- home
- Advanced Search
- Energy Research
- 12. Responsible consumption
- CA
- Renewable Energy
- Energy Research
- 12. Responsible consumption
- CA
- Renewable Energy
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Zeinab Bakhshi; Shameem Jauffur; Dominic Frigon;Abstract Anaerobic digestion of sludge is one of the most widely used processes for biogas and energy production. Conventionally, anaerobic digesters are operated at 35 °C to overcome the hydrolysis rate-limiting step. However, the energy expenditure for heating anaerobic digesters may be significant. The feasibility of operating anaerobic digesters at low mesophilic temperature (20 °C) by combining sludge ozonation was studied. Operation of three anaerobic reactors for 350 days showed that integrating solids ozonation and anaerobic digestion at 20 °C led to a higher volatile suspended solids (VSS) destruction of 60% than anaerobic digestion at 35 °C with raw sludge. Methane production in the reactor at 20 °C with sludge ozonation was enhanced from 62.6 mL CH 4 /g VSS in to 71.3 mL CH 4 /g VSS in for the 35 °C digester without sludge ozonation. Energy analysis showed that the 20 °C-ozonated digester produced 35% more energy than the 35 °C digester, with a net energy balance of +174 GJ/d and +129 GJ/d, respectively. The 20 °C-ozonated digester had a higher Energy Sustainability Index (ESI) (2.88) than the 35 °C digester (2.33) suggesting a more energetically sustainable option.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.08.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.08.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Zeinab Bakhshi; Shameem Jauffur; Dominic Frigon;Abstract Anaerobic digestion of sludge is one of the most widely used processes for biogas and energy production. Conventionally, anaerobic digesters are operated at 35 °C to overcome the hydrolysis rate-limiting step. However, the energy expenditure for heating anaerobic digesters may be significant. The feasibility of operating anaerobic digesters at low mesophilic temperature (20 °C) by combining sludge ozonation was studied. Operation of three anaerobic reactors for 350 days showed that integrating solids ozonation and anaerobic digestion at 20 °C led to a higher volatile suspended solids (VSS) destruction of 60% than anaerobic digestion at 35 °C with raw sludge. Methane production in the reactor at 20 °C with sludge ozonation was enhanced from 62.6 mL CH 4 /g VSS in to 71.3 mL CH 4 /g VSS in for the 35 °C digester without sludge ozonation. Energy analysis showed that the 20 °C-ozonated digester produced 35% more energy than the 35 °C digester, with a net energy balance of +174 GJ/d and +129 GJ/d, respectively. The 20 °C-ozonated digester had a higher Energy Sustainability Index (ESI) (2.88) than the 35 °C digester (2.33) suggesting a more energetically sustainable option.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.08.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.08.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Authors: Adolfo Palombo; Annamaria Buonomano; Andreas K. Athienitis;handle: 11588/832338
Today, the use of renewable energies in buildings represents one of the main ways to reach a sustainable world. Whilst present buildings are still often energivorous systems, in the near future they will have to be converted to (or replaced by) zero energy buildings, also capable to export green energy (produced on-site by renewables) towards other buildings and/or users. This review article focuses on a selection of research papers, presented at the 16th International Conference on Building Simulation (BS 2019), regarding renewable energy applications, energy saving and comfort techniques for buildings. BS 2019 conference was organized in collaboration with the International Building Performance Simulation Association (IBPSA) and it was held at the Angelicum Congress Centre (San Tommaso d’Aquino Pontifex University) in Rome, Italy, during September 2-4, 2019. The conference was attended by 912 researchers and experts, with 660 presented research papers. The above-mentioned selection of papers is included in a dedicated Special Issue of the Renewable Energy - An International Journal (RENE), titled “Renewable energies: simulation tools and applications”. Reported studies are mostly dedicated to models, simulations, and optimization procedures of renewable energy devices. Specifically, photovoltaic systems, building integrated photovoltaic collectors, hybrid photovoltaic/thermal systems, solar thermal collectors as well as other energy efficiency tools are analysed through different simulation approaches and suitable optimization procedures. Attention is also paid to specific case studies related to innovative combinations of renewable energy devices and innovative envelope materials in different building typologies and weather zones. In some papers, solar energy is exploited for space heating and cooling purposes, while in other articles renewables or other energy tools are studied to achieve comfort targets, low grid dependencies, smart building/communities, and mainly the zero energy building goal.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.01.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.01.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Authors: Adolfo Palombo; Annamaria Buonomano; Andreas K. Athienitis;handle: 11588/832338
Today, the use of renewable energies in buildings represents one of the main ways to reach a sustainable world. Whilst present buildings are still often energivorous systems, in the near future they will have to be converted to (or replaced by) zero energy buildings, also capable to export green energy (produced on-site by renewables) towards other buildings and/or users. This review article focuses on a selection of research papers, presented at the 16th International Conference on Building Simulation (BS 2019), regarding renewable energy applications, energy saving and comfort techniques for buildings. BS 2019 conference was organized in collaboration with the International Building Performance Simulation Association (IBPSA) and it was held at the Angelicum Congress Centre (San Tommaso d’Aquino Pontifex University) in Rome, Italy, during September 2-4, 2019. The conference was attended by 912 researchers and experts, with 660 presented research papers. The above-mentioned selection of papers is included in a dedicated Special Issue of the Renewable Energy - An International Journal (RENE), titled “Renewable energies: simulation tools and applications”. Reported studies are mostly dedicated to models, simulations, and optimization procedures of renewable energy devices. Specifically, photovoltaic systems, building integrated photovoltaic collectors, hybrid photovoltaic/thermal systems, solar thermal collectors as well as other energy efficiency tools are analysed through different simulation approaches and suitable optimization procedures. Attention is also paid to specific case studies related to innovative combinations of renewable energy devices and innovative envelope materials in different building typologies and weather zones. In some papers, solar energy is exploited for space heating and cooling purposes, while in other articles renewables or other energy tools are studied to achieve comfort targets, low grid dependencies, smart building/communities, and mainly the zero energy building goal.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.01.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.01.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 Mexico, Canada, Canada, Canada, United StatesPublisher:Elsevier BV Stephen, James Duncan; Mabee, Warren E.; Pribowo, Amadeus; Pledger, Sean; Hart, Randy; Tallio, Sheldon; Bull, Gary Q;handle: 2429/58393
Most residents of Canada’s 300 remote communities do not have access to natural gas and must rely upon higher cost and/or less convenient heat sources such as electric heat, heating (furnace) oil, propane, and/or cord wood. This research sought to determine the techno-economic feasibility of increasing biomass utilization for space and hot water heating in remote, off-grid communities in Canada and abroad using a two-option case study approach: 1) a district energy system (DES) connected to a centralized heat generation energy centre fuelled by wood chips; and 2) a decentralized heating option with wood pellet boilers in each individual residence and commercial building. The Nuxalk First Nation Bella Coola community was selected as a case study, with GIS, ground surveys, and climate data used to design DES routes and determine heat demand. It was determined that biomass has the potential to reduce heat costs, reduce the cost of electricity subsidization for electrical utilities, reduce greenhouse gas emissions, and increase energy independence of remote communities. Although results of the analysis are site-specific, the research methodology and general findings on heat-source economic competitiveness could be utilized to support increased bioheat production in remote, off-grid communities for improved socio-economic and environmental outcomes.
cIRcle arrow_drop_down cIRcleArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/2429/58393Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.08.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert cIRcle arrow_drop_down cIRcleArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/2429/58393Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.08.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 Mexico, Canada, Canada, Canada, United StatesPublisher:Elsevier BV Stephen, James Duncan; Mabee, Warren E.; Pribowo, Amadeus; Pledger, Sean; Hart, Randy; Tallio, Sheldon; Bull, Gary Q;handle: 2429/58393
Most residents of Canada’s 300 remote communities do not have access to natural gas and must rely upon higher cost and/or less convenient heat sources such as electric heat, heating (furnace) oil, propane, and/or cord wood. This research sought to determine the techno-economic feasibility of increasing biomass utilization for space and hot water heating in remote, off-grid communities in Canada and abroad using a two-option case study approach: 1) a district energy system (DES) connected to a centralized heat generation energy centre fuelled by wood chips; and 2) a decentralized heating option with wood pellet boilers in each individual residence and commercial building. The Nuxalk First Nation Bella Coola community was selected as a case study, with GIS, ground surveys, and climate data used to design DES routes and determine heat demand. It was determined that biomass has the potential to reduce heat costs, reduce the cost of electricity subsidization for electrical utilities, reduce greenhouse gas emissions, and increase energy independence of remote communities. Although results of the analysis are site-specific, the research methodology and general findings on heat-source economic competitiveness could be utilized to support increased bioheat production in remote, off-grid communities for improved socio-economic and environmental outcomes.
cIRcle arrow_drop_down cIRcleArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/2429/58393Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.08.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert cIRcle arrow_drop_down cIRcleArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/2429/58393Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.08.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SpainPublisher:Elsevier BV Funded by:EC | EFFIBUILDINGSEC| EFFIBUILDINGSMenoufi, Karim Ali Ibrahim; Castell, Albert; Farid, Mohammed M.; Boer, Dieter; Cabeza, Luisa F.;handle: 10459.1/47813
Abstract Among the research activities that aim at reducing energy consumption in buildings and their impact on the environment is an experimental set-up that has several house-shaped cubicles constructed in Puigverd de Lleida (Spain). Assessing the environmental impact through studying the manufacturing, operational and disposal phases of these cubicles have been done in previous research. The objective of this paper is to investigate the use of esters as PCM in order to estimate its environmental impact in building envelopes in comparison to the use of paraffin or salt hydrates through a theoretical study. The evaluation of the environmental impact of this type of PCM material is conducted using Life Cycle Assessment (LCA) based on the Eco-indicator 99 method. It is found that the impact of ester used as PCM presents slightly better results than the case of using salt hydrates during the manufacturing impact. On the other hand, the use of salt hydrates or ester as PCM in the cubicles results in an impact reduction of 9% and 10.5% respectively, compared to the case of using paraffin.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2012.10.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 59 citations 59 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2012.10.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SpainPublisher:Elsevier BV Funded by:EC | EFFIBUILDINGSEC| EFFIBUILDINGSMenoufi, Karim Ali Ibrahim; Castell, Albert; Farid, Mohammed M.; Boer, Dieter; Cabeza, Luisa F.;handle: 10459.1/47813
Abstract Among the research activities that aim at reducing energy consumption in buildings and their impact on the environment is an experimental set-up that has several house-shaped cubicles constructed in Puigverd de Lleida (Spain). Assessing the environmental impact through studying the manufacturing, operational and disposal phases of these cubicles have been done in previous research. The objective of this paper is to investigate the use of esters as PCM in order to estimate its environmental impact in building envelopes in comparison to the use of paraffin or salt hydrates through a theoretical study. The evaluation of the environmental impact of this type of PCM material is conducted using Life Cycle Assessment (LCA) based on the Eco-indicator 99 method. It is found that the impact of ester used as PCM presents slightly better results than the case of using salt hydrates during the manufacturing impact. On the other hand, the use of salt hydrates or ester as PCM in the cubicles results in an impact reduction of 9% and 10.5% respectively, compared to the case of using paraffin.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2012.10.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 59 citations 59 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2012.10.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Negar Daemi; Magdalena M. Krol;Abstract The environmental impacts and unsustainability of fossil fuel-based heating and cooling systems has encouraged a worldwide interest in developing sustainable sources of energy and complementary technologies for heating/cooling purposes. One of these technologies is ground source heat pump (GSHP) systems that use the ubiquitous low-enthalpy ground source heat found in the shallow subsurface and represents a sustainable way of heating and cooling homes and buildings. GSHPs can be used to extract or inject subsurface heat by installing boreholes that circulate an antifreeze-based carrier fluid which is cooled or heated through the subsurface. Although GSHPs have many advantages, they might develop subsurface thermal plumes, which can affect the efficiency and sustainability of the system and other subsurface infrastructures. In the present research, the effect of a multi-borehole vertical GSHP system designed to deliver annual heating and cooling to an office building located in three Canadian cities was examined. This was done using a three-dimensional model, developed in FEFLOW, that simulated a hypothetical GSHP system in all three cities. It was found that the city with the highest thermal load resulted in the biggest subsurface thermal plume showing a direct connection between building thermal load and thermal plumes. Cyclical simulations for 10 years showed that the plumes grew in both size and temperature disturbance after the 10-year operation. The developed model can be used to determine the thermal affected zone of a GSHP system to aid in planning of other subsurface infrastructures in that zone.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.11.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.11.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Negar Daemi; Magdalena M. Krol;Abstract The environmental impacts and unsustainability of fossil fuel-based heating and cooling systems has encouraged a worldwide interest in developing sustainable sources of energy and complementary technologies for heating/cooling purposes. One of these technologies is ground source heat pump (GSHP) systems that use the ubiquitous low-enthalpy ground source heat found in the shallow subsurface and represents a sustainable way of heating and cooling homes and buildings. GSHPs can be used to extract or inject subsurface heat by installing boreholes that circulate an antifreeze-based carrier fluid which is cooled or heated through the subsurface. Although GSHPs have many advantages, they might develop subsurface thermal plumes, which can affect the efficiency and sustainability of the system and other subsurface infrastructures. In the present research, the effect of a multi-borehole vertical GSHP system designed to deliver annual heating and cooling to an office building located in three Canadian cities was examined. This was done using a three-dimensional model, developed in FEFLOW, that simulated a hypothetical GSHP system in all three cities. It was found that the city with the highest thermal load resulted in the biggest subsurface thermal plume showing a direct connection between building thermal load and thermal plumes. Cyclical simulations for 10 years showed that the plumes grew in both size and temperature disturbance after the 10-year operation. The developed model can be used to determine the thermal affected zone of a GSHP system to aid in planning of other subsurface infrastructures in that zone.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.11.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.11.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 CanadaPublisher:Elsevier BV Authors: Ali Khosravanipour Mostafazadeh; Maria Samantha De La Torre; Yessika Padilla; Patrick Drogui; +5 AuthorsAli Khosravanipour Mostafazadeh; Maria Samantha De La Torre; Yessika Padilla; Patrick Drogui; Satinder Kaur Brar; Rajeshwar Dayal Tyagi; Yann Le Bihan; Gerardo Buelna; Pablo Gortares Moroyoqui;Abstract The biodiesel industry produces around 10% w/w crude glycerol. This product has great potential to be valorized to obtain more valuable chemicals. Among all upgrading techniques of no-valuable crude glycerol, the electrochemical conversion is a promising technology. In this study, the green electrochemical conversion of glycerol into value-added products was investigated and optimized in a batch electro-catalytic reactor with a 450 ml working volume using platinum-based electrodes. The redox of glycerol in different solutions was studied by cyclic voltammetric study, the electrode behaviour was explored under chronopotentiometry/chronoamperometry conditions, the kinetics of glycerol consumption was investigated, and the electrode passivation/deactivation was studied by SEM (Scanning Electron Microscope), EDS (energy-dispersive X-ray spectroscopy), and regression models. The maximum non-acidic (dihydroxyacetone/hydroxyacetone or acetol/glycidol) and organic acids (acetic acid, lactic acid, formic acid) formations were optimized using response surface methodology (RSM). The effects of the treatment time, current intensity, type of anode electrode, pH and glycerol concentration were examined. Products concentrations and distributions, reaction mechanism and pathway were also investigated. The results showed that under strong acidic conditions (HCl; pH = 1.4), the highest solvent production (yield of 55%) was achieved using Pt electrode, at a current intensity of 0.31 A (5 mA/cm2).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.03.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.03.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 CanadaPublisher:Elsevier BV Authors: Ali Khosravanipour Mostafazadeh; Maria Samantha De La Torre; Yessika Padilla; Patrick Drogui; +5 AuthorsAli Khosravanipour Mostafazadeh; Maria Samantha De La Torre; Yessika Padilla; Patrick Drogui; Satinder Kaur Brar; Rajeshwar Dayal Tyagi; Yann Le Bihan; Gerardo Buelna; Pablo Gortares Moroyoqui;Abstract The biodiesel industry produces around 10% w/w crude glycerol. This product has great potential to be valorized to obtain more valuable chemicals. Among all upgrading techniques of no-valuable crude glycerol, the electrochemical conversion is a promising technology. In this study, the green electrochemical conversion of glycerol into value-added products was investigated and optimized in a batch electro-catalytic reactor with a 450 ml working volume using platinum-based electrodes. The redox of glycerol in different solutions was studied by cyclic voltammetric study, the electrode behaviour was explored under chronopotentiometry/chronoamperometry conditions, the kinetics of glycerol consumption was investigated, and the electrode passivation/deactivation was studied by SEM (Scanning Electron Microscope), EDS (energy-dispersive X-ray spectroscopy), and regression models. The maximum non-acidic (dihydroxyacetone/hydroxyacetone or acetol/glycidol) and organic acids (acetic acid, lactic acid, formic acid) formations were optimized using response surface methodology (RSM). The effects of the treatment time, current intensity, type of anode electrode, pH and glycerol concentration were examined. Products concentrations and distributions, reaction mechanism and pathway were also investigated. The results showed that under strong acidic conditions (HCl; pH = 1.4), the highest solvent production (yield of 55%) was achieved using Pt electrode, at a current intensity of 0.31 A (5 mA/cm2).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.03.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.03.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Azfarizal Mukhtar; Mohd Zamri Yusoff; Khai Ching Ng;Abstract The impact of global warming has urged a prudent spending of energy in the building sector nowadays. In general, a typical HVAC system consumes about 60%–70% of the total energy consumption of a building. Therefore, designing an energy-efficient HVAC system is essential to alleviate the worsening greenhouse effect. Recent research works have reported that geothermal energy coupled with optimal insulation is the best approach in minimising the energy consumption. Thus, we attempted to analyse the thermal performance of a naturally-ventilated underground shelter in a hot and humid country such as Malaysia. We proposed an optimal design to enhance the sustainability of the low-energy building. The model was numerically simulated using CFD, and a statistical surrogate model was implemented for obtaining the optimal design. The findings indicated that the room temperature of the shelter was significantly lower than the outdoor temperature during the hottest month and vice-versa during the coldest month. Moreover, the proposed optimal design showed about 3.4% increase in ventilation rate and about 2.8% decrease in room temperature as compared to the previous design. In general, the current work could be used as a guideline for designing low-energy building in Malaysia.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.02.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.02.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Azfarizal Mukhtar; Mohd Zamri Yusoff; Khai Ching Ng;Abstract The impact of global warming has urged a prudent spending of energy in the building sector nowadays. In general, a typical HVAC system consumes about 60%–70% of the total energy consumption of a building. Therefore, designing an energy-efficient HVAC system is essential to alleviate the worsening greenhouse effect. Recent research works have reported that geothermal energy coupled with optimal insulation is the best approach in minimising the energy consumption. Thus, we attempted to analyse the thermal performance of a naturally-ventilated underground shelter in a hot and humid country such as Malaysia. We proposed an optimal design to enhance the sustainability of the low-energy building. The model was numerically simulated using CFD, and a statistical surrogate model was implemented for obtaining the optimal design. The findings indicated that the room temperature of the shelter was significantly lower than the outdoor temperature during the hottest month and vice-versa during the coldest month. Moreover, the proposed optimal design showed about 3.4% increase in ventilation rate and about 2.8% decrease in room temperature as compared to the previous design. In general, the current work could be used as a guideline for designing low-energy building in Malaysia.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.02.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.02.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Nathan Curry; Pragasen Pillay;Abstract Anaerobic digestion applied to the organic waste produced in urban environments could provide a critical solution to growing garbage problems while simultaneously reducing external energy requirements. As landfills across Canada and the rest of the world are filled to their limits, a carbon-neutral process which can locally generate electricity and heat while providing up to 50% volatile solid reduction is something to be seriously considered. This paper investigates the feasibility of urban anaerobic digestion, presents four techniques for biogas estimation – ultimate analysis, yield from molecular formula analysis, a novel computer simulation technique using Anaerobic Digestion Model #1 (ADM1), and a literature review of experimentally determined biogas yields. In addition, a case study for small-scale anaerobic digestion system design is presented for an urban building.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.10.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu229 citations 229 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.10.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Nathan Curry; Pragasen Pillay;Abstract Anaerobic digestion applied to the organic waste produced in urban environments could provide a critical solution to growing garbage problems while simultaneously reducing external energy requirements. As landfills across Canada and the rest of the world are filled to their limits, a carbon-neutral process which can locally generate electricity and heat while providing up to 50% volatile solid reduction is something to be seriously considered. This paper investigates the feasibility of urban anaerobic digestion, presents four techniques for biogas estimation – ultimate analysis, yield from molecular formula analysis, a novel computer simulation technique using Anaerobic Digestion Model #1 (ADM1), and a literature review of experimentally determined biogas yields. In addition, a case study for small-scale anaerobic digestion system design is presented for an urban building.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.10.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu229 citations 229 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.10.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Mohammad Sameti; Fariborz Haghighat;Abstract This study applies a mathematical programming procedure to model the optimal design and planning of a new district which satisfies two features of the 4th generation district heating systems: energy reciprocity and on-site generation. The aim of the computational model is to investigate the effect of energy reciprocity (energy exchange among the buildings) as well as to find the best way to select the equipment among various candidates (capacities), the pipeline network among the buildings, and their electrical connections. The objective function includes the annualized overall capital and operation costs for the district along with the benefits of selling electricity to the grid. The distributed energy supply consists of heating, cooling, and power networks, several CHP technologies, solar array, chillers, and auxiliary boilers. The performance of the model for poly-generation was evaluated for designing the new part of Suurstoffi district situated in Risch Rotkreuz, Switzerland with seven residential and office complexes under four different scenarios. Allowing heat exchange among the buildings leads to 25% reduction in total annualized cost and 5% reduction in emission compared to the conventional districts. Removing the network and installation of PV and CHPs results in 9% reduction in emission and 11% reduction in cost. Simultaneous heat and electricity exchange results in a higher reduction in total annualized cost equal to 40% of the base scenario.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.06.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.06.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Mohammad Sameti; Fariborz Haghighat;Abstract This study applies a mathematical programming procedure to model the optimal design and planning of a new district which satisfies two features of the 4th generation district heating systems: energy reciprocity and on-site generation. The aim of the computational model is to investigate the effect of energy reciprocity (energy exchange among the buildings) as well as to find the best way to select the equipment among various candidates (capacities), the pipeline network among the buildings, and their electrical connections. The objective function includes the annualized overall capital and operation costs for the district along with the benefits of selling electricity to the grid. The distributed energy supply consists of heating, cooling, and power networks, several CHP technologies, solar array, chillers, and auxiliary boilers. The performance of the model for poly-generation was evaluated for designing the new part of Suurstoffi district situated in Risch Rotkreuz, Switzerland with seven residential and office complexes under four different scenarios. Allowing heat exchange among the buildings leads to 25% reduction in total annualized cost and 5% reduction in emission compared to the conventional districts. Removing the network and installation of PV and CHPs results in 9% reduction in emission and 11% reduction in cost. Simultaneous heat and electricity exchange results in a higher reduction in total annualized cost equal to 40% of the base scenario.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.06.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.06.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 CanadaPublisher:Elsevier BV Authors: Robertson, Gilles; Adiningtyas, Kusuma Virginna; Ebrahim, Sayed Ahmed; Scoles, Ludmila; +2 AuthorsRobertson, Gilles; Adiningtyas, Kusuma Virginna; Ebrahim, Sayed Ahmed; Scoles, Ludmila; Baranova, Elena A.; Singh, Devinder;Abstract Asphaltenes, the heaviest and most polar components of crudes, are generally associated with considerable operational issues in refineries. In order to understand potential operational issues during upgrading/processing of bio-crudes, structural and thermal behaviour of asphaltenes derived from bio-crude (bio-asphaltenes) from hydrothermal liquefaction of food-waste and wood residues were compared with petroleum derived asphaltenes derived from bitumen. Structural analysis using nuclear magnetic resonance and elemental analysis revealed 7 aromatic rings per unit structure for bitumen asphaltenes, 4 for food-waste asphaltenes, and 3 for wood asphaltenes. The calculated molecular weight per unit structure followed the order: bitumen asphaltenes (589–636 g mol−1) > food-waste derived asphaltenes (338–358 g mol−1)> wood residue derived asphaltenes (268–274 g mol−1). The carbon residues using thermal gravimetric analysis (bitumen asphaltenes = 40%, bio-asphaltenes = 19–25%) and glass transition temperature (bitumen asphaltenes = 80 °C, bio-asphaltenes = 4–64 °C) followed the same order. These results indicate a very different structural and thermal behaviour for petroleum and bio-asphaltenes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.03.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.03.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 CanadaPublisher:Elsevier BV Authors: Robertson, Gilles; Adiningtyas, Kusuma Virginna; Ebrahim, Sayed Ahmed; Scoles, Ludmila; +2 AuthorsRobertson, Gilles; Adiningtyas, Kusuma Virginna; Ebrahim, Sayed Ahmed; Scoles, Ludmila; Baranova, Elena A.; Singh, Devinder;Abstract Asphaltenes, the heaviest and most polar components of crudes, are generally associated with considerable operational issues in refineries. In order to understand potential operational issues during upgrading/processing of bio-crudes, structural and thermal behaviour of asphaltenes derived from bio-crude (bio-asphaltenes) from hydrothermal liquefaction of food-waste and wood residues were compared with petroleum derived asphaltenes derived from bitumen. Structural analysis using nuclear magnetic resonance and elemental analysis revealed 7 aromatic rings per unit structure for bitumen asphaltenes, 4 for food-waste asphaltenes, and 3 for wood asphaltenes. The calculated molecular weight per unit structure followed the order: bitumen asphaltenes (589–636 g mol−1) > food-waste derived asphaltenes (338–358 g mol−1)> wood residue derived asphaltenes (268–274 g mol−1). The carbon residues using thermal gravimetric analysis (bitumen asphaltenes = 40%, bio-asphaltenes = 19–25%) and glass transition temperature (bitumen asphaltenes = 80 °C, bio-asphaltenes = 4–64 °C) followed the same order. These results indicate a very different structural and thermal behaviour for petroleum and bio-asphaltenes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.03.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.03.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Zeinab Bakhshi; Shameem Jauffur; Dominic Frigon;Abstract Anaerobic digestion of sludge is one of the most widely used processes for biogas and energy production. Conventionally, anaerobic digesters are operated at 35 °C to overcome the hydrolysis rate-limiting step. However, the energy expenditure for heating anaerobic digesters may be significant. The feasibility of operating anaerobic digesters at low mesophilic temperature (20 °C) by combining sludge ozonation was studied. Operation of three anaerobic reactors for 350 days showed that integrating solids ozonation and anaerobic digestion at 20 °C led to a higher volatile suspended solids (VSS) destruction of 60% than anaerobic digestion at 35 °C with raw sludge. Methane production in the reactor at 20 °C with sludge ozonation was enhanced from 62.6 mL CH 4 /g VSS in to 71.3 mL CH 4 /g VSS in for the 35 °C digester without sludge ozonation. Energy analysis showed that the 20 °C-ozonated digester produced 35% more energy than the 35 °C digester, with a net energy balance of +174 GJ/d and +129 GJ/d, respectively. The 20 °C-ozonated digester had a higher Energy Sustainability Index (ESI) (2.88) than the 35 °C digester (2.33) suggesting a more energetically sustainable option.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.08.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.08.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Zeinab Bakhshi; Shameem Jauffur; Dominic Frigon;Abstract Anaerobic digestion of sludge is one of the most widely used processes for biogas and energy production. Conventionally, anaerobic digesters are operated at 35 °C to overcome the hydrolysis rate-limiting step. However, the energy expenditure for heating anaerobic digesters may be significant. The feasibility of operating anaerobic digesters at low mesophilic temperature (20 °C) by combining sludge ozonation was studied. Operation of three anaerobic reactors for 350 days showed that integrating solids ozonation and anaerobic digestion at 20 °C led to a higher volatile suspended solids (VSS) destruction of 60% than anaerobic digestion at 35 °C with raw sludge. Methane production in the reactor at 20 °C with sludge ozonation was enhanced from 62.6 mL CH 4 /g VSS in to 71.3 mL CH 4 /g VSS in for the 35 °C digester without sludge ozonation. Energy analysis showed that the 20 °C-ozonated digester produced 35% more energy than the 35 °C digester, with a net energy balance of +174 GJ/d and +129 GJ/d, respectively. The 20 °C-ozonated digester had a higher Energy Sustainability Index (ESI) (2.88) than the 35 °C digester (2.33) suggesting a more energetically sustainable option.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.08.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2017.08.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Authors: Adolfo Palombo; Annamaria Buonomano; Andreas K. Athienitis;handle: 11588/832338
Today, the use of renewable energies in buildings represents one of the main ways to reach a sustainable world. Whilst present buildings are still often energivorous systems, in the near future they will have to be converted to (or replaced by) zero energy buildings, also capable to export green energy (produced on-site by renewables) towards other buildings and/or users. This review article focuses on a selection of research papers, presented at the 16th International Conference on Building Simulation (BS 2019), regarding renewable energy applications, energy saving and comfort techniques for buildings. BS 2019 conference was organized in collaboration with the International Building Performance Simulation Association (IBPSA) and it was held at the Angelicum Congress Centre (San Tommaso d’Aquino Pontifex University) in Rome, Italy, during September 2-4, 2019. The conference was attended by 912 researchers and experts, with 660 presented research papers. The above-mentioned selection of papers is included in a dedicated Special Issue of the Renewable Energy - An International Journal (RENE), titled “Renewable energies: simulation tools and applications”. Reported studies are mostly dedicated to models, simulations, and optimization procedures of renewable energy devices. Specifically, photovoltaic systems, building integrated photovoltaic collectors, hybrid photovoltaic/thermal systems, solar thermal collectors as well as other energy efficiency tools are analysed through different simulation approaches and suitable optimization procedures. Attention is also paid to specific case studies related to innovative combinations of renewable energy devices and innovative envelope materials in different building typologies and weather zones. In some papers, solar energy is exploited for space heating and cooling purposes, while in other articles renewables or other energy tools are studied to achieve comfort targets, low grid dependencies, smart building/communities, and mainly the zero energy building goal.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.01.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.01.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Elsevier BV Authors: Adolfo Palombo; Annamaria Buonomano; Andreas K. Athienitis;handle: 11588/832338
Today, the use of renewable energies in buildings represents one of the main ways to reach a sustainable world. Whilst present buildings are still often energivorous systems, in the near future they will have to be converted to (or replaced by) zero energy buildings, also capable to export green energy (produced on-site by renewables) towards other buildings and/or users. This review article focuses on a selection of research papers, presented at the 16th International Conference on Building Simulation (BS 2019), regarding renewable energy applications, energy saving and comfort techniques for buildings. BS 2019 conference was organized in collaboration with the International Building Performance Simulation Association (IBPSA) and it was held at the Angelicum Congress Centre (San Tommaso d’Aquino Pontifex University) in Rome, Italy, during September 2-4, 2019. The conference was attended by 912 researchers and experts, with 660 presented research papers. The above-mentioned selection of papers is included in a dedicated Special Issue of the Renewable Energy - An International Journal (RENE), titled “Renewable energies: simulation tools and applications”. Reported studies are mostly dedicated to models, simulations, and optimization procedures of renewable energy devices. Specifically, photovoltaic systems, building integrated photovoltaic collectors, hybrid photovoltaic/thermal systems, solar thermal collectors as well as other energy efficiency tools are analysed through different simulation approaches and suitable optimization procedures. Attention is also paid to specific case studies related to innovative combinations of renewable energy devices and innovative envelope materials in different building typologies and weather zones. In some papers, solar energy is exploited for space heating and cooling purposes, while in other articles renewables or other energy tools are studied to achieve comfort targets, low grid dependencies, smart building/communities, and mainly the zero energy building goal.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.01.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.01.071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 Mexico, Canada, Canada, Canada, United StatesPublisher:Elsevier BV Stephen, James Duncan; Mabee, Warren E.; Pribowo, Amadeus; Pledger, Sean; Hart, Randy; Tallio, Sheldon; Bull, Gary Q;handle: 2429/58393
Most residents of Canada’s 300 remote communities do not have access to natural gas and must rely upon higher cost and/or less convenient heat sources such as electric heat, heating (furnace) oil, propane, and/or cord wood. This research sought to determine the techno-economic feasibility of increasing biomass utilization for space and hot water heating in remote, off-grid communities in Canada and abroad using a two-option case study approach: 1) a district energy system (DES) connected to a centralized heat generation energy centre fuelled by wood chips; and 2) a decentralized heating option with wood pellet boilers in each individual residence and commercial building. The Nuxalk First Nation Bella Coola community was selected as a case study, with GIS, ground surveys, and climate data used to design DES routes and determine heat demand. It was determined that biomass has the potential to reduce heat costs, reduce the cost of electricity subsidization for electrical utilities, reduce greenhouse gas emissions, and increase energy independence of remote communities. Although results of the analysis are site-specific, the research methodology and general findings on heat-source economic competitiveness could be utilized to support increased bioheat production in remote, off-grid communities for improved socio-economic and environmental outcomes.
cIRcle arrow_drop_down cIRcleArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/2429/58393Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.08.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert cIRcle arrow_drop_down cIRcleArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/2429/58393Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.08.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016 Mexico, Canada, Canada, Canada, United StatesPublisher:Elsevier BV Stephen, James Duncan; Mabee, Warren E.; Pribowo, Amadeus; Pledger, Sean; Hart, Randy; Tallio, Sheldon; Bull, Gary Q;handle: 2429/58393
Most residents of Canada’s 300 remote communities do not have access to natural gas and must rely upon higher cost and/or less convenient heat sources such as electric heat, heating (furnace) oil, propane, and/or cord wood. This research sought to determine the techno-economic feasibility of increasing biomass utilization for space and hot water heating in remote, off-grid communities in Canada and abroad using a two-option case study approach: 1) a district energy system (DES) connected to a centralized heat generation energy centre fuelled by wood chips; and 2) a decentralized heating option with wood pellet boilers in each individual residence and commercial building. The Nuxalk First Nation Bella Coola community was selected as a case study, with GIS, ground surveys, and climate data used to design DES routes and determine heat demand. It was determined that biomass has the potential to reduce heat costs, reduce the cost of electricity subsidization for electrical utilities, reduce greenhouse gas emissions, and increase energy independence of remote communities. Although results of the analysis are site-specific, the research methodology and general findings on heat-source economic competitiveness could be utilized to support increased bioheat production in remote, off-grid communities for improved socio-economic and environmental outcomes.
cIRcle arrow_drop_down cIRcleArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/2429/58393Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.08.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert cIRcle arrow_drop_down cIRcleArticle . 2016License: CC BY NC NDFull-Text: http://hdl.handle.net/2429/58393Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2015.08.048&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SpainPublisher:Elsevier BV Funded by:EC | EFFIBUILDINGSEC| EFFIBUILDINGSMenoufi, Karim Ali Ibrahim; Castell, Albert; Farid, Mohammed M.; Boer, Dieter; Cabeza, Luisa F.;handle: 10459.1/47813
Abstract Among the research activities that aim at reducing energy consumption in buildings and their impact on the environment is an experimental set-up that has several house-shaped cubicles constructed in Puigverd de Lleida (Spain). Assessing the environmental impact through studying the manufacturing, operational and disposal phases of these cubicles have been done in previous research. The objective of this paper is to investigate the use of esters as PCM in order to estimate its environmental impact in building envelopes in comparison to the use of paraffin or salt hydrates through a theoretical study. The evaluation of the environmental impact of this type of PCM material is conducted using Life Cycle Assessment (LCA) based on the Eco-indicator 99 method. It is found that the impact of ester used as PCM presents slightly better results than the case of using salt hydrates during the manufacturing impact. On the other hand, the use of salt hydrates or ester as PCM in the cubicles results in an impact reduction of 9% and 10.5% respectively, compared to the case of using paraffin.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2012.10.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 59 citations 59 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2012.10.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 SpainPublisher:Elsevier BV Funded by:EC | EFFIBUILDINGSEC| EFFIBUILDINGSMenoufi, Karim Ali Ibrahim; Castell, Albert; Farid, Mohammed M.; Boer, Dieter; Cabeza, Luisa F.;handle: 10459.1/47813
Abstract Among the research activities that aim at reducing energy consumption in buildings and their impact on the environment is an experimental set-up that has several house-shaped cubicles constructed in Puigverd de Lleida (Spain). Assessing the environmental impact through studying the manufacturing, operational and disposal phases of these cubicles have been done in previous research. The objective of this paper is to investigate the use of esters as PCM in order to estimate its environmental impact in building envelopes in comparison to the use of paraffin or salt hydrates through a theoretical study. The evaluation of the environmental impact of this type of PCM material is conducted using Life Cycle Assessment (LCA) based on the Eco-indicator 99 method. It is found that the impact of ester used as PCM presents slightly better results than the case of using salt hydrates during the manufacturing impact. On the other hand, the use of salt hydrates or ester as PCM in the cubicles results in an impact reduction of 9% and 10.5% respectively, compared to the case of using paraffin.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2012.10.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 59 citations 59 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2012.10.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Negar Daemi; Magdalena M. Krol;Abstract The environmental impacts and unsustainability of fossil fuel-based heating and cooling systems has encouraged a worldwide interest in developing sustainable sources of energy and complementary technologies for heating/cooling purposes. One of these technologies is ground source heat pump (GSHP) systems that use the ubiquitous low-enthalpy ground source heat found in the shallow subsurface and represents a sustainable way of heating and cooling homes and buildings. GSHPs can be used to extract or inject subsurface heat by installing boreholes that circulate an antifreeze-based carrier fluid which is cooled or heated through the subsurface. Although GSHPs have many advantages, they might develop subsurface thermal plumes, which can affect the efficiency and sustainability of the system and other subsurface infrastructures. In the present research, the effect of a multi-borehole vertical GSHP system designed to deliver annual heating and cooling to an office building located in three Canadian cities was examined. This was done using a three-dimensional model, developed in FEFLOW, that simulated a hypothetical GSHP system in all three cities. It was found that the city with the highest thermal load resulted in the biggest subsurface thermal plume showing a direct connection between building thermal load and thermal plumes. Cyclical simulations for 10 years showed that the plumes grew in both size and temperature disturbance after the 10-year operation. The developed model can be used to determine the thermal affected zone of a GSHP system to aid in planning of other subsurface infrastructures in that zone.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.11.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.11.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Negar Daemi; Magdalena M. Krol;Abstract The environmental impacts and unsustainability of fossil fuel-based heating and cooling systems has encouraged a worldwide interest in developing sustainable sources of energy and complementary technologies for heating/cooling purposes. One of these technologies is ground source heat pump (GSHP) systems that use the ubiquitous low-enthalpy ground source heat found in the shallow subsurface and represents a sustainable way of heating and cooling homes and buildings. GSHPs can be used to extract or inject subsurface heat by installing boreholes that circulate an antifreeze-based carrier fluid which is cooled or heated through the subsurface. Although GSHPs have many advantages, they might develop subsurface thermal plumes, which can affect the efficiency and sustainability of the system and other subsurface infrastructures. In the present research, the effect of a multi-borehole vertical GSHP system designed to deliver annual heating and cooling to an office building located in three Canadian cities was examined. This was done using a three-dimensional model, developed in FEFLOW, that simulated a hypothetical GSHP system in all three cities. It was found that the city with the highest thermal load resulted in the biggest subsurface thermal plume showing a direct connection between building thermal load and thermal plumes. Cyclical simulations for 10 years showed that the plumes grew in both size and temperature disturbance after the 10-year operation. The developed model can be used to determine the thermal affected zone of a GSHP system to aid in planning of other subsurface infrastructures in that zone.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.11.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 22 citations 22 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.11.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 CanadaPublisher:Elsevier BV Authors: Ali Khosravanipour Mostafazadeh; Maria Samantha De La Torre; Yessika Padilla; Patrick Drogui; +5 AuthorsAli Khosravanipour Mostafazadeh; Maria Samantha De La Torre; Yessika Padilla; Patrick Drogui; Satinder Kaur Brar; Rajeshwar Dayal Tyagi; Yann Le Bihan; Gerardo Buelna; Pablo Gortares Moroyoqui;Abstract The biodiesel industry produces around 10% w/w crude glycerol. This product has great potential to be valorized to obtain more valuable chemicals. Among all upgrading techniques of no-valuable crude glycerol, the electrochemical conversion is a promising technology. In this study, the green electrochemical conversion of glycerol into value-added products was investigated and optimized in a batch electro-catalytic reactor with a 450 ml working volume using platinum-based electrodes. The redox of glycerol in different solutions was studied by cyclic voltammetric study, the electrode behaviour was explored under chronopotentiometry/chronoamperometry conditions, the kinetics of glycerol consumption was investigated, and the electrode passivation/deactivation was studied by SEM (Scanning Electron Microscope), EDS (energy-dispersive X-ray spectroscopy), and regression models. The maximum non-acidic (dihydroxyacetone/hydroxyacetone or acetol/glycidol) and organic acids (acetic acid, lactic acid, formic acid) formations were optimized using response surface methodology (RSM). The effects of the treatment time, current intensity, type of anode electrode, pH and glycerol concentration were examined. Products concentrations and distributions, reaction mechanism and pathway were also investigated. The results showed that under strong acidic conditions (HCl; pH = 1.4), the highest solvent production (yield of 55%) was achieved using Pt electrode, at a current intensity of 0.31 A (5 mA/cm2).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.03.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.03.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 CanadaPublisher:Elsevier BV Authors: Ali Khosravanipour Mostafazadeh; Maria Samantha De La Torre; Yessika Padilla; Patrick Drogui; +5 AuthorsAli Khosravanipour Mostafazadeh; Maria Samantha De La Torre; Yessika Padilla; Patrick Drogui; Satinder Kaur Brar; Rajeshwar Dayal Tyagi; Yann Le Bihan; Gerardo Buelna; Pablo Gortares Moroyoqui;Abstract The biodiesel industry produces around 10% w/w crude glycerol. This product has great potential to be valorized to obtain more valuable chemicals. Among all upgrading techniques of no-valuable crude glycerol, the electrochemical conversion is a promising technology. In this study, the green electrochemical conversion of glycerol into value-added products was investigated and optimized in a batch electro-catalytic reactor with a 450 ml working volume using platinum-based electrodes. The redox of glycerol in different solutions was studied by cyclic voltammetric study, the electrode behaviour was explored under chronopotentiometry/chronoamperometry conditions, the kinetics of glycerol consumption was investigated, and the electrode passivation/deactivation was studied by SEM (Scanning Electron Microscope), EDS (energy-dispersive X-ray spectroscopy), and regression models. The maximum non-acidic (dihydroxyacetone/hydroxyacetone or acetol/glycidol) and organic acids (acetic acid, lactic acid, formic acid) formations were optimized using response surface methodology (RSM). The effects of the treatment time, current intensity, type of anode electrode, pH and glycerol concentration were examined. Products concentrations and distributions, reaction mechanism and pathway were also investigated. The results showed that under strong acidic conditions (HCl; pH = 1.4), the highest solvent production (yield of 55%) was achieved using Pt electrode, at a current intensity of 0.31 A (5 mA/cm2).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.03.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.03.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Azfarizal Mukhtar; Mohd Zamri Yusoff; Khai Ching Ng;Abstract The impact of global warming has urged a prudent spending of energy in the building sector nowadays. In general, a typical HVAC system consumes about 60%–70% of the total energy consumption of a building. Therefore, designing an energy-efficient HVAC system is essential to alleviate the worsening greenhouse effect. Recent research works have reported that geothermal energy coupled with optimal insulation is the best approach in minimising the energy consumption. Thus, we attempted to analyse the thermal performance of a naturally-ventilated underground shelter in a hot and humid country such as Malaysia. We proposed an optimal design to enhance the sustainability of the low-energy building. The model was numerically simulated using CFD, and a statistical surrogate model was implemented for obtaining the optimal design. The findings indicated that the room temperature of the shelter was significantly lower than the outdoor temperature during the hottest month and vice-versa during the coldest month. Moreover, the proposed optimal design showed about 3.4% increase in ventilation rate and about 2.8% decrease in room temperature as compared to the previous design. In general, the current work could be used as a guideline for designing low-energy building in Malaysia.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.02.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.02.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Azfarizal Mukhtar; Mohd Zamri Yusoff; Khai Ching Ng;Abstract The impact of global warming has urged a prudent spending of energy in the building sector nowadays. In general, a typical HVAC system consumes about 60%–70% of the total energy consumption of a building. Therefore, designing an energy-efficient HVAC system is essential to alleviate the worsening greenhouse effect. Recent research works have reported that geothermal energy coupled with optimal insulation is the best approach in minimising the energy consumption. Thus, we attempted to analyse the thermal performance of a naturally-ventilated underground shelter in a hot and humid country such as Malaysia. We proposed an optimal design to enhance the sustainability of the low-energy building. The model was numerically simulated using CFD, and a statistical surrogate model was implemented for obtaining the optimal design. The findings indicated that the room temperature of the shelter was significantly lower than the outdoor temperature during the hottest month and vice-versa during the coldest month. Moreover, the proposed optimal design showed about 3.4% increase in ventilation rate and about 2.8% decrease in room temperature as compared to the previous design. In general, the current work could be used as a guideline for designing low-energy building in Malaysia.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.02.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.02.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Nathan Curry; Pragasen Pillay;Abstract Anaerobic digestion applied to the organic waste produced in urban environments could provide a critical solution to growing garbage problems while simultaneously reducing external energy requirements. As landfills across Canada and the rest of the world are filled to their limits, a carbon-neutral process which can locally generate electricity and heat while providing up to 50% volatile solid reduction is something to be seriously considered. This paper investigates the feasibility of urban anaerobic digestion, presents four techniques for biogas estimation – ultimate analysis, yield from molecular formula analysis, a novel computer simulation technique using Anaerobic Digestion Model #1 (ADM1), and a literature review of experimentally determined biogas yields. In addition, a case study for small-scale anaerobic digestion system design is presented for an urban building.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.10.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu229 citations 229 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.10.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012Publisher:Elsevier BV Authors: Nathan Curry; Pragasen Pillay;Abstract Anaerobic digestion applied to the organic waste produced in urban environments could provide a critical solution to growing garbage problems while simultaneously reducing external energy requirements. As landfills across Canada and the rest of the world are filled to their limits, a carbon-neutral process which can locally generate electricity and heat while providing up to 50% volatile solid reduction is something to be seriously considered. This paper investigates the feasibility of urban anaerobic digestion, presents four techniques for biogas estimation – ultimate analysis, yield from molecular formula analysis, a novel computer simulation technique using Anaerobic Digestion Model #1 (ADM1), and a literature review of experimentally determined biogas yields. In addition, a case study for small-scale anaerobic digestion system design is presented for an urban building.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.10.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu229 citations 229 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.10.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Mohammad Sameti; Fariborz Haghighat;Abstract This study applies a mathematical programming procedure to model the optimal design and planning of a new district which satisfies two features of the 4th generation district heating systems: energy reciprocity and on-site generation. The aim of the computational model is to investigate the effect of energy reciprocity (energy exchange among the buildings) as well as to find the best way to select the equipment among various candidates (capacities), the pipeline network among the buildings, and their electrical connections. The objective function includes the annualized overall capital and operation costs for the district along with the benefits of selling electricity to the grid. The distributed energy supply consists of heating, cooling, and power networks, several CHP technologies, solar array, chillers, and auxiliary boilers. The performance of the model for poly-generation was evaluated for designing the new part of Suurstoffi district situated in Risch Rotkreuz, Switzerland with seven residential and office complexes under four different scenarios. Allowing heat exchange among the buildings leads to 25% reduction in total annualized cost and 5% reduction in emission compared to the conventional districts. Removing the network and installation of PV and CHPs results in 9% reduction in emission and 11% reduction in cost. Simultaneous heat and electricity exchange results in a higher reduction in total annualized cost equal to 40% of the base scenario.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.06.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.06.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Funded by:NSERCNSERCAuthors: Mohammad Sameti; Fariborz Haghighat;Abstract This study applies a mathematical programming procedure to model the optimal design and planning of a new district which satisfies two features of the 4th generation district heating systems: energy reciprocity and on-site generation. The aim of the computational model is to investigate the effect of energy reciprocity (energy exchange among the buildings) as well as to find the best way to select the equipment among various candidates (capacities), the pipeline network among the buildings, and their electrical connections. The objective function includes the annualized overall capital and operation costs for the district along with the benefits of selling electricity to the grid. The distributed energy supply consists of heating, cooling, and power networks, several CHP technologies, solar array, chillers, and auxiliary boilers. The performance of the model for poly-generation was evaluated for designing the new part of Suurstoffi district situated in Risch Rotkreuz, Switzerland with seven residential and office complexes under four different scenarios. Allowing heat exchange among the buildings leads to 25% reduction in total annualized cost and 5% reduction in emission compared to the conventional districts. Removing the network and installation of PV and CHPs results in 9% reduction in emission and 11% reduction in cost. Simultaneous heat and electricity exchange results in a higher reduction in total annualized cost equal to 40% of the base scenario.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.06.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.06.068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 CanadaPublisher:Elsevier BV Authors: Robertson, Gilles; Adiningtyas, Kusuma Virginna; Ebrahim, Sayed Ahmed; Scoles, Ludmila; +2 AuthorsRobertson, Gilles; Adiningtyas, Kusuma Virginna; Ebrahim, Sayed Ahmed; Scoles, Ludmila; Baranova, Elena A.; Singh, Devinder;Abstract Asphaltenes, the heaviest and most polar components of crudes, are generally associated with considerable operational issues in refineries. In order to understand potential operational issues during upgrading/processing of bio-crudes, structural and thermal behaviour of asphaltenes derived from bio-crude (bio-asphaltenes) from hydrothermal liquefaction of food-waste and wood residues were compared with petroleum derived asphaltenes derived from bitumen. Structural analysis using nuclear magnetic resonance and elemental analysis revealed 7 aromatic rings per unit structure for bitumen asphaltenes, 4 for food-waste asphaltenes, and 3 for wood asphaltenes. The calculated molecular weight per unit structure followed the order: bitumen asphaltenes (589–636 g mol−1) > food-waste derived asphaltenes (338–358 g mol−1)> wood residue derived asphaltenes (268–274 g mol−1). The carbon residues using thermal gravimetric analysis (bitumen asphaltenes = 40%, bio-asphaltenes = 19–25%) and glass transition temperature (bitumen asphaltenes = 80 °C, bio-asphaltenes = 4–64 °C) followed the same order. These results indicate a very different structural and thermal behaviour for petroleum and bio-asphaltenes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.03.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.03.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 CanadaPublisher:Elsevier BV Authors: Robertson, Gilles; Adiningtyas, Kusuma Virginna; Ebrahim, Sayed Ahmed; Scoles, Ludmila; +2 AuthorsRobertson, Gilles; Adiningtyas, Kusuma Virginna; Ebrahim, Sayed Ahmed; Scoles, Ludmila; Baranova, Elena A.; Singh, Devinder;Abstract Asphaltenes, the heaviest and most polar components of crudes, are generally associated with considerable operational issues in refineries. In order to understand potential operational issues during upgrading/processing of bio-crudes, structural and thermal behaviour of asphaltenes derived from bio-crude (bio-asphaltenes) from hydrothermal liquefaction of food-waste and wood residues were compared with petroleum derived asphaltenes derived from bitumen. Structural analysis using nuclear magnetic resonance and elemental analysis revealed 7 aromatic rings per unit structure for bitumen asphaltenes, 4 for food-waste asphaltenes, and 3 for wood asphaltenes. The calculated molecular weight per unit structure followed the order: bitumen asphaltenes (589–636 g mol−1) > food-waste derived asphaltenes (338–358 g mol−1)> wood residue derived asphaltenes (268–274 g mol−1). The carbon residues using thermal gravimetric analysis (bitumen asphaltenes = 40%, bio-asphaltenes = 19–25%) and glass transition temperature (bitumen asphaltenes = 80 °C, bio-asphaltenes = 4–64 °C) followed the same order. These results indicate a very different structural and thermal behaviour for petroleum and bio-asphaltenes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.03.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.03.099&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu