- home
- Advanced Search
- Energy Research
- 13. Climate action
- 8. Economic growth
- IT
- GB
- BE
- Energies
- Energy Research
- 13. Climate action
- 8. Economic growth
- IT
- GB
- BE
- Energies
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Corti P.; Capannolo L.; Bonomo P.; De Berardinis P.; Frontini F.;doi: 10.3390/en13153827
handle: 11697/174172
The built environment remains a strategic research and innovation domain in view of the goal of full decarbonization. The priority is the retrofitting of existing buildings as zero-emission to improve their energy efficiency with renewable energy technologies pulling the market with cost-effective strategies. From the first age of photovoltaics (PV) mainly integrated in solar roofs, we rapidly moved towards complete active building skins where all the architectural surfaces are photoactive (Building Integrated Photovoltaics - BIPV). This change of paradigm, where PV replaces a conventional building material, shifted the attention to relate construction choices with energy and cost effectiveness. However, systematic investigations which put into action a cross-disciplinary approach between construction, economic and energy related domains is still missing. This paper provides the detailed assessment of a real multifamily building, taking into account retrofit scenarios for making active the building skin, with the goal to identify the sensitive aspects of the energetic and economic effectiveness of BIPV design options. By assuming a real case study with monitored data, the analysis will consider a breakdown of the main individual parts composing the building envelope, by then combining alternative re-configurations in merged clusters with different energy and construction goals. Results will highlight the correlation between building skin construction strategies and the energy and cost parameters by identifying the cornerstones for enhancing efficiency. The outcomes, related to the total life cost, self-consumption/sufficiency, in combination with different building design options (façade, roof, balconies, surface orientations, etc.), provide a practical insight for researchers and professionals to identify renovation strategies by synergistically exploiting the solar active parts towards lower global costs and higher energy efficiency of the whole building system.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3827/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3827/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Muhammad Haroon; Nadeem Ahmed Sheikh; Abubakr Ayub; Rasikh Tariq; Farooq Sher; Aklilu Tesfamichael Baheta; Muhammad Imran;doi: 10.3390/en13195080
This study focused on investigating the bottoming power cycles operating with CO2-based binary mixture, taking into account exergetic, economic and exergo-environmental impact indices. The main intent is to assess the benefits of employing a CO2-based mixture working fluid in closed Brayton bottoming power cycles in comparison with pure CO2 working fluid. Firstly, selection criteria for the choice of suitable additive compound for CO2-based binary mixture is delineated and the composition of the binary mixture is decided based on required cycle minimum temperature. The decided CO2-C7H8 binary mixture with a 0.9 mole fraction of CO2 is analyzed in two cycle configurations: Simple regenerative cycle (SRC) and Partial heating cycle (PHC). Comparative analysis among two configurations with selected working fluid are carried out. Thermodynamic analyses at varying cycle pressure ratio shows that cycle with CO2-C7H8 mixture shows maximum power output and exergy efficiency at rather higher cycle pressure ratio compared to pure CO2 power cycles. PHC with CO2-C7H8 mixture shows 28.68% increment in exergy efficiency with the levelized cost of electricity (LCOE) 21.62% higher than pure CO2 PHC. Whereas, SRC with CO2-C7H8 mixture shows 25.17% increment in exergy efficiency with LCOE 57.14% higher than pure CO2 SRC. Besides showing lower economic value, cycles with a CO2-C7H8 mixture saves larger CO2 emissions and also shows greater exergo-environmental impact improvement and plant sustainability index.
CORE arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/19/5080/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/19/5080/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:MDPI AG Authors: Mehrdad Chahardowli; Hassan Sajadzadeh; Farshid Aram; Amir Mosavi;doi: 10.3390/en13112708
The united nations educational, scientific and cultural organization (UNESCO) considers the historic urban landscapes as the world heritages. Managing historic city centers and maintaining historic cores are the emerging challenges for sustainable urban planning. Today, the historic cores form an important part of the economic, social, environmental, and physical assets and capacities of contemporary cities, and play a strategic role in their development. One of the most important approaches to the development of central textures, especially in historical and cultural cities, is the sustainable urban regeneration approach, which encompasses all aspects of sustainability, such as the economic, social, cultural and environmental aspects. To maintain sustainability and regeneration of historic cores of cities, it is necessary to provide insight into the underlying characteristics of the local urbanization. Furthermore, the fundamental assets are to be investigated as indicators of sustainable regeneration and drivers of urban development. In the meantime, a variety of research and experience has taken place around the world, all of which has provided different criteria and indicators for the development of strategies for the historic cores of cities. The present study, through a meta-analytic and survey method, analyzing the experience and research reported in 139 theoretical and empirical papers in the last twenty years, seeks to provide a comprehensive conceptual model taking into account the criteria and indices of sustainable regeneration in historic cores of cities. The quality of the survey has been ensured using the preferred reporting items for systematic reviews and meta-analysis (PRISMA).
Oxford Brookes Unive... arrow_drop_down Oxford Brookes University: RADARArticle . 2020License: CC BYFull-Text: https://radar.brookes.ac.uk/radar/file/24d1653d-d5ca-4d9a-a3aa-808d6a402434/1/energies-13-02708.pdfData sources: Oxford Brookes University: RADARRecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAOxford Brookes University: RADAROther literature type . 2020License: CC BYData sources: Oxford Brookes University: RADARadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Oxford Brookes Unive... arrow_drop_down Oxford Brookes University: RADARArticle . 2020License: CC BYFull-Text: https://radar.brookes.ac.uk/radar/file/24d1653d-d5ca-4d9a-a3aa-808d6a402434/1/energies-13-02708.pdfData sources: Oxford Brookes University: RADARRecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAOxford Brookes University: RADAROther literature type . 2020License: CC BYData sources: Oxford Brookes University: RADARadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2019Embargo end date: 01 Jan 2018 France, ItalyPublisher:MDPI AG Tantet, Alexis; Concettini, Silvia; d'Ambrosio, Claudia; Thomopulos, Dimitri; Tankov, Peter; St��fanon, Marc; Drobinski, Philippe; Badosa, Jordi; Cr��ti, Anna; Thomopulos, Dimitri;handle: 11568/1013293
We develop an open-source Python software integrating flexibility needs from Variable Renewable Energies (VREs) in the development of regional energy mixes. It provides a flexible and extensible tool to researchers/engineers, and for education/outreach. It aims at evaluating and optimizing energy deployment strategies with higher shares of VRE, assessing the impact of new technologies and of climate variability and conducting sensitivity studies. Specifically, to limit the algorithm’s complexity, we avoid solving a full-mix cost-minimization problem by taking the mean and variance of the renewable production–demand ratio as proxies to balance services. Second, observations of VRE technologies being typically too short or nonexistent, the hourly demand and production are estimated from climate time series and fitted to available observations. We illustrate e4clim’s potential with an optimal recommissioning-study of the 2015 Italian PV-wind mix testing different climate data sources and strategies and assessing the impact of climate variability and the robustness of the results.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/22/4299/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di PisaArticle . 2019License: CC BYData sources: Archivio della Ricerca - Università di PisaÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)Université François-Rabelais de Tours: HALArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12224299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/22/4299/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di PisaArticle . 2019License: CC BYData sources: Archivio della Ricerca - Università di PisaÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)Université François-Rabelais de Tours: HALArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12224299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Funded by:SSHRCSSHRCAuthors: Hassan Qudrat-Ullah; Chinedu Miracle Nevo;doi: 10.3390/en15165953
This research investigates the relationships among renewable energy consumption, economic growth, and financial development in five sub-Saharan African nations utilizing panel data from 2000 to 2020. Econometric methods are used to ascertain the existence or absence of cross-sectional dependence and the short-run and long-run connections between the following factors: Pesaran cross-sectional dependence (CD) and cross-sectionally augmented IPS (CIPS) unit root tests, pooled mean group (PMG), and dynamic ordinary least squares (DOLS) estimations. The presence of cross-sectional dependence is found and represented with the CIPS unit root test. No significant short-run relationship is found between the variables of the study, yet a significant long-run relationship is present among them. A positive relationship exists between CO2 emissions and financial development, while financial development and renewable energy consumption are found to have negative relationships with CO2 emissions. The study also supports the scale effect of the environmental Kuznets curve hypothesis. Additionally, no causality is found among the variables, and impulse response and variance decomposition estimation are carried out to recommend future effects. Policy implications of findings are discussed, with accompanying suggestions.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/16/5953/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15165953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/16/5953/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15165953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG A. G. Olabi; Tabbi Wilberforce; Enas Taha Sayed; Nabila Shehata; Abdul Hai Alami; Hussein M. Maghrabie; Mohammad Ali Abdelkareem;doi: 10.3390/en15228639
The sudden increase in the concentration of carbon dioxide (CO2) in the atmosphere due to the high dependency on fossil products has created the need for an urgent solution to mitigate this challenge. Global warming, which is a direct result of excessive CO2 emissions into the atmosphere, is one major issue that the world is trying to curb, especially in the 21st Century where most energy generation mediums operate using fossil products. This investigation considered a number of materials ideal for the capturing of CO2 in the post-combustion process. The application of aqueous ammonia, amine solutions, ionic liquids, and activated carbons is thoroughly discussed. Notable challenges are impeding their advancement, which are clearly expatiated in the report. Some merits and demerits of these technologies are also presented. Future research directions for each of these technologies are also analyzed and explained in detail. Furthermore, the impact of post-combustion CO2 capture on the circular economy is also presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228639&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228639&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United KingdomPublisher:MDPI AG Funded by:UKRI | FITS-LCD: Fabric Integrat...UKRI| FITS-LCD: Fabric Integrated Thermal Storage for Low-Carbon DwellingsOluleye, G; Hawkes, AD; Allison, J; Kelly, N; Clarke, J;doi: 10.3390/en11051095
handle: 10044/1/77483
In spite of the benefits from thermal energy storage (TES) integration in dwellings, the penetration rate in Europe is 5%. Effective fiscal policies are necessary to accelerate deployment. However, there is currently no direct support for TES in buildings compared to support for electricity storage. This could be due to lack of evidence to support incentivisation. In this study, a novel systematic framework is developed to provide a case in support of TES incentivisation. The model determines the costs, CO2 emissions, dispatch strategy and sizes of technologies, and TES for a domestic user under policy neutral and policy intensive scenarios. The model is applied to different building types in the UK. The model is applied to a case study for a detached dwelling in the UK (floor area of 122 m2), where heat demand is satisfied by a boiler and electricity imported from the grid. Results show that under a policy neutral scenario, integrating a micro-Combined Heat and Power (CHP) reduces the primary energy demand by 11%, CO2 emissions by 21%, but with a 16 year payback. Additional benefits from TES integration can pay for the investment within the first 9 years, reducing to 3.5–6 years when the CO2 levy is accounted for. Under a policy intensive scenario (for example considering the Feed in Tariff (FIT)), primary energy demand and CO2 emissions reduce by 17 and 33% respectively with a 5 year payback. In this case, the additional benefits for TES integration can pay for the investment in TES within the first 2 years. The framework developed is a useful tool is determining the role TES in decarbonising domestic energy systems.
CORE arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1095/pdfData sources: Multidisciplinary Digital Publishing InstituteImperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/77483Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1095/pdfData sources: Multidisciplinary Digital Publishing InstituteImperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/77483Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United KingdomPublisher:MDPI AG Authors: Dhanuja Lekshmi J; Zakir Hussain Rather; Bikash C Pal;doi: 10.3390/en14248529
handle: 10044/1/93161
With diminishing fossil fuel resources and increasing environmental concerns, large-scale deployment of Renewable Energy Sources (RES) has accelerated the transition towards clean energy systems, leading to significant RES generation share in power systems worldwide. Among different RES, solar PV is receiving major focus as it is most abundant in nature compared to others, complimented by falling prices of PV technology. However, variable, intermittent and non-synchronous nature of PV power generation technology introduces several technical challenges, ranging from short-term issues, such as low inertia, frequency stability, voltage stability and small signal stability, to long-term issues, such as unit commitment and scheduling issues. Therefore, such technical issues often limit the amount of non-synchronous instantaneous power that can be securely accommodated by a grid. In this backdrop, this research work proposes a tool to estimate maximum PV penetration level that a given power system can securely accommodate for a given unit commitment interval. The proposed tool will consider voltage and frequency while estimating maximum PV power penetration of a system. The tool will be useful to a system operator in assessing grid stability and security under a given generation mix, network topology and PV penetration level. Besides estimating maximum PV penetration, the proposed tool provides useful inputs to the system operator which will allow the operator to take necessary actions to handle high PV penetration in a secure and stable manner.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8529/pdfData sources: Multidisciplinary Digital Publishing InstituteImperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/93161Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8529/pdfData sources: Multidisciplinary Digital Publishing InstituteImperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/93161Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 ItalyPublisher:MDPI AG Authors: Mattarelli, Enrico; Rinaldini, Carlo Alberto; Savioli, Tommaso;doi: 10.3390/en8043047
handle: 11380/1148224
Rape-seed biodiesel is an interesting option to address the problem of decreasing availability of conventional fossil fuels, as well as to reduce the CO2 emissions of internal combustion engines. The present paper describes an experimental campaign carried out on a current production 4-cylinder, 4-stroke naturally aspirated diesel engine, running on standard diesel fuel and on three different blends of rape-seed biodiesel (20%-50%-100%). Performance, emissions and in-cylinder pressure traces were measured at full load. It was found that the influence of rape-seed biodiesel in the fuel blend is not constant at each operating condition. However, as the biodiesel content increases, full load performance tends to drop, in particular brake specific fuel consumption (maximum worsening: +18%), while soot emission goes down. The maximum improvement observed in terms of soot concentration is 37.5%, at 1200 rpm. The combustion analysis revealed that the main differences among the fuels occur in the first phase of combustion: the burn rate is slower for biodiesel blends at low speeds, and faster at high.
Energies arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/4/3047/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8043047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 146visibility views 146 download downloads 172 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/4/3047/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8043047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Authors: Tonini F.; Sanvito F. D.; Colombelli F.; Colombo E.;doi: 10.3390/en15051902
handle: 11311/1208728
As it emerges from the literature, electricity access in rural contexts is deeply intertwined with socioeconomic dynamics. However, the advent of a reliable and sufficient source of electricity is not the sole driver that might contribute to local development. Indeed, complementary activities might have a crucial role in sustaining the development of rural communities as well as the electricity access. The current research addresses the lack of counterfactual scenarios in which the impact of complementary activities on electrification projects can be investigated. The authors introduce the case study of Matembwe village, a rural community in the Njombe region of Tanzania. The data collection includes the electricity consumption, number of electricity connections, and number of income-generating activities in a timespan ranging from 1989 to 2015. The analysis is based on system dynamics. The study considers different scenarios representing the dynamics related to the following complementary actions: access to market measures, access to credit measures, and access to usable skills. On the one hand, the study reveals that the effectiveness of the considered complementary actions is limited except from the access to microcredit which fosters an increase in electricity connections by 17%. On the other hand, both access to microcredit and the starting up of a local cooperative by CEFA Onlus that reinvests its profits in the local market impact the socio-economic dimension by 69% and 22%, respectively.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/5/1902/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15051902&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/5/1902/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15051902&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Corti P.; Capannolo L.; Bonomo P.; De Berardinis P.; Frontini F.;doi: 10.3390/en13153827
handle: 11697/174172
The built environment remains a strategic research and innovation domain in view of the goal of full decarbonization. The priority is the retrofitting of existing buildings as zero-emission to improve their energy efficiency with renewable energy technologies pulling the market with cost-effective strategies. From the first age of photovoltaics (PV) mainly integrated in solar roofs, we rapidly moved towards complete active building skins where all the architectural surfaces are photoactive (Building Integrated Photovoltaics - BIPV). This change of paradigm, where PV replaces a conventional building material, shifted the attention to relate construction choices with energy and cost effectiveness. However, systematic investigations which put into action a cross-disciplinary approach between construction, economic and energy related domains is still missing. This paper provides the detailed assessment of a real multifamily building, taking into account retrofit scenarios for making active the building skin, with the goal to identify the sensitive aspects of the energetic and economic effectiveness of BIPV design options. By assuming a real case study with monitored data, the analysis will consider a breakdown of the main individual parts composing the building envelope, by then combining alternative re-configurations in merged clusters with different energy and construction goals. Results will highlight the correlation between building skin construction strategies and the energy and cost parameters by identifying the cornerstones for enhancing efficiency. The outcomes, related to the total life cost, self-consumption/sufficiency, in combination with different building design options (façade, roof, balconies, surface orientations, etc.), provide a practical insight for researchers and professionals to identify renovation strategies by synergistically exploiting the solar active parts towards lower global costs and higher energy efficiency of the whole building system.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3827/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3827/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Muhammad Haroon; Nadeem Ahmed Sheikh; Abubakr Ayub; Rasikh Tariq; Farooq Sher; Aklilu Tesfamichael Baheta; Muhammad Imran;doi: 10.3390/en13195080
This study focused on investigating the bottoming power cycles operating with CO2-based binary mixture, taking into account exergetic, economic and exergo-environmental impact indices. The main intent is to assess the benefits of employing a CO2-based mixture working fluid in closed Brayton bottoming power cycles in comparison with pure CO2 working fluid. Firstly, selection criteria for the choice of suitable additive compound for CO2-based binary mixture is delineated and the composition of the binary mixture is decided based on required cycle minimum temperature. The decided CO2-C7H8 binary mixture with a 0.9 mole fraction of CO2 is analyzed in two cycle configurations: Simple regenerative cycle (SRC) and Partial heating cycle (PHC). Comparative analysis among two configurations with selected working fluid are carried out. Thermodynamic analyses at varying cycle pressure ratio shows that cycle with CO2-C7H8 mixture shows maximum power output and exergy efficiency at rather higher cycle pressure ratio compared to pure CO2 power cycles. PHC with CO2-C7H8 mixture shows 28.68% increment in exergy efficiency with the levelized cost of electricity (LCOE) 21.62% higher than pure CO2 PHC. Whereas, SRC with CO2-C7H8 mixture shows 25.17% increment in exergy efficiency with LCOE 57.14% higher than pure CO2 SRC. Besides showing lower economic value, cycles with a CO2-C7H8 mixture saves larger CO2 emissions and also shows greater exergo-environmental impact improvement and plant sustainability index.
CORE arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/19/5080/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/19/5080/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:MDPI AG Authors: Mehrdad Chahardowli; Hassan Sajadzadeh; Farshid Aram; Amir Mosavi;doi: 10.3390/en13112708
The united nations educational, scientific and cultural organization (UNESCO) considers the historic urban landscapes as the world heritages. Managing historic city centers and maintaining historic cores are the emerging challenges for sustainable urban planning. Today, the historic cores form an important part of the economic, social, environmental, and physical assets and capacities of contemporary cities, and play a strategic role in their development. One of the most important approaches to the development of central textures, especially in historical and cultural cities, is the sustainable urban regeneration approach, which encompasses all aspects of sustainability, such as the economic, social, cultural and environmental aspects. To maintain sustainability and regeneration of historic cores of cities, it is necessary to provide insight into the underlying characteristics of the local urbanization. Furthermore, the fundamental assets are to be investigated as indicators of sustainable regeneration and drivers of urban development. In the meantime, a variety of research and experience has taken place around the world, all of which has provided different criteria and indicators for the development of strategies for the historic cores of cities. The present study, through a meta-analytic and survey method, analyzing the experience and research reported in 139 theoretical and empirical papers in the last twenty years, seeks to provide a comprehensive conceptual model taking into account the criteria and indices of sustainable regeneration in historic cores of cities. The quality of the survey has been ensured using the preferred reporting items for systematic reviews and meta-analysis (PRISMA).
Oxford Brookes Unive... arrow_drop_down Oxford Brookes University: RADARArticle . 2020License: CC BYFull-Text: https://radar.brookes.ac.uk/radar/file/24d1653d-d5ca-4d9a-a3aa-808d6a402434/1/energies-13-02708.pdfData sources: Oxford Brookes University: RADARRecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAOxford Brookes University: RADAROther literature type . 2020License: CC BYData sources: Oxford Brookes University: RADARadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Oxford Brookes Unive... arrow_drop_down Oxford Brookes University: RADARArticle . 2020License: CC BYFull-Text: https://radar.brookes.ac.uk/radar/file/24d1653d-d5ca-4d9a-a3aa-808d6a402434/1/energies-13-02708.pdfData sources: Oxford Brookes University: RADARRecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAOxford Brookes University: RADAROther literature type . 2020License: CC BYData sources: Oxford Brookes University: RADARadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2019Embargo end date: 01 Jan 2018 France, ItalyPublisher:MDPI AG Tantet, Alexis; Concettini, Silvia; d'Ambrosio, Claudia; Thomopulos, Dimitri; Tankov, Peter; St��fanon, Marc; Drobinski, Philippe; Badosa, Jordi; Cr��ti, Anna; Thomopulos, Dimitri;handle: 11568/1013293
We develop an open-source Python software integrating flexibility needs from Variable Renewable Energies (VREs) in the development of regional energy mixes. It provides a flexible and extensible tool to researchers/engineers, and for education/outreach. It aims at evaluating and optimizing energy deployment strategies with higher shares of VRE, assessing the impact of new technologies and of climate variability and conducting sensitivity studies. Specifically, to limit the algorithm’s complexity, we avoid solving a full-mix cost-minimization problem by taking the mean and variance of the renewable production–demand ratio as proxies to balance services. Second, observations of VRE technologies being typically too short or nonexistent, the hourly demand and production are estimated from climate time series and fitted to available observations. We illustrate e4clim’s potential with an optimal recommissioning-study of the 2015 Italian PV-wind mix testing different climate data sources and strategies and assessing the impact of climate variability and the robustness of the results.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/22/4299/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di PisaArticle . 2019License: CC BYData sources: Archivio della Ricerca - Università di PisaÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)Université François-Rabelais de Tours: HALArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12224299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/22/4299/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di PisaArticle . 2019License: CC BYData sources: Archivio della Ricerca - Università di PisaÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)Université François-Rabelais de Tours: HALArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12224299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Funded by:SSHRCSSHRCAuthors: Hassan Qudrat-Ullah; Chinedu Miracle Nevo;doi: 10.3390/en15165953
This research investigates the relationships among renewable energy consumption, economic growth, and financial development in five sub-Saharan African nations utilizing panel data from 2000 to 2020. Econometric methods are used to ascertain the existence or absence of cross-sectional dependence and the short-run and long-run connections between the following factors: Pesaran cross-sectional dependence (CD) and cross-sectionally augmented IPS (CIPS) unit root tests, pooled mean group (PMG), and dynamic ordinary least squares (DOLS) estimations. The presence of cross-sectional dependence is found and represented with the CIPS unit root test. No significant short-run relationship is found between the variables of the study, yet a significant long-run relationship is present among them. A positive relationship exists between CO2 emissions and financial development, while financial development and renewable energy consumption are found to have negative relationships with CO2 emissions. The study also supports the scale effect of the environmental Kuznets curve hypothesis. Additionally, no causality is found among the variables, and impulse response and variance decomposition estimation are carried out to recommend future effects. Policy implications of findings are discussed, with accompanying suggestions.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/16/5953/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15165953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/16/5953/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15165953&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG A. G. Olabi; Tabbi Wilberforce; Enas Taha Sayed; Nabila Shehata; Abdul Hai Alami; Hussein M. Maghrabie; Mohammad Ali Abdelkareem;doi: 10.3390/en15228639
The sudden increase in the concentration of carbon dioxide (CO2) in the atmosphere due to the high dependency on fossil products has created the need for an urgent solution to mitigate this challenge. Global warming, which is a direct result of excessive CO2 emissions into the atmosphere, is one major issue that the world is trying to curb, especially in the 21st Century where most energy generation mediums operate using fossil products. This investigation considered a number of materials ideal for the capturing of CO2 in the post-combustion process. The application of aqueous ammonia, amine solutions, ionic liquids, and activated carbons is thoroughly discussed. Notable challenges are impeding their advancement, which are clearly expatiated in the report. Some merits and demerits of these technologies are also presented. Future research directions for each of these technologies are also analyzed and explained in detail. Furthermore, the impact of post-combustion CO2 capture on the circular economy is also presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228639&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15228639&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 United KingdomPublisher:MDPI AG Funded by:UKRI | FITS-LCD: Fabric Integrat...UKRI| FITS-LCD: Fabric Integrated Thermal Storage for Low-Carbon DwellingsOluleye, G; Hawkes, AD; Allison, J; Kelly, N; Clarke, J;doi: 10.3390/en11051095
handle: 10044/1/77483
In spite of the benefits from thermal energy storage (TES) integration in dwellings, the penetration rate in Europe is 5%. Effective fiscal policies are necessary to accelerate deployment. However, there is currently no direct support for TES in buildings compared to support for electricity storage. This could be due to lack of evidence to support incentivisation. In this study, a novel systematic framework is developed to provide a case in support of TES incentivisation. The model determines the costs, CO2 emissions, dispatch strategy and sizes of technologies, and TES for a domestic user under policy neutral and policy intensive scenarios. The model is applied to different building types in the UK. The model is applied to a case study for a detached dwelling in the UK (floor area of 122 m2), where heat demand is satisfied by a boiler and electricity imported from the grid. Results show that under a policy neutral scenario, integrating a micro-Combined Heat and Power (CHP) reduces the primary energy demand by 11%, CO2 emissions by 21%, but with a 16 year payback. Additional benefits from TES integration can pay for the investment within the first 9 years, reducing to 3.5–6 years when the CO2 levy is accounted for. Under a policy intensive scenario (for example considering the Feed in Tariff (FIT)), primary energy demand and CO2 emissions reduce by 17 and 33% respectively with a 5 year payback. In this case, the additional benefits for TES integration can pay for the investment in TES within the first 2 years. The framework developed is a useful tool is determining the role TES in decarbonising domestic energy systems.
CORE arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1095/pdfData sources: Multidisciplinary Digital Publishing InstituteImperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/77483Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/5/1095/pdfData sources: Multidisciplinary Digital Publishing InstituteImperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/77483Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2018Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11051095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United KingdomPublisher:MDPI AG Authors: Dhanuja Lekshmi J; Zakir Hussain Rather; Bikash C Pal;doi: 10.3390/en14248529
handle: 10044/1/93161
With diminishing fossil fuel resources and increasing environmental concerns, large-scale deployment of Renewable Energy Sources (RES) has accelerated the transition towards clean energy systems, leading to significant RES generation share in power systems worldwide. Among different RES, solar PV is receiving major focus as it is most abundant in nature compared to others, complimented by falling prices of PV technology. However, variable, intermittent and non-synchronous nature of PV power generation technology introduces several technical challenges, ranging from short-term issues, such as low inertia, frequency stability, voltage stability and small signal stability, to long-term issues, such as unit commitment and scheduling issues. Therefore, such technical issues often limit the amount of non-synchronous instantaneous power that can be securely accommodated by a grid. In this backdrop, this research work proposes a tool to estimate maximum PV penetration level that a given power system can securely accommodate for a given unit commitment interval. The proposed tool will consider voltage and frequency while estimating maximum PV power penetration of a system. The tool will be useful to a system operator in assessing grid stability and security under a given generation mix, network topology and PV penetration level. Besides estimating maximum PV penetration, the proposed tool provides useful inputs to the system operator which will allow the operator to take necessary actions to handle high PV penetration in a secure and stable manner.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8529/pdfData sources: Multidisciplinary Digital Publishing InstituteImperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/93161Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8529/pdfData sources: Multidisciplinary Digital Publishing InstituteImperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/93161Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 ItalyPublisher:MDPI AG Authors: Mattarelli, Enrico; Rinaldini, Carlo Alberto; Savioli, Tommaso;doi: 10.3390/en8043047
handle: 11380/1148224
Rape-seed biodiesel is an interesting option to address the problem of decreasing availability of conventional fossil fuels, as well as to reduce the CO2 emissions of internal combustion engines. The present paper describes an experimental campaign carried out on a current production 4-cylinder, 4-stroke naturally aspirated diesel engine, running on standard diesel fuel and on three different blends of rape-seed biodiesel (20%-50%-100%). Performance, emissions and in-cylinder pressure traces were measured at full load. It was found that the influence of rape-seed biodiesel in the fuel blend is not constant at each operating condition. However, as the biodiesel content increases, full load performance tends to drop, in particular brake specific fuel consumption (maximum worsening: +18%), while soot emission goes down. The maximum improvement observed in terms of soot concentration is 37.5%, at 1200 rpm. The combustion analysis revealed that the main differences among the fuels occur in the first phase of combustion: the burn rate is slower for biodiesel blends at low speeds, and faster at high.
Energies arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/4/3047/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8043047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 146visibility views 146 download downloads 172 Powered bymore_vert Energies arrow_drop_down EnergiesOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1996-1073/8/4/3047/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en8043047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Authors: Tonini F.; Sanvito F. D.; Colombelli F.; Colombo E.;doi: 10.3390/en15051902
handle: 11311/1208728
As it emerges from the literature, electricity access in rural contexts is deeply intertwined with socioeconomic dynamics. However, the advent of a reliable and sufficient source of electricity is not the sole driver that might contribute to local development. Indeed, complementary activities might have a crucial role in sustaining the development of rural communities as well as the electricity access. The current research addresses the lack of counterfactual scenarios in which the impact of complementary activities on electrification projects can be investigated. The authors introduce the case study of Matembwe village, a rural community in the Njombe region of Tanzania. The data collection includes the electricity consumption, number of electricity connections, and number of income-generating activities in a timespan ranging from 1989 to 2015. The analysis is based on system dynamics. The study considers different scenarios representing the dynamics related to the following complementary actions: access to market measures, access to credit measures, and access to usable skills. On the one hand, the study reveals that the effectiveness of the considered complementary actions is limited except from the access to microcredit which fosters an increase in electricity connections by 17%. On the other hand, both access to microcredit and the starting up of a local cooperative by CEFA Onlus that reinvests its profits in the local market impact the socio-economic dimension by 69% and 22%, respectively.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/5/1902/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15051902&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/5/1902/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15051902&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu