Advanced search in Research products
Research products
arrow_drop_down
unfold_less Compact
1and
Any field
arrow_drop_down
includes
arrow_drop_down
or
  • Access
    Clear
  • Type
  • Year range
  • Field of Science
  • Funder
  • SDG [Beta]
    Clear
  • Country
    Clear
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
23,554 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Closed Access
  • Restricted
  • Open Source
  • Embargo
  • 6. Clean water
  • CN
  • US
  • CA

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    A prototype air cycle cooling system, designed for forced cooling of HPOF pipe-type cable, was built under an EPRI contract. Its main components are a turbine and compressor operated on a single high speed shaft and a compact cable. oil to air heat exchanger. Air cooling is supplemented by a spray water system. Tests were conducted on the prototype unit at the EPRI Waltz Mill Cable Test Facility to evaluate its performance and operating characteristics. This paper briefly describes this equipment and presents the results of the test program.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Power Engineeri...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Power Engineering Review
    Article . 1985 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Transactions on Power Apparatus and Systems
    Article . 1985 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Power Engineeri...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Power Engineering Review
      Article . 1985 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Transactions on Power Apparatus and Systems
      Article . 1985 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yuyuan Li; Jinshui Wu; Xi Li; Yong Li;

    In this study, Myriophyllum elatinoides growth under different nitrogen (N) concentrations (2, 250, 300, 350 and 400 mg L-1) and changes in rhizosphere bacterial community structure were investigated. High N (>300 mg L-1) concentrations caused reduction in M. elatinoides biomass. Growth tended to stabilize at 49 days. N concentration in roots were higher than that in stems and leaves under high N conditions. TN and NH4+ removal efficiencies reached 84.0% and 87.2%, respectively, in M. elatinoides surface flow constructed wetlands (SFCWs). Rhizosphere bacterial diversity increased over time. Proteobacteria, Firmicutes, Cyanobacteria, and Bacteroidetes dominated at the phylum level. Genera Turicibacter, Allochromatium, and Methylocystis increased at low N (<300 mg L-1) concentrations, while Pseudomonas increased at high N concentrations over the experimental period. Redundancy analysis showed that pH was strongly correlated with changes in rhizosphere bacterial community structure. These findings helped to insight into N removal mechanism in M. elatinoides.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Monjurul Ehsan, M.; Duniam, Sam; Li, Jishun; Guan, Zhiqiang; +2 Authors

    Abstract In arid areas, dry cooling technology is a preferable alternate of wet cooling mainly owing to the scarcity of abundant water supply. However, the supercritical CO2 power cycle still offers considerable thermal performance even at higher ambient temperature using dry cooling. The novelty of this work is the exhaustive designing of dry cooler for supercritical CO2 cycles (recompression and partial cooling) in concentrating solar power application. Prior to the design of tower, a preliminary analysis is conducted in achieving the optimum main compressor inlet temperature (33 °C-recompression and 40 °C-partial cooling) at which the cycle delivers the maximal efficiency. The comparison is performed at same higher and lower pressure and for the partial cooling, the intermediate pressure is optimized. At relatively higher compressor inlet temperatures (above 50 °C), the partial cooling achieves higher efficiency while at lower temperatures (30–49 °C), the recompression shows superior performance. An iterative nodal method is used for the air-cooled finned tube heat exchanger units that takes account of the dramatic variation in thermodynamic properties of CO2 with the bulk temperature. Kroger’s detailed methodology of designing dry cooler is adapted with the implementation of nodal approach for CO2 property variation. A dry cooling tower with 52.45 m height is essential for the recompression cycle, whereas the partial cooling requires two towers of the height of 35.4 m and 38.7 m. A thermal assessment is carried out on the dry cooler under various cycle fluid inlet temperatures and ambient temperatures. During hot and humid ambient conditions, lower compressor inlet temperatures (up to 53.1 °C) are obtained with the recompression cycle compared to partial cooling (up to 64.5 °C). In extreme climate condition of 50 °C air temperature, the recompression cycle provides superior thermal efficiency (46.5% against 45.5%). For future commercialization of dry cooled sCO2 power plant, the recompression cycle is preferred due to its superior performance and lower capital cost for cooling tower design and solar field. The work demonstrates the impact of dry cooling tower design strategy in the context of cycle thermal assessment under various working condition.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Thermal Engineering
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Thermal Engineering
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Lin Fang; Fengping Wu; Yantuan Yu; Lin Zhang;

    AbstractBy using the data of 30 provinces from 1998 to 2016 in China, this paper estimates the water rebound effect in the agricultural crop farming by combining Slacks‐based Measure (SBM‐based) of Malmquist Index and Logarithmic Mean Divisia Index (LMDI) method. We find that the average water rebound effect is 70.3%, implying that over two‐thirds of the water saving from irrigation technology improvement is offset by higher water consumption. We find evidence on the regional heterogeneity in terms of the magnitude of rebound: Southwest is the highest, whereas Northwest is the lowest. The heterogeneous rebound effect across regions is mainly due to the difference in water endowment and irrigation land availability. Our results indicate that irrigation technology improvement is not necessarily sufficient for achieving agricultural water conservation. In particular, the difference in natural geography conditions across regions needs to be considered in designing water conservation policies at a sub‐regional level.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Industria...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Industrial Ecology
    Article . 2020 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    SSRN Electronic Journal
    Article . 2020 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Industria...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Industrial Ecology
      Article . 2020 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      SSRN Electronic Journal
      Article . 2020 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Xinlei Wang; Chao Shen; Yang Yao; Rong Gao;

    Abstract Fouling is one of the most significant problems for internally enhanced tubes installed in the shell and tube condensers. Due to the lack of long-term test data, current fouling models are developed based on accelerated particulate fouling tests that have the low precision and hence are inapplicable for predicting combined fouling in most practical cooling tower systems. In addition, the constant values of fouling resistance (factor) recommended by the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) are extremely limited under different operating conditions. To overcome these challenges, this research developed and validated two fouling prediction models based on experimental long-term tests. One of the models was in the form of a ratio of asymptotic fouling resistance of the enhanced tube to that of the plain tube ( R f ∗ / R f , p ∗ ), and the other one was in the form of the asymptotic fouling resistance of the directly enhanced tube ( R f ∗ ). Both models considered water quality, water velocity, and the tube geometries as the variables with the acceptable accuracy for prediction. 1) For the water quality, the parameter of valid concentration ( C com ) of cooling water was defined in this study, which reflected the potential amount of valid components to form the fouling. 2) For the water velocity, its impacts on the two critical parameters of the fouling process: sticking probability ( P ) and deposit bond strength ( ξ ) were investigated using experimental studies. Test results showed that in enhanced tubes with the increased water velocity the sticking probability ( P ) decreased continuously while the deposit bond strength (ξ) initially increased, and then, decreased. 3) For the tube geometries, by taking the parameters of tube geometries as variables the multi-variable correlations of the sticking probability ( P ) and deposit bond strength ( ξ ) were developed. From the results the generalized fouling prediction model as a ratio of asymptotic fouling resistance ( R f ∗ / R f , p ∗ ) was recommended for the application in HVAC&R industry due to its suitability and accuracy in practical project applications.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Thermal Engineering
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Thermal Engineering
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Annika W. Walters; David M. Post;

    The natural hydrology of streams and rivers is being extensively modified by human activities. Water diversion, dam construction, and climate change have the potential to increase the frequency and intensity of low-flow events. Flow is a dominant force structuring stream aquatic insect communities, but the impacts of water diversion are poorly understood. Here we report results of an experimental stream flow diversion designed to test how aquatic insect communities respond to a low-flow disturbance. We diverted 40% to 80% of the water in three replicate streams for three summers, leading to summer flow exceedance probabilities of up to 99.9%. Shifts in habitat availability appeared to be a major driver of aquatic insect community responses. Responses also varied by habitat type: total insect density decreased in riffle habitats, but there was no change in pool habitats. Overall, the total biomass of aquatic insects decreased sharply with lowered flow. Collector-filterers, collector-gatherers, and scrapers were especially susceptible, while predatory insects were more resistant. Despite extremely low flow levels, there was no shift in aquatic insect family richness. The experimental water withdrawal did not increase water temperature or decrease water quality, and some wetted habitat was always maintained, which likely prevented more severe impacts on aquatic insect communities.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecological Applicati...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecological Applications
    Article . 2010 . Peer-reviewed
    License: Wiley TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecological Applications
    Article . 2011 . Peer-reviewed
    License: Wiley TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecological Applicati...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecological Applications
      Article . 2010 . Peer-reviewed
      License: Wiley TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecological Applications
      Article . 2011 . Peer-reviewed
      License: Wiley TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Haifeng Liu; Jianliang Xu; Chunyu Wang; Hui Zhao; +2 Authors

    Abstract Coal water slurry (CWS) with high solid content and low viscosity can allow for efficient and environmentally friendly gasification. In the process of CWS preparation, water will enter pores of coal particle to form inner water, resulting in a decrease in free water among particles and an increase in viscosity. However, pre-absorption of moisture from air was found to result in a sharp decrease of suspension viscosity, since small amount of air were sealed in particle pores. Coal particles have many polar functional groups, and pre-absorbed water sealed the entrance of pores through hydrogen bonds like a “bottle stopper”, which effectively inhibited the diffusion of water from slurry into the pores of coal particles. Pre-absorption of water from air was also found to improve the efficiency of the second fluid (immiscible with water), and cause a further decrease in viscosity and yield stress.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Richard Morris; Eftihia Tzen;

    Abstract Renewable energy sources (RES) coupled to desalination offers a promising prospect for covering the fundamental needs of power and water in remote regions, where connection to the public electrical grid is either not cost effective or not feasible, and where the water scarcity is severe. Stand-alone systems for electricity supply in isolated locations are now proven technologies. Correct matching of stand-alone power supply desalination systems has been recognized as being crucial if the system is to provide a satisfactory supply of power and water at a reasonable cost. The paper covers plants installed since 1990 on the coupling of the two technologies. The main driver promoting the take up of this technology is that water is a limiting factor for many countries in the Mediterranean region. This paper presents the two technologies, RES desalination, and describes the most promising couplings such as PV–reverse osmosis, wind-mechanical-vapor compression, geothermal-multieffect distillation, etc as well as technologies selection guidelines. Also, included applications and lessons learned from specific applications as well as data on the economics. RES for desalination is an important challenge and useful work has been done. However in order to provide practical viable plants, much remains to be done.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2003 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2003 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Soltani, Seyed A.; Overcash, Michael; Twomey, Janet M.; Esmaeili, Mohammad Amin; +1 Authors

    SummaryStudies investigated the patient‐care (in‐hospital) and outside‐the‐hospital energy consumptions for delivering the hemodialysis (HD) service. A life cycle inventory methodology was used for this patient‐based analysis for two hospitals located in Wichita, Kansas. It was found that, for both hospitals, the actual HD machines consumed approximately 3.5 kilowatt‐hours (kWh) of electrical energy per HD, only 8% to 16% of the total energy used for delivering the HD service (in hospital). This increases to 9.6 to 28.9 kWh of hospital billable energy for the whole system of HD machine, auxiliaries, and dialysis water treatment. Converting these hospital direct electrical energy values to natural resource energy (nre) then adding the cradle‐to‐gate natural resource energy for the manufacturing and supply chain of all the HD consumables, the total is 78 to 149 kWh nre/HD. The nre measures all the direct fuel burned to generate energy and is thus directly related to emissions to the air, water, and land and is a direct secondary impact on public health from HD. The ratio of outside‐the‐hospital energy to direct hospital HD electrical energy consumption is 4:1 to 7:1, so a broader base exists for improvement than just the hospital.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Industria...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Industrial Ecology
    Article . 2014 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Industria...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Industrial Ecology
      Article . 2014 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ashenafi Abebe Mebrat; Yilma Tadesse; Asfaw Beyene;

    Abstract Hydraulic ram pump (HRP), also known as hydram, lifts water without using external power input. Its low performance combined with affordability of fuels has put this otherwise longstanding technology in the backburner of science and research for a long time, yielding to electric or fuel powered pumps. However, growing concerns about the impacts of fossil fuel use on the environment as well as the rising price of electricity has generated a renewed interest in such technology. The ram pump's operation in remote areas where power grid is not available adds research value on the technology. In this project, a novel approach, i.e., adding thermal energy to the flow to assist the water hammer pressure was modeled. Computational fluid dynamics (CFD) simulation was conducted using ansys. The results were validated experimentally in a 32 mm (27 mm internal diameter) drive pipe and a supply head of 2.18 m ram pump. The Analytical approach was more conservative. The results between simulation and experiment were fairly consistent, with only 6.99% error for pressure, and 10.16% for flowrate. The results show that pressure increased from 183.33 kPa to 342.32 kPa when thermally assisted to reach 150 °C. The experimental discharge flow increased from 11.72 l/min to 16.41 l/min for the corresponding temperature, a 42.01% increase.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Energy Re...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Energy Resources Technology
    Article . 2021 . Peer-reviewed
    License: ASME Site License Agreemen
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Energy Re...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Energy Resources Technology
      Article . 2021 . Peer-reviewed
      License: ASME Site License Agreemen
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
unfold_less Compact
1and
Any field
arrow_drop_down
includes
arrow_drop_down
or
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
23,554 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao

    A prototype air cycle cooling system, designed for forced cooling of HPOF pipe-type cable, was built under an EPRI contract. Its main components are a turbine and compressor operated on a single high speed shaft and a compact cable. oil to air heat exchanger. Air cooling is supplemented by a spray water system. Tests were conducted on the prototype unit at the EPRI Waltz Mill Cable Test Facility to evaluate its performance and operating characteristics. This paper briefly describes this equipment and presents the results of the test program.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Power Engineeri...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Power Engineering Review
    Article . 1985 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Transactions on Power Apparatus and Systems
    Article . 1985 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Power Engineeri...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Power Engineering Review
      Article . 1985 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Transactions on Power Apparatus and Systems
      Article . 1985 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Yuyuan Li; Jinshui Wu; Xi Li; Yong Li;

    In this study, Myriophyllum elatinoides growth under different nitrogen (N) concentrations (2, 250, 300, 350 and 400 mg L-1) and changes in rhizosphere bacterial community structure were investigated. High N (>300 mg L-1) concentrations caused reduction in M. elatinoides biomass. Growth tended to stabilize at 49 days. N concentration in roots were higher than that in stems and leaves under high N conditions. TN and NH4+ removal efficiencies reached 84.0% and 87.2%, respectively, in M. elatinoides surface flow constructed wetlands (SFCWs). Rhizosphere bacterial diversity increased over time. Proteobacteria, Firmicutes, Cyanobacteria, and Bacteroidetes dominated at the phylum level. Genera Turicibacter, Allochromatium, and Methylocystis increased at low N (<300 mg L-1) concentrations, while Pseudomonas increased at high N concentrations over the experimental period. Redundancy analysis showed that pH was strongly correlated with changes in rhizosphere bacterial community structure. These findings helped to insight into N removal mechanism in M. elatinoides.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Bioresource Technology
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bioresource Technolo...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Bioresource Technology
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Monjurul Ehsan, M.; Duniam, Sam; Li, Jishun; Guan, Zhiqiang; +2 Authors

    Abstract In arid areas, dry cooling technology is a preferable alternate of wet cooling mainly owing to the scarcity of abundant water supply. However, the supercritical CO2 power cycle still offers considerable thermal performance even at higher ambient temperature using dry cooling. The novelty of this work is the exhaustive designing of dry cooler for supercritical CO2 cycles (recompression and partial cooling) in concentrating solar power application. Prior to the design of tower, a preliminary analysis is conducted in achieving the optimum main compressor inlet temperature (33 °C-recompression and 40 °C-partial cooling) at which the cycle delivers the maximal efficiency. The comparison is performed at same higher and lower pressure and for the partial cooling, the intermediate pressure is optimized. At relatively higher compressor inlet temperatures (above 50 °C), the partial cooling achieves higher efficiency while at lower temperatures (30–49 °C), the recompression shows superior performance. An iterative nodal method is used for the air-cooled finned tube heat exchanger units that takes account of the dramatic variation in thermodynamic properties of CO2 with the bulk temperature. Kroger’s detailed methodology of designing dry cooler is adapted with the implementation of nodal approach for CO2 property variation. A dry cooling tower with 52.45 m height is essential for the recompression cycle, whereas the partial cooling requires two towers of the height of 35.4 m and 38.7 m. A thermal assessment is carried out on the dry cooler under various cycle fluid inlet temperatures and ambient temperatures. During hot and humid ambient conditions, lower compressor inlet temperatures (up to 53.1 °C) are obtained with the recompression cycle compared to partial cooling (up to 64.5 °C). In extreme climate condition of 50 °C air temperature, the recompression cycle provides superior thermal efficiency (46.5% against 45.5%). For future commercialization of dry cooled sCO2 power plant, the recompression cycle is preferred due to its superior performance and lower capital cost for cooling tower design and solar field. The work demonstrates the impact of dry cooling tower design strategy in the context of cycle thermal assessment under various working condition.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Thermal Engineering
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Thermal Engineering
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Lin Fang; Fengping Wu; Yantuan Yu; Lin Zhang;

    AbstractBy using the data of 30 provinces from 1998 to 2016 in China, this paper estimates the water rebound effect in the agricultural crop farming by combining Slacks‐based Measure (SBM‐based) of Malmquist Index and Logarithmic Mean Divisia Index (LMDI) method. We find that the average water rebound effect is 70.3%, implying that over two‐thirds of the water saving from irrigation technology improvement is offset by higher water consumption. We find evidence on the regional heterogeneity in terms of the magnitude of rebound: Southwest is the highest, whereas Northwest is the lowest. The heterogeneous rebound effect across regions is mainly due to the difference in water endowment and irrigation land availability. Our results indicate that irrigation technology improvement is not necessarily sufficient for achieving agricultural water conservation. In particular, the difference in natural geography conditions across regions needs to be considered in designing water conservation policies at a sub‐regional level.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Industria...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Industrial Ecology
    Article . 2020 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    SSRN Electronic Journal
    Article . 2020 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Industria...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Industrial Ecology
      Article . 2020 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      SSRN Electronic Journal
      Article . 2020 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Xinlei Wang; Chao Shen; Yang Yao; Rong Gao;

    Abstract Fouling is one of the most significant problems for internally enhanced tubes installed in the shell and tube condensers. Due to the lack of long-term test data, current fouling models are developed based on accelerated particulate fouling tests that have the low precision and hence are inapplicable for predicting combined fouling in most practical cooling tower systems. In addition, the constant values of fouling resistance (factor) recommended by the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) are extremely limited under different operating conditions. To overcome these challenges, this research developed and validated two fouling prediction models based on experimental long-term tests. One of the models was in the form of a ratio of asymptotic fouling resistance of the enhanced tube to that of the plain tube ( R f ∗ / R f , p ∗ ), and the other one was in the form of the asymptotic fouling resistance of the directly enhanced tube ( R f ∗ ). Both models considered water quality, water velocity, and the tube geometries as the variables with the acceptable accuracy for prediction. 1) For the water quality, the parameter of valid concentration ( C com ) of cooling water was defined in this study, which reflected the potential amount of valid components to form the fouling. 2) For the water velocity, its impacts on the two critical parameters of the fouling process: sticking probability ( P ) and deposit bond strength ( ξ ) were investigated using experimental studies. Test results showed that in enhanced tubes with the increased water velocity the sticking probability ( P ) decreased continuously while the deposit bond strength (ξ) initially increased, and then, decreased. 3) For the tube geometries, by taking the parameters of tube geometries as variables the multi-variable correlations of the sticking probability ( P ) and deposit bond strength ( ξ ) were developed. From the results the generalized fouling prediction model as a ratio of asymptotic fouling resistance ( R f ∗ / R f , p ∗ ) was recommended for the application in HVAC&R industry due to its suitability and accuracy in practical project applications.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Thermal Engineering
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Thermal Engi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Thermal Engineering
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Annika W. Walters; David M. Post;

    The natural hydrology of streams and rivers is being extensively modified by human activities. Water diversion, dam construction, and climate change have the potential to increase the frequency and intensity of low-flow events. Flow is a dominant force structuring stream aquatic insect communities, but the impacts of water diversion are poorly understood. Here we report results of an experimental stream flow diversion designed to test how aquatic insect communities respond to a low-flow disturbance. We diverted 40% to 80% of the water in three replicate streams for three summers, leading to summer flow exceedance probabilities of up to 99.9%. Shifts in habitat availability appeared to be a major driver of aquatic insect community responses. Responses also varied by habitat type: total insect density decreased in riffle habitats, but there was no change in pool habitats. Overall, the total biomass of aquatic insects decreased sharply with lowered flow. Collector-filterers, collector-gatherers, and scrapers were especially susceptible, while predatory insects were more resistant. Despite extremely low flow levels, there was no shift in aquatic insect family richness. The experimental water withdrawal did not increase water temperature or decrease water quality, and some wetted habitat was always maintained, which likely prevented more severe impacts on aquatic insect communities.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecological Applicati...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecological Applications
    Article . 2010 . Peer-reviewed
    License: Wiley TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Ecological Applications
    Article . 2011 . Peer-reviewed
    License: Wiley TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Ecological Applicati...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecological Applications
      Article . 2010 . Peer-reviewed
      License: Wiley TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Ecological Applications
      Article . 2011 . Peer-reviewed
      License: Wiley TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Haifeng Liu; Jianliang Xu; Chunyu Wang; Hui Zhao; +2 Authors

    Abstract Coal water slurry (CWS) with high solid content and low viscosity can allow for efficient and environmentally friendly gasification. In the process of CWS preparation, water will enter pores of coal particle to form inner water, resulting in a decrease in free water among particles and an increase in viscosity. However, pre-absorption of moisture from air was found to result in a sharp decrease of suspension viscosity, since small amount of air were sealed in particle pores. Coal particles have many polar functional groups, and pre-absorbed water sealed the entrance of pores through hydrogen bonds like a “bottle stopper”, which effectively inhibited the diffusion of water from slurry into the pores of coal particles. Pre-absorption of water from air was also found to improve the efficiency of the second fluid (immiscible with water), and cause a further decrease in viscosity and yield stress.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Fuel
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Fuelarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Fuel
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Richard Morris; Eftihia Tzen;

    Abstract Renewable energy sources (RES) coupled to desalination offers a promising prospect for covering the fundamental needs of power and water in remote regions, where connection to the public electrical grid is either not cost effective or not feasible, and where the water scarcity is severe. Stand-alone systems for electricity supply in isolated locations are now proven technologies. Correct matching of stand-alone power supply desalination systems has been recognized as being crucial if the system is to provide a satisfactory supply of power and water at a reasonable cost. The paper covers plants installed since 1990 on the coupling of the two technologies. The main driver promoting the take up of this technology is that water is a limiting factor for many countries in the Mediterranean region. This paper presents the two technologies, RES desalination, and describes the most promising couplings such as PV–reverse osmosis, wind-mechanical-vapor compression, geothermal-multieffect distillation, etc as well as technologies selection guidelines. Also, included applications and lessons learned from specific applications as well as data on the economics. RES for desalination is an important challenge and useful work has been done. However in order to provide practical viable plants, much remains to be done.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2003 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2003 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Soltani, Seyed A.; Overcash, Michael; Twomey, Janet M.; Esmaeili, Mohammad Amin; +1 Authors

    SummaryStudies investigated the patient‐care (in‐hospital) and outside‐the‐hospital energy consumptions for delivering the hemodialysis (HD) service. A life cycle inventory methodology was used for this patient‐based analysis for two hospitals located in Wichita, Kansas. It was found that, for both hospitals, the actual HD machines consumed approximately 3.5 kilowatt‐hours (kWh) of electrical energy per HD, only 8% to 16% of the total energy used for delivering the HD service (in hospital). This increases to 9.6 to 28.9 kWh of hospital billable energy for the whole system of HD machine, auxiliaries, and dialysis water treatment. Converting these hospital direct electrical energy values to natural resource energy (nre) then adding the cradle‐to‐gate natural resource energy for the manufacturing and supply chain of all the HD consumables, the total is 78 to 149 kWh nre/HD. The nre measures all the direct fuel burned to generate energy and is thus directly related to emissions to the air, water, and land and is a direct secondary impact on public health from HD. The ratio of outside‐the‐hospital energy to direct hospital HD electrical energy consumption is 4:1 to 7:1, so a broader base exists for improvement than just the hospital.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Industria...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Industrial Ecology
    Article . 2014 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Industria...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Industrial Ecology
      Article . 2014 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ashenafi Abebe Mebrat; Yilma Tadesse; Asfaw Beyene;

    Abstract Hydraulic ram pump (HRP), also known as hydram, lifts water without using external power input. Its low performance combined with affordability of fuels has put this otherwise longstanding technology in the backburner of science and research for a long time, yielding to electric or fuel powered pumps. However, growing concerns about the impacts of fossil fuel use on the environment as well as the rising price of electricity has generated a renewed interest in such technology. The ram pump's operation in remote areas where power grid is not available adds research value on the technology. In this project, a novel approach, i.e., adding thermal energy to the flow to assist the water hammer pressure was modeled. Computational fluid dynamics (CFD) simulation was conducted using ansys. The results were validated experimentally in a 32 mm (27 mm internal diameter) drive pipe and a supply head of 2.18 m ram pump. The Analytical approach was more conservative. The results between simulation and experiment were fairly consistent, with only 6.99% error for pressure, and 10.16% for flowrate. The results show that pressure increased from 183.33 kPa to 342.32 kPa when thermally assisted to reach 150 °C. The experimental discharge flow increased from 11.72 l/min to 16.41 l/min for the corresponding temperature, a 42.01% increase.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Energy Re...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Energy Resources Technology
    Article . 2021 . Peer-reviewed
    License: ASME Site License Agreemen
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Energy Re...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Energy Resources Technology
      Article . 2021 . Peer-reviewed
      License: ASME Site License Agreemen
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph