIREPeter K. Snyder; Brian Walker; Brian Walker;Hans Joachim Schellnhuber;
Hans Joachim Schellnhuber; Sander van der Leeuw; Louise Karlberg; Louise Karlberg; James Hansen;Hans Joachim Schellnhuber
Hans Joachim Schellnhuber in OpenAIREÅsa Persson;
Åsa Persson;Åsa Persson
Åsa Persson in OpenAIREEric F. Lambin;
Eric F. Lambin
Eric F. Lambin in OpenAIRERobert Costanza;
Robert Costanza;Robert Costanza
Robert Costanza in OpenAIREJohan Rockström;
Johan Rockström; Will Steffen; Will Steffen; Malin Falkenmark; Malin Falkenmark;Johan Rockström
Johan Rockström in OpenAIRECarl Folke;
Carl Folke; Timothy M. Lenton;Carl Folke
Carl Folke in OpenAIREF. Stuart Chapin;
F. Stuart Chapin
F. Stuart Chapin in OpenAIRETerry P. Hughes;
Jonathan A. Foley; Marten Scheffer;Terry P. Hughes
Terry P. Hughes in OpenAIREKevin J. Noone;
Robert W. Corell; Sverker Sörlin; Sverker Sörlin; Victoria J. Fabry; Paul J. Crutzen; Uno Svedin;Kevin J. Noone
Kevin J. Noone in OpenAIRECynthia A. de Wit;
Björn Nykvist; Björn Nykvist;Cynthia A. de Wit
Cynthia A. de Wit in OpenAIREKatherine Richardson;
Diana Liverman; Diana Liverman; Henning Rodhe;Katherine Richardson
Katherine Richardson in OpenAIRENew approach proposed for defining preconditions for human development Crossing certain biophysical thresholds could have disastrous consequences for humanity Three of nine interlinked planetary boundaries have already been overstepped
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/35227Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/461472a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 9K citations 8,524 popularity Top 0.01% influence Top 0.01% impulse Top 0.01% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/35227Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/461472a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu