- home
- Advanced Search
- Energy Research
- 2025-2025
- US
- CN
- EU
- CA
- DE
- Energy Research
- 2025-2025
- US
- CN
- EU
- CA
- DE
description Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Chen Wang; Weixin Kong; Zhangfeng Dong; Bihong Lv; Guohua Jing; Zuoming Zhou;pmid: 39306419
Phase change absorbents based on amine chemical absorption for CO2 capture exhibit energy-saving potential, but generally suffer from difficulties in CO2 regeneration. Alcohol, characterized as a protic reagent with a low dielectric constant, can provide free protons to the rich phase of the absorbent, thereby facilitating CO2 regeneration. In this investigation, N-aminoethylpiperazine (AEP)/sulfolane/H2O was employed as the liquid-liquid phase change absorbent, with alcohol serving as the regulator. First, appropriate ion pair models were constructed to simulate the solvent effect of the CO2 products in different alcohol solutions. The results demonstrated that these ion pair products reached the maximum solvation-free energy (ΔEsolvation) in the rich phase containing ethanol (EtOH). Desorption experiment results validated that the inclusion of EtOH led to a maximum regeneration rate of 0.00763 mol/min, thus confirming EtOH's suitability as the preferred regulator. Quantum chemical calculations and 13C NMR characterization were performed, revealing that the addition of EtOH resulted in the partial conversion of AEP-carbamate (AEPCOO-) into a new product known as ethyl carbonate (C2H5OCOO-), which enhanced the regeneration reactivity. In addition, the decomposition paths of different CO2 products were simulated visually, and every reaction's activation energy (ΔEact) was calculated. Remarkably, the ΔEact for the decomposition of C2H5OCOO- (9.465 kJ/mol) was lower than that of the AEPCOO- (26.163 kJ/mol), implying that CO2 was more likely to be released. Finally, the regeneration energy consumption of the alcohol-regulated absorbent was estimated to be only 1.92 GJ/ton CO2, which had excellent energy-saving potential.
Journal of Environme... arrow_drop_down Journal of Environmental SciencesArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jes.2023.09.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental SciencesArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jes.2023.09.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Funded by:EC | TRI-HPEC| TRI-HPXabier Peña-Anton; Laura Alonso; Koldo Martin-Escudero; Zigor Uriondo; Eneko Setien;Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2024.124527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2024.124527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 United StatesAuthors: Burggren, Warren W.; Padilla, Pamela A.;Data management plan for the grant, "Non-Genetic Inheritance of Hypoxia Tolerance in Fishes: Dynamics and Mechanisms." Research quantifying the inheritance of tolerance to low oxygen in a model fish and then determine the tolerance mechanisms, at organismal to molecular levels, that are passed on from parents to their offspring. The investigators will not only focus on conventional, well-studied genetic mechanisms for inheritance, but will explore so-called “epigenetic” forms of inheritance that may transfer parental characteristics for only a generation or two. Such “temporary inheritance” might actually require less energy and be more beneficial to a species than the more permanent form of genetic inheritance. This project will quantify non-genetic inheritance of hypoxia tolerance in zebrafish as a model organism and then identify underlying mechanisms, at organismal to molecular levels, in parents and in their progeny. Specifically, this project will quantify non-genetically inherited traits that allow hypoxia tolerance, determine “wash-in” and “wash-out” (i.e., the dynamics) of hypoxia-tolerant phenotypes across multiple generations, and establish epigenetic mechanism(s) of non-genetic inheritance in subsequent generations. The information provided by this project will allow biologists to better predict, and perhaps even mitigate, the negative consequences of future episodes of low oxygen in rivers and lakes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::28902c94a9fc29a7a7964e35fb98d196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::28902c94a9fc29a7a7964e35fb98d196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2024Publisher:Elsevier BV Funded by:NSF | CAREER: Computation-effic...NSF| CAREER: Computation-efficient Algorithms for Grid-scale Energy Storage Control, Bidding, and Integration AnalysisAuthors: Ning Qi; Kaidi Huang; Zhiyuan Fan; Bolun Xu;This paper studies the long-term energy management of a microgrid coordinating hybrid hydrogen-battery energy storage. We develop an approximate semi-empirical hydrogen storage model to accurately capture the power-dependent efficiency of hydrogen storage. We introduce a prediction-free two-stage coordinated optimization framework, which generates the annual state-of-charge (SoC) reference for hydrogen storage offline. During online operation, it updates the SoC reference online using kernel regression and makes operation decisions based on the proposed adaptive virtual-queue-based online convex optimization (OCO) algorithm. We innovatively incorporate penalty terms for long-term pattern tracking and expert-tracking for step size updates. We provide theoretical proof to show that the proposed OCO algorithm achieves a sublinear bound of dynamic regret without using prediction information. Numerical studies based on the Elia and North China datasets show that the proposed framework significantly outperforms the existing online optimization approaches by reducing the operational costs and loss of load by around 30% and 80%, respectively. These benefits can be further enhanced with optimized settings for the penalty coefficient and step size of OCO, as well as more historical references. Submitted to Applied Energy
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124485&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124485&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Authors: Amam Hossain Bagdadee; Argho Moy Maitraya; Ariful Islam; Md. Noor E Alam Siddique;Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Najmeh Askari; Mansoureh Jamalzadeh; Aghil Askari; Naiyun Liu; Bijan Samali; Mika Sillanpaa; Leigh Sheppard; Haitao Li; Raf Dewil;pmid: 39095165
In the quest for effective solutions to address Environ. Pollut. and meet the escalating energy demands, heterojunction photocatalysts have emerged as a captivating and versatile technology. These photocatalysts have garnered significant interest due to their wide-ranging applications, including wastewater treatment, air purification, CO2 capture, and hydrogen generation via water splitting. This technique harnesses the power of semiconductors, which are activated under light illumination, providing the necessary energy for catalytic reactions. With visible light constituting a substantial portion (46%) of the solar spectrum, the development of visible-light-driven semiconductors has become imperative. Heterojunction photocatalysts offer a promising strategy to overcome the limitations associated with activating semiconductors under visible light. In this comprehensive review, we present the recent advancements in the field of photocatalytic degradation of contaminants across diverse media, as well as the remarkable progress made in renewable energy production. Moreover, we delve into the crucial role played by various operating parameters in influencing the photocatalytic performance of heterojunction systems. Finally, we address emerging challenges and propose novel perspectives to provide valuable insights for future advancements in this dynamic research domain. By unraveling the potential of heterojunction photocatalysts, this review contributes to the broader understanding of their applications and paves the way for exciting avenues of exploration and innovation.
Journal of Environme... arrow_drop_down Journal of Environmental SciencesArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jes.2024.01.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental SciencesArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jes.2024.01.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Bentham Science Publishers Ltd. Samira Abousaid; Loubna Benabbou; Hanane Dagdougui; Ismail Belhaj; Hicham Bouzekri; Abdelaziz Berrado;Background: In recent years, the integration of renewable energy sources into the grid has increased exponentially. However, one significant challenge in integrating these renewable sources into the grid is intermittency. Objective: To address this challenge, accurate PV power forecasting techniques are crucial for operations and maintenance and day-to-day operations monitoring in solar plants. Methods: In the present work, a hybrid approach that combines Deep Learning (DL) and Numerical Weather Prediction (NWP) with electrical models for PV power forecasting is proposed Results: The outcomes of the study involve evaluating the performance of the proposed model in comparison to a Physical model and a DL model for predicting solar PV power one day ahead and two days ahead. The results indicate that the prediction accuracy of PV power decreases and the error rates increase when forecasting two days ahead, as compared to one day ahead. Conclusion: The obtained results demonstrate that DL models combined with NWP and electrical models can improve PV Power forecasting compared to a Physical model and a DL model.
Recent Advances in E... arrow_drop_down Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering)Article . 2025 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/0123520965264083230926105355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Recent Advances in E... arrow_drop_down Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering)Article . 2025 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/0123520965264083230926105355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Funded by:UKRI | Dynamic Organic Rankine C..., UKRI | Geothermally Sourced Comb..., UKRI | ENSIGN: ENergy System dIG... +7 projectsUKRI| Dynamic Organic Rankine Cycle for Recovering Industrial Waste Heat ,UKRI| Geothermally Sourced Combined Power and Freshwater Generation for Eastern Africa (Combi-Gen) ,UKRI| ENSIGN: ENergy System dIGital twiN ,UKRI| Thermally Driven Heat Pump Based on an Integrated Thermodynamic Cycle for Low Carbon Domestic Heating (Therma-Pump) ,UKRI| Newton Fund: An ORC power plant integrated with thermal energy storage to utilise renewable heat sources for distributed H&P ,UKRI| An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS) ,EC| CO-COOL ,UKRI| GREEN-ICEs: Generation of REfrigerated ENergy Integrated with Cold Energy storage ,UKRI| Flexible Air Source Heat pump for domestic heating decarbonisation (FASHION) ,UKRI| Decentralised water technologiesAuthors: Zahra Hajabdollahi Ouderji; Zhibin Yu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2024.124720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2024.124720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Hongze Ma; Xiaoyu Jia; Weiguang Chen; Jingyi Yang; Jin Liu; Xiaoshan Zhang; Ke Cui; Zhouping Shangguan; Weiming Yan;pmid: 39481979
Global warming and nitrogen (N) deposition have a profound impact on greenhouse gas (GHG) fluxes and consequently, they also affect climate change. However, the global combined effects of warming and N addition on GHG fluxes remain to be fully understood. To address this knowledge gap, a global meta-analysis of 197 datasets was performed to assess the response of GHG fluxes to warming and N addition and their interactions under various climate and experimental conditions. The results indicate that warming significantly increased CO2 emissions, while N addition and the combined warming and N addition treatments had no impact on CO2 emissions. Moreover, both warming and N addition and their interactions exhibited positive effects on N2O emissions. Under the combined warming and N addition treatments, warming was observed to exert a positive main effect on CO2 emissions, while N addition had a positive main effect on N2O emissions. The interactive effects of warming and N addition exhibited antagonistic effects on CO2, N2O, and CH4 emissions, with CH4 uptake dominated by additive effects. Furthermore, we identified biome and climate factors as the two treatments. These findings indicate that both warming and N addition substantially impact soil GHG fluxes and highlight the urgent need to investigate the influence of the combination of warming and N addition on terrestrial carbon and N cycling under ongoing global change.
Journal of Environme... arrow_drop_down Journal of Environmental SciencesArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jes.2024.03.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental SciencesArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jes.2024.03.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2024Publisher:Elsevier BV Lidang Jiang; Changyan Hu; Sibei Ji; Hang Zhao; Junxiong Chen; Ge He;In optimizing performance and extending the lifespan of lithium batteries, accurate state prediction is pivotal. Traditional regression and classification methods have achieved some success in battery state prediction. However, the efficacy of these data-driven approaches heavily relies on the availability and quality of public datasets. Additionally, generating electrochemical data predominantly through battery experiments is a lengthy and costly process, making it challenging to acquire high-quality electrochemical data. This difficulty, coupled with data incompleteness, significantly impacts prediction accuracy. Addressing these challenges, this study introduces the End of Life (EOL) and Equivalent Cycle Life (ECL) as conditions for generative AI models. By integrating an embedding layer into the CVAE model, we developed the Refined Conditional Variational Autoencoder (RCVAE). Through preprocessing data into a quasi-video format, our study achieves an integrated synthesis of electrochemical data, including voltage, current, temperature, and charging capacity, which is then processed by the RCVAE model. Coupled with customized training and inference algorithms, this model can generate specific electrochemical data for EOL and ECL under supervised conditions. This method provides users with a comprehensive electrochemical dataset, pioneering a new research domain for the artificial synthesis of lithium battery data. Furthermore, based on the detailed synthetic data, various battery state indicators can be calculated, offering new perspectives and possibilities for lithium battery performance prediction.
arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Chen Wang; Weixin Kong; Zhangfeng Dong; Bihong Lv; Guohua Jing; Zuoming Zhou;pmid: 39306419
Phase change absorbents based on amine chemical absorption for CO2 capture exhibit energy-saving potential, but generally suffer from difficulties in CO2 regeneration. Alcohol, characterized as a protic reagent with a low dielectric constant, can provide free protons to the rich phase of the absorbent, thereby facilitating CO2 regeneration. In this investigation, N-aminoethylpiperazine (AEP)/sulfolane/H2O was employed as the liquid-liquid phase change absorbent, with alcohol serving as the regulator. First, appropriate ion pair models were constructed to simulate the solvent effect of the CO2 products in different alcohol solutions. The results demonstrated that these ion pair products reached the maximum solvation-free energy (ΔEsolvation) in the rich phase containing ethanol (EtOH). Desorption experiment results validated that the inclusion of EtOH led to a maximum regeneration rate of 0.00763 mol/min, thus confirming EtOH's suitability as the preferred regulator. Quantum chemical calculations and 13C NMR characterization were performed, revealing that the addition of EtOH resulted in the partial conversion of AEP-carbamate (AEPCOO-) into a new product known as ethyl carbonate (C2H5OCOO-), which enhanced the regeneration reactivity. In addition, the decomposition paths of different CO2 products were simulated visually, and every reaction's activation energy (ΔEact) was calculated. Remarkably, the ΔEact for the decomposition of C2H5OCOO- (9.465 kJ/mol) was lower than that of the AEPCOO- (26.163 kJ/mol), implying that CO2 was more likely to be released. Finally, the regeneration energy consumption of the alcohol-regulated absorbent was estimated to be only 1.92 GJ/ton CO2, which had excellent energy-saving potential.
Journal of Environme... arrow_drop_down Journal of Environmental SciencesArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jes.2023.09.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental SciencesArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jes.2023.09.022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Funded by:EC | TRI-HPEC| TRI-HPXabier Peña-Anton; Laura Alonso; Koldo Martin-Escudero; Zigor Uriondo; Eneko Setien;Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2024.124527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Applied Thermal Engi... arrow_drop_down Applied Thermal EngineeringArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2024.124527&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 United StatesAuthors: Burggren, Warren W.; Padilla, Pamela A.;Data management plan for the grant, "Non-Genetic Inheritance of Hypoxia Tolerance in Fishes: Dynamics and Mechanisms." Research quantifying the inheritance of tolerance to low oxygen in a model fish and then determine the tolerance mechanisms, at organismal to molecular levels, that are passed on from parents to their offspring. The investigators will not only focus on conventional, well-studied genetic mechanisms for inheritance, but will explore so-called “epigenetic” forms of inheritance that may transfer parental characteristics for only a generation or two. Such “temporary inheritance” might actually require less energy and be more beneficial to a species than the more permanent form of genetic inheritance. This project will quantify non-genetic inheritance of hypoxia tolerance in zebrafish as a model organism and then identify underlying mechanisms, at organismal to molecular levels, in parents and in their progeny. Specifically, this project will quantify non-genetically inherited traits that allow hypoxia tolerance, determine “wash-in” and “wash-out” (i.e., the dynamics) of hypoxia-tolerant phenotypes across multiple generations, and establish epigenetic mechanism(s) of non-genetic inheritance in subsequent generations. The information provided by this project will allow biologists to better predict, and perhaps even mitigate, the negative consequences of future episodes of low oxygen in rivers and lakes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::28902c94a9fc29a7a7964e35fb98d196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=base_search_::28902c94a9fc29a7a7964e35fb98d196&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2024Publisher:Elsevier BV Funded by:NSF | CAREER: Computation-effic...NSF| CAREER: Computation-efficient Algorithms for Grid-scale Energy Storage Control, Bidding, and Integration AnalysisAuthors: Ning Qi; Kaidi Huang; Zhiyuan Fan; Bolun Xu;This paper studies the long-term energy management of a microgrid coordinating hybrid hydrogen-battery energy storage. We develop an approximate semi-empirical hydrogen storage model to accurately capture the power-dependent efficiency of hydrogen storage. We introduce a prediction-free two-stage coordinated optimization framework, which generates the annual state-of-charge (SoC) reference for hydrogen storage offline. During online operation, it updates the SoC reference online using kernel regression and makes operation decisions based on the proposed adaptive virtual-queue-based online convex optimization (OCO) algorithm. We innovatively incorporate penalty terms for long-term pattern tracking and expert-tracking for step size updates. We provide theoretical proof to show that the proposed OCO algorithm achieves a sublinear bound of dynamic regret without using prediction information. Numerical studies based on the Elia and North China datasets show that the proposed framework significantly outperforms the existing online optimization approaches by reducing the operational costs and loss of load by around 30% and 80%, respectively. These benefits can be further enhanced with optimized settings for the penalty coefficient and step size of OCO, as well as more historical references. Submitted to Applied Energy
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124485&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124485&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Authors: Amam Hossain Bagdadee; Argho Moy Maitraya; Ariful Islam; Md. Noor E Alam Siddique;Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy and Built Env... arrow_drop_down Energy and Built EnvironmentArticle . 2025 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbenv.2023.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Najmeh Askari; Mansoureh Jamalzadeh; Aghil Askari; Naiyun Liu; Bijan Samali; Mika Sillanpaa; Leigh Sheppard; Haitao Li; Raf Dewil;pmid: 39095165
In the quest for effective solutions to address Environ. Pollut. and meet the escalating energy demands, heterojunction photocatalysts have emerged as a captivating and versatile technology. These photocatalysts have garnered significant interest due to their wide-ranging applications, including wastewater treatment, air purification, CO2 capture, and hydrogen generation via water splitting. This technique harnesses the power of semiconductors, which are activated under light illumination, providing the necessary energy for catalytic reactions. With visible light constituting a substantial portion (46%) of the solar spectrum, the development of visible-light-driven semiconductors has become imperative. Heterojunction photocatalysts offer a promising strategy to overcome the limitations associated with activating semiconductors under visible light. In this comprehensive review, we present the recent advancements in the field of photocatalytic degradation of contaminants across diverse media, as well as the remarkable progress made in renewable energy production. Moreover, we delve into the crucial role played by various operating parameters in influencing the photocatalytic performance of heterojunction systems. Finally, we address emerging challenges and propose novel perspectives to provide valuable insights for future advancements in this dynamic research domain. By unraveling the potential of heterojunction photocatalysts, this review contributes to the broader understanding of their applications and paves the way for exciting avenues of exploration and innovation.
Journal of Environme... arrow_drop_down Journal of Environmental SciencesArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jes.2024.01.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental SciencesArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jes.2024.01.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Bentham Science Publishers Ltd. Samira Abousaid; Loubna Benabbou; Hanane Dagdougui; Ismail Belhaj; Hicham Bouzekri; Abdelaziz Berrado;Background: In recent years, the integration of renewable energy sources into the grid has increased exponentially. However, one significant challenge in integrating these renewable sources into the grid is intermittency. Objective: To address this challenge, accurate PV power forecasting techniques are crucial for operations and maintenance and day-to-day operations monitoring in solar plants. Methods: In the present work, a hybrid approach that combines Deep Learning (DL) and Numerical Weather Prediction (NWP) with electrical models for PV power forecasting is proposed Results: The outcomes of the study involve evaluating the performance of the proposed model in comparison to a Physical model and a DL model for predicting solar PV power one day ahead and two days ahead. The results indicate that the prediction accuracy of PV power decreases and the error rates increase when forecasting two days ahead, as compared to one day ahead. Conclusion: The obtained results demonstrate that DL models combined with NWP and electrical models can improve PV Power forecasting compared to a Physical model and a DL model.
Recent Advances in E... arrow_drop_down Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering)Article . 2025 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/0123520965264083230926105355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Recent Advances in E... arrow_drop_down Recent Advances in Electrical & Electronic Engineering (Formerly Recent Patents on Electrical & Electronic Engineering)Article . 2025 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2174/0123520965264083230926105355&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Funded by:UKRI | Dynamic Organic Rankine C..., UKRI | Geothermally Sourced Comb..., UKRI | ENSIGN: ENergy System dIG... +7 projectsUKRI| Dynamic Organic Rankine Cycle for Recovering Industrial Waste Heat ,UKRI| Geothermally Sourced Combined Power and Freshwater Generation for Eastern Africa (Combi-Gen) ,UKRI| ENSIGN: ENergy System dIGital twiN ,UKRI| Thermally Driven Heat Pump Based on an Integrated Thermodynamic Cycle for Low Carbon Domestic Heating (Therma-Pump) ,UKRI| Newton Fund: An ORC power plant integrated with thermal energy storage to utilise renewable heat sources for distributed H&P ,UKRI| An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS) ,EC| CO-COOL ,UKRI| GREEN-ICEs: Generation of REfrigerated ENergy Integrated with Cold Energy storage ,UKRI| Flexible Air Source Heat pump for domestic heating decarbonisation (FASHION) ,UKRI| Decentralised water technologiesAuthors: Zahra Hajabdollahi Ouderji; Zhibin Yu;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2024.124720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.applthermaleng.2024.124720&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Hongze Ma; Xiaoyu Jia; Weiguang Chen; Jingyi Yang; Jin Liu; Xiaoshan Zhang; Ke Cui; Zhouping Shangguan; Weiming Yan;pmid: 39481979
Global warming and nitrogen (N) deposition have a profound impact on greenhouse gas (GHG) fluxes and consequently, they also affect climate change. However, the global combined effects of warming and N addition on GHG fluxes remain to be fully understood. To address this knowledge gap, a global meta-analysis of 197 datasets was performed to assess the response of GHG fluxes to warming and N addition and their interactions under various climate and experimental conditions. The results indicate that warming significantly increased CO2 emissions, while N addition and the combined warming and N addition treatments had no impact on CO2 emissions. Moreover, both warming and N addition and their interactions exhibited positive effects on N2O emissions. Under the combined warming and N addition treatments, warming was observed to exert a positive main effect on CO2 emissions, while N addition had a positive main effect on N2O emissions. The interactive effects of warming and N addition exhibited antagonistic effects on CO2, N2O, and CH4 emissions, with CH4 uptake dominated by additive effects. Furthermore, we identified biome and climate factors as the two treatments. These findings indicate that both warming and N addition substantially impact soil GHG fluxes and highlight the urgent need to investigate the influence of the combination of warming and N addition on terrestrial carbon and N cycling under ongoing global change.
Journal of Environme... arrow_drop_down Journal of Environmental SciencesArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jes.2024.03.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Environme... arrow_drop_down Journal of Environmental SciencesArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jes.2024.03.028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2024Publisher:Elsevier BV Lidang Jiang; Changyan Hu; Sibei Ji; Hang Zhao; Junxiong Chen; Ge He;In optimizing performance and extending the lifespan of lithium batteries, accurate state prediction is pivotal. Traditional regression and classification methods have achieved some success in battery state prediction. However, the efficacy of these data-driven approaches heavily relies on the availability and quality of public datasets. Additionally, generating electrochemical data predominantly through battery experiments is a lengthy and costly process, making it challenging to acquire high-quality electrochemical data. This difficulty, coupled with data incompleteness, significantly impacts prediction accuracy. Addressing these challenges, this study introduces the End of Life (EOL) and Equivalent Cycle Life (ECL) as conditions for generative AI models. By integrating an embedding layer into the CVAE model, we developed the Refined Conditional Variational Autoencoder (RCVAE). Through preprocessing data into a quasi-video format, our study achieves an integrated synthesis of electrochemical data, including voltage, current, temperature, and charging capacity, which is then processed by the RCVAE model. Coupled with customized training and inference algorithms, this model can generate specific electrochemical data for EOL and ECL under supervised conditions. This method provides users with a comprehensive electrochemical dataset, pioneering a new research domain for the artificial synthesis of lithium battery data. Furthermore, based on the detailed synthetic data, various battery state indicators can be calculated, offering new perspectives and possibilities for lithium battery performance prediction.
arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert arXiv.org e-Print Ar... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2024License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124604&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu