- home
- Advanced Search
- Energy Research
- Restricted
- Embargo
- BE
- Renewable Energy
- Energy Research
- Restricted
- Embargo
- BE
- Renewable Energy
description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Sebastien Lizin;Steven Van Passel;
Ellen De Schepper; Marc Dijk; +2 AuthorsSteven Van Passel
Steven Van Passel in OpenAIRESebastien Lizin;Steven Van Passel;
Ellen De Schepper; Marc Dijk; Julie Leroy; Catherine Delvenne;Steven Van Passel
Steven Van Passel in OpenAIREOrganic photovoltaics (OPV) have developed into a vast research area. Progress in various directions has made it difficult to monitor the technology's precise development state. We offer a patent landscape analysis over all OPV devices, their substrates and encapsulation materials to provide an overview of patenting activity from a historical, organizational, geographical and technological point of view. Such an exercise is instrumental for private companies and research institutes aiming at both internal or external technology creation. We discuss our findings in the context of the Industrial Life Cycle model and find OPV still residing in the fluid technology development phase. Technology development is still following an exponential growth path, with the majority of patents coming from the Asian continent and in general private companies. For devices, the main technological focus can be traced back to the " H01L-031" international patent classification (IPC) main group. For the queried substrates, the most attention has gone to glass, but paper and textile have drawn significant interest too. Finally, encapsulation is found to be a less mature research field given the smaller number of patent families. The latter shows that the technology has not matured to the level where processing is carried out on a commercial scale
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2013.01.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2013.01.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 PortugalPublisher:Elsevier BV Authors:Minghao Wu;
Minghao Wu
Minghao Wu in OpenAIREVasiliki Stratigaki;
Vasiliki Stratigaki
Vasiliki Stratigaki in OpenAIRETiago Ferradosa;
Tiago Ferradosa
Tiago Ferradosa in OpenAIREPaulo Rosa Santos;
+2 AuthorsPaulo Rosa Santos
Paulo Rosa Santos in OpenAIREMinghao Wu;
Minghao Wu
Minghao Wu in OpenAIREVasiliki Stratigaki;
Vasiliki Stratigaki
Vasiliki Stratigaki in OpenAIRETiago Ferradosa;
Tiago Ferradosa
Tiago Ferradosa in OpenAIREPaulo Rosa Santos;
Francisco Taveira Pinto;Paulo Rosa Santos
Paulo Rosa Santos in OpenAIREPeter Troch;
Peter Troch
Peter Troch in OpenAIREHydraulic experiments using physical scale models of monopile scour protections typically have high ex-perimental uncertainties and data scattering. These uncertainties may severely affect the accuracy of the experimental results and need to be analysed quantitatively. This paper presents a study on the quantification of experimental uncertainties in monopile scour protection damage tests following the Guide to the expression of Uncertainty in Measurement (GUM) (ISO, 2008). The uncertainty analysis is performed using the three-dimensional damage number S3D and the widely applied STAB number. Through the analysis of the S3D number from individual test and repeated tests, it is found that the uncertainty analysis method for an individual test can be efficiently applied to predict the experimental uncertainty. The wave peak period and the current velocity are identified as the two major sources of uncertainties for the S3D number. The flow turbulence and correlations between input parameters can be neglected when estimating the uncertainty. The uncertainty analysis of the STAB number shows that the experimental uncertainty due to measurement can be up to 5% to 7% of the obtained STAB result. This uncertainty range is wide in comparison with the narrow margin of a dynamic scour protection design in DNV's recent recommended practice (DNV-RP-0618). The uncertainty of the STAB number is more affected by the armour stone density, wave peak period and significant wave height.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.04.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2023.04.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 DenmarkPublisher:Elsevier BV Authors: Beels, C.;Troch, P.;
Troch, P.
Troch, P. in OpenAIREKofoed, Jens Peter;
Kofoed, Jens Peter
Kofoed, Jens Peter in OpenAIREFrigaard, Peter;
+6 AuthorsFrigaard, Peter
Frigaard, Peter in OpenAIREBeels, C.;Troch, P.;
Troch, P.
Troch, P. in OpenAIREKofoed, Jens Peter;
Kofoed, Jens Peter
Kofoed, Jens Peter in OpenAIREFrigaard, Peter;
Kringelum, Jon Vindahl; Kromann, C.; Heyman, P.; Donovan, M.; De Rouck, J.; De Backer, G.;Frigaard, Peter
Frigaard, Peter in OpenAIRETo generate a substantial amount of power, Wave Energy Converters (WECs) are arranged in several rows or in a ‘farm’. Both the power production and cost of a farm are lay-out dependent. In this paper, the wave power redistribution in and around three farm lay-outs in a near shore North Sea wave climate, is assessed numerically using a time-dependent mild-slope equation model. The modelling of the wave power redistribution is an efficient tool to assess the power production of a farm. Further, for each lay-out an optimal (low cost) submarine cable network is designed. The methodology to assess the power production and cost of a farm of WECs is applied to the Wave Dragon Wave Energy Converter (WDeWEC). The WDeWEC is a floating offshore converter of the overtopping type, which captures the water volume of overtopped waves in a basin above mean sea level and produces power when the water drains back to the sea through hydro turbines. It is observed that the cable cost is relatively small compared to the cost of the WDeWECs. As a result, WDeWECs should be installed in a lay-out to increase power production rather than decrease cable cost, taking spatial and safety considerations into account. WDeWECs arranged in a single line produce the highest amount of power, but require an available sea area with a large width (51 km). Installing a single line of WDeWECs in front of a farm of wind turbines increases the time window for accessing the wind farm (applied to Horns Rev II e significant wave height smaller than 1e2 m during 8 h at minimum) by 9e14%. 2011 Published by Elsevier Ltd.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 54 citations 54 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.05.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2018 ItalyPublisher:Elsevier BV Authors:Giovanni Mastrolonardo;
Markus Kelderer; Stefan Zerbe; Martina Boschiero; +2 AuthorsGiovanni Mastrolonardo
Giovanni Mastrolonardo in OpenAIREGiovanni Mastrolonardo;
Markus Kelderer; Stefan Zerbe; Martina Boschiero;Giovanni Mastrolonardo
Giovanni Mastrolonardo in OpenAIRECarla Nati;
Carla Nati
Carla Nati in OpenAIREGianni Picchi;
Gianni Picchi
Gianni Picchi in OpenAIREWoody crops such as orchards and olive groves require annual pruning operations, which leave abundant residues on the ground. These must be removed both for disease control and for facilitating the following tending activities. The resulting biomass can be managed as a waste or a by-product, in both cases incurring in a cost for farmers. A harvester prototype for collecting and comminuting apple pruning residues was tested and compared to a traditional mulcher. In particular, the study aimed at: 1) quantifying productivity and costs of the two systems, 2) evaluating the possible influence of apple variety, tree age and machine type on the productivity per hectare, and 3) estimating and comparing the energy balance of the two working options.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.07.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.07.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Priyangshu M. Sarma;Suman Bajracharya;
Suman Bajracharya;Suman Bajracharya
Suman Bajracharya in OpenAIREMohita Sharma;
+5 AuthorsMohita Sharma
Mohita Sharma in OpenAIREPriyangshu M. Sarma;Suman Bajracharya;
Suman Bajracharya;Suman Bajracharya
Suman Bajracharya in OpenAIREMohita Sharma;
Mohita Sharma; David P.B.T.B. Strik;Mohita Sharma
Mohita Sharma in OpenAIREDeepak Pant;
Xochitl Dominguez Benneton;Deepak Pant
Deepak Pant in OpenAIREGunda Mohanakrishna;
Gunda Mohanakrishna
Gunda Mohanakrishna in OpenAIREBioelectrochemical systems (BESs) are unique systems capable of converting chemical energy into electrical energy (and vice-versa) while employing microbes as catalysts. Such organic wastes including low-strength wastewaters and lignocellulosic biomass were converted into electricity with microbial fuel cells (MFCs). Likewise, electrical energy was used to produce hydrogen in microbial electrolysis cells (MECs) or other products including caustic and peroxide. BES were also designed to recover nutrients, metals or removal of recalcitrant compounds. Moreover, photosynthetic micro-organisms as well as higher plants were implemented to use solar energy for electricity generation. The diversity on microbial and enzymatic catalysts offered by nature allows a plurality of potential applications. As compared to conventional fuel cells, BESs operate under relatively mild conditions and do not use expensive precious metals as catalysts. The recently discovered microbial electrosynthesis (MES) of high-value chemicals has greatly expanded the horizon for BES. Newer concepts in application as well as development of alternative materials for electrodes, separators, catalysts along with innovative designs have made BES very promising technology. This article discusses the recent developments that have been made in BESs so far, with the emphasis on their various applications beyond electricity generation and resulting performances as well as existing limitations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2016.03.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 352 citations 352 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2016.03.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Luca Merlo; N. Van Dijk; R. Backhouse; Antonino S. Aricò;Stefania Siracusano;
Stefania Siracusano
Stefania Siracusano in OpenAIREVincenzo Baglio;
Vincenzo Baglio
Vincenzo Baglio in OpenAIREOne of main challenge of proton exchange membrane (PEM) water electrolysis is the achievement of a long-term durability exceeding 100 khours. Accordingly, degradation mechanisms of membrane electrode assemblies (MEAs) and stack components of PEM electrolysers deserve large attention. An important objective of the EU ELECTROHYPEM project was to develop components for PEM electrolysers with enhanced activity and stability in order to reduce stack and system costs and to improve efficiency, performance and durability. The focus of the project was concerning mainly with electrocatalysts and membranes development and validation of these materials in a PEM electrolyser. In this work, a first set of MEAs, used for 3500-5700 h in a PEM electrolyser, was investigated using electrochemical and physico-chemical techniques. The goal was to individuate key degradation issues and to provide a reliable estimation of the MEA endurance under real life operation. Specific approaches to mitigate the degradation mechanisms are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.02.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 89 citations 89 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.02.024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu