- home
- Advanced Search
- Energy Research
- 15. Life on land
- DE
- IT
- AT
- Hyper Article en Ligne
- Energy Research
- 15. Life on land
- DE
- IT
- AT
- Hyper Article en Ligne
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Data Paper 2016 Spain, Spain, Serbia, Serbia, FrancePublisher:Springer Science and Business Media LLC Funded by:MESTD | Development and preservat...MESTD| Development and preservation of genetic potential of temperate zone fruitsAuthors:Wenden, Bénédicte;
Wenden, Bénédicte
Wenden, Bénédicte in OpenAIRECampoy, José Antonio;
Lecourt, Julien; López Ortega, Gregorio; +14 AuthorsCampoy, José Antonio
Campoy, José Antonio in OpenAIREWenden, Bénédicte;
Wenden, Bénédicte
Wenden, Bénédicte in OpenAIRECampoy, José Antonio;
Lecourt, Julien; López Ortega, Gregorio;Campoy, José Antonio
Campoy, José Antonio in OpenAIREBlanke, Michael;
Radičević, Sanja;Blanke, Michael
Blanke, Michael in OpenAIRESchüller, Elisabeth;
Spornberger, Andreas;Schüller, Elisabeth
Schüller, Elisabeth in OpenAIREChristen, Danilo;
Magein, Hugo;Christen, Danilo
Christen, Danilo in OpenAIREGiovannini, Daniela;
Giovannini, Daniela
Giovannini, Daniela in OpenAIRECampillo, Carlos;
Campillo, Carlos
Campillo, Carlos in OpenAIREMalchev, Svetoslav;
Peris, José Miguel; Meland, Mekjell; Stehr, Rolf; Charlot, Gérard;Malchev, Svetoslav
Malchev, Svetoslav in OpenAIREQuero-Garcia, José;
Quero-Garcia, José
Quero-Garcia, José in OpenAIREAbstractProfessional and scientific networks built around the production of sweet cherry (Prunus avium L.) led to the collection of phenology data for a wide range of cultivars grown in experimental sites characterized by highly contrasted climatic conditions. We present a dataset of flowering and maturity dates, recorded each year for one tree when available, or the average of several trees for each cultivar, over a period of 37 years (1978–2015). Such a dataset is extremely valuable for characterizing the phenological response to climate change, and the plasticity of the different cultivars’ behaviour under different environmental conditions. In addition, this dataset will support the development of predictive models for sweet cherry phenology exploitable at the continental scale, and will help anticipate breeding strategies in order to maintain and improve sweet cherry production in Europe.
Scientific Data arrow_drop_down Hyper Article en LigneArticle . 2016License: CC BYFull-Text: https://hal.inrae.fr/hal-02630975/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2016License: CC BYFull-Text: https://hal.inrae.fr/hal-02630975/documentRecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAReFRI - Repository of the Fruit Research Institute, SerbiaArticle . 2016Institut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/sdata.2016.108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 26visibility views 26 download downloads 127 Powered bymore_vert Scientific Data arrow_drop_down Hyper Article en LigneArticle . 2016License: CC BYFull-Text: https://hal.inrae.fr/hal-02630975/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2016License: CC BYFull-Text: https://hal.inrae.fr/hal-02630975/documentRecolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2016License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTAReFRI - Repository of the Fruit Research Institute, SerbiaArticle . 2016Institut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/sdata.2016.108&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 United States, France, United States, United States, NetherlandsPublisher:Elsevier BV Authors:Guillermo A. Baigorria;
John M. Antle;Guillermo A. Baigorria
Guillermo A. Baigorria in OpenAIREKenneth J. Boote;
Cheryl H. Porter; +14 AuthorsKenneth J. Boote
Kenneth J. Boote in OpenAIREGuillermo A. Baigorria;
John M. Antle;Guillermo A. Baigorria
Guillermo A. Baigorria in OpenAIREKenneth J. Boote;
Cheryl H. Porter; Alex C. Ruane; Alex C. Ruane;Kenneth J. Boote
Kenneth J. Boote in OpenAIREBruno Basso;
Jonathan M. Winter; Gerald C. Nelson; James W. Jones; Peter J. Thorburn;Bruno Basso
Bruno Basso in OpenAIRESander Janssen;
Sander Janssen
Sander Janssen in OpenAIRESenthold Asseng;
Senthold Asseng
Senthold Asseng in OpenAIRECynthia Rosenzweig;
Cynthia Rosenzweig; Jerry L. Hatfield;Cynthia Rosenzweig
Cynthia Rosenzweig in OpenAIREFrank Ewert;
Frank Ewert
Frank Ewert in OpenAIREDaniel Wallach;
Daniel Wallach
Daniel Wallach in OpenAIREThe Agricultural Model Intercomparison and Improvement Project (AgMIP) is a major international effort linking the climate, crop, and economic modeling communities with cutting-edge information technology to produce improved crop and economic models and the next generation of climate impact projections for the agricultural sector. The goals of AgMIP are to improve substantially the characterization of world food security due to climate change and to enhance adaptation capacity in both developing and developed countries. Analyses of the agricultural impacts of climate variability and change require a transdisciplinary effort to consistently link state-of-the-art climate scenarios to crop and economic models. Crop model outputs are aggregated as inputs to regional and global economic models to determine regional vulnerabilities, changes in comparative advantage, price effects, and potential adaptation strategies in the agricultural sector. Climate, Crop Modeling, Economics, and Information Technology Team Protocols are presented to guide coordinated climate, crop modeling, economics, and information technology research activities around the world, along with AgMIP Cross-Cutting Themes that address uncertainty, aggregation and scaling, and the development of Representative Agricultural Pathways (RAPs) to enable testing of climate change adaptations in the context of other regional and global trends. The organization of research activities by geographic region and specific crops is described, along with project milestones. Pilot results demonstrate AgMIP's role in assessing climate impacts with explicit representation of uncertainties in climate scenarios and simulations using crop and economic models. An intercomparison of wheat model simulations near Obregón, Mexico reveals inter-model differences in yield sensitivity to [CO2] with model uncertainty holding approximately steady as concentrations rise, while uncertainty related to choice of crop model increases with rising temperatures. Wheat model simulations with mid-century climate scenarios project a slight decline in absolute yields that is more sensitive to selection of crop model than to global climate model, emissions scenario, or climate scenario downscaling method. A comparison of regional and national-scale economic simulations finds a large sensitivity of projected yield changes to the simulations’ resolved scales. Finally, a global economic model intercomparison example demonstrates that improvements in the understanding of agriculture futures arise from integration of the range of uncertainty in crop, climate, and economic modeling results in multi-model assessments.
Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Agricultural and Forest MeteorologyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2012.09.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 769 citations 769 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Agricultural and For... arrow_drop_down Agricultural and Forest MeteorologyArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Agricultural and Forest MeteorologyArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2012.09.011&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Germany, United Kingdom, Switzerland, France, Italy, France, FrancePublisher:American Geophysical Union (AGU) Funded by:SNSF | Robust models for assessi..., SNSF | Evaluation of modelled ni..., EC | GHG EUROPESNSF| Robust models for assessing the effectiveness of technologies and managements to reduce N2O emissions from grazed pastures (Models4Pastures) ,SNSF| Evaluation of modelled nitrous oxide emissions from a legume-based mitigation option on temperate grassland ,EC| GHG EUROPEAuthors:Val Snow;
Val Snow
Val Snow in OpenAIRELutz Merbold;
Lutz Merbold;Lutz Merbold
Lutz Merbold in OpenAIRERobert M. Rees;
+13 AuthorsRobert M. Rees
Robert M. Rees in OpenAIREVal Snow;
Val Snow
Val Snow in OpenAIRELutz Merbold;
Lutz Merbold;Lutz Merbold
Lutz Merbold in OpenAIRERobert M. Rees;
Paul C. D. Newton;Robert M. Rees
Robert M. Rees in OpenAIREKatja Klumpp;
Katja Klumpp
Katja Klumpp in OpenAIRENina Buchmann;
Nina Buchmann
Nina Buchmann in OpenAIRERaphaël Martin;
Raphaël Martin
Raphaël Martin in OpenAIREPete Smith;
Kathrin Fuchs; Daniel Bretscher; Nuala Fitton;Pete Smith
Pete Smith in OpenAIRELorenzo Brilli;
Lorenzo Brilli;Lorenzo Brilli
Lorenzo Brilli in OpenAIRECairistiona F.E. Topp;
Cairistiona F.E. Topp
Cairistiona F.E. Topp in OpenAIREMark Lieffering;
Susanne Rolinski;Mark Lieffering
Mark Lieffering in OpenAIREhandle: 20.500.14243/397822 , 20.500.11850/342267 , 2164/13891 , 10568/125184
AbstractProcess‐based models are useful for assessing the impact of changing management practices and climate on yields and greenhouse gas (GHG) emissions from agricultural systems such as grasslands. They can be used to construct national GHG inventories using a Tier 3 approach. However, accurate simulations of nitrous oxide (N2O) fluxes remain challenging. Models are limited by our understanding of soil‐plant‐microbe interactions and the impact of uncertainty in measured input parameters on simulated outputs. To improve model performance, thorough evaluations against in situ measurements are needed. Experimental data of N2O emissions under two management practices (control with typical fertilization versus increased clover and no fertilization) were acquired in a Swiss field experiment. We conducted a multimodel evaluation with three commonly used biogeochemical models (DayCent in two variants, PaSim, APSIM in two variants) comparing four years of data. DayCent was the most accurate model for simulating N2O fluxes on annual timescales, while APSIM was most accurate for daily N2O fluxes. The multimodel ensemble average reduced the error in estimated annual fluxes by 41% compared to an estimate using the Intergovernmental Panel on Climate Change (IPCC)‐derived method for the Swiss agricultural GHG inventory (IPCC‐Swiss), but individual models were not systematically more accurate than IPCC‐Swiss. The model ensemble overestimated the N2O mitigation effect of the clover‐based treatment (measured: 39–45%; ensemble: 52–57%) but was more accurate than IPCC‐Swiss (IPCC‐Swiss: 72–81%). These results suggest that multimodel ensembles are valuable for estimating the impact of climate and management on N2O emissions.
IRIS Cnr arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BY NCFull-Text: https://hdl.handle.net/10568/125184Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020License: CC BY NCFull-Text: https://hdl.handle.net/2164/13891Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research BiogeosciencesArticle . 2020 . Peer-reviewedLicense: CC BY NCData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019jg005261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IRIS Cnr arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2022License: CC BY NCFull-Text: https://hdl.handle.net/10568/125184Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2020License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020License: CC BY NCFull-Text: https://hdl.handle.net/2164/13891Data sources: Bielefeld Academic Search Engine (BASE)Journal of Geophysical Research BiogeosciencesArticle . 2020 . Peer-reviewedLicense: CC BY NCData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2019jg005261&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2012 France, Australia, Netherlands, Australia, Argentina, Argentina, ItalyPublisher:Springer Science and Business Media LLC Funded by:EC | TRANZFOREC| TRANZFORAuthors:Anna L. Jacobsen;
Anna L. Jacobsen
Anna L. Jacobsen in OpenAIREMark Westoby;
Jarmila Pittermann; Amy E. Zanne; +22 AuthorsMark Westoby
Mark Westoby in OpenAIREAnna L. Jacobsen;
Anna L. Jacobsen
Anna L. Jacobsen in OpenAIREMark Westoby;
Jarmila Pittermann; Amy E. Zanne; Amy E. Zanne;Mark Westoby
Mark Westoby in OpenAIREFrederic Lens;
Hafiz Maherali; R. Brandon Pratt;Frederic Lens
Frederic Lens in OpenAIREPatrick J. Mitchell;
Patrick J. Mitchell
Patrick J. Mitchell in OpenAIRERadika Bhaskar;
Radika Bhaskar
Radika Bhaskar in OpenAIREIan J. Wright;
Sean M. Gleason;Ian J. Wright
Ian J. Wright in OpenAIREAndrea Nardini;
John S. Sperry;Andrea Nardini
Andrea Nardini in OpenAIREUwe G. Hacke;
Taylor S. Feild;Uwe G. Hacke
Uwe G. Hacke in OpenAIREMaurizio Mencuccini;
Maurizio Mencuccini
Maurizio Mencuccini in OpenAIRESylvain Delzon;
Sylvain Delzon
Sylvain Delzon in OpenAIRESteven Jansen;
Steven Jansen
Steven Jansen in OpenAIREBrendan Choat;
Brendan Choat
Brendan Choat in OpenAIRESandra Janet Bucci;
Sandra Janet Bucci
Sandra Janet Bucci in OpenAIREStefan Mayr;
Stefan Mayr
Stefan Mayr in OpenAIRETimothy J. Brodribb;
Timothy J. Brodribb
Timothy J. Brodribb in OpenAIREJordi Martínez-Vilalta;
Jordi Martínez-Vilalta
Jordi Martínez-Vilalta in OpenAIREHervé Cochard;
Hervé Cochard;Hervé Cochard
Hervé Cochard in OpenAIREShifts in rainfall patterns and increasing temperatures associated with climate change are likely to cause widespread forest decline in regions where droughts are predicted to increase in duration and severity. One primary cause of productivity loss and plant mortality during drought is hydraulic failure. Drought stress creates trapped gas emboli in the water transport system, which reduces the ability of plants to supply water to leaves for photosynthetic gas exchange and can ultimately result in desiccation and mortality. At present we lack a clear picture of how thresholds to hydraulic failure vary across a broad range of species and environments, despite many individual experiments. Here we draw together published and unpublished data on the vulnerability of the transport system to drought-induced embolism for a large number of woody species, with a view to examining the likely consequences of climate change for forest biomes. We show that 70% of 226 forest species from 81 sites worldwide operate with narrow (<1 megapascal) hydraulic safety margins against injurious levels of drought stress and therefore potentially face long-term reductions in productivity and survival if temperature and aridity increase as predicted for many regions across the globe. Safety margins are largely independent of mean annual precipitation, showing that there is global convergence in the vulnerability of forests to drought, with all forest biomes equally vulnerable to hydraulic failure regardless of their current rainfall environment. These findings provide insight into why drought-induced forest decline is occurring not only in arid regions but also in wet forests not normally considered at drought risk.
Nature arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1038/natu...Other literature typeData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Naturalis Institutional RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 2K citations 2,078 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert Nature arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverhttp://dx.doi.org/10.1038/natu...Other literature typeData sources: European Union Open Data PortalJames Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Naturalis Institutional RepositoryArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)University of Western Sydney (UWS): Research DirectArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nature11688&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Embargo end date: 21 Jun 2016 Switzerland, FrancePublisher:Elsevier BV Funded by:SNSF | Community history and eco...SNSF| Community history and ecosystem functioningAuthors: Théophile Lohier;Franck Jabot;
Franck Jabot
Franck Jabot in OpenAIREAlexandra Weigelt;
Alexandra Weigelt
Alexandra Weigelt in OpenAIREBernhard Schmid;
+1 AuthorsBernhard Schmid
Bernhard Schmid in OpenAIREThéophile Lohier;Franck Jabot;
Franck Jabot
Franck Jabot in OpenAIREAlexandra Weigelt;
Alexandra Weigelt
Alexandra Weigelt in OpenAIREBernhard Schmid;
Guillaume Deffuant;Bernhard Schmid
Bernhard Schmid in OpenAIREpmid: 27060673
Community dynamics is influenced by multiple ecological processes such as environmental spatiotemporal variation, competition between individuals and demographic stochasticity. Quantifying the respective influence of these various processes and making predictions on community dynamics require the use of a dynamical framework encompassing these various components. We here demonstrate how to adapt the framework of stochastic community dynamics to the peculiarities of herbaceous communities, by using a short temporal resolution adapted to the time scale of competition between herbaceous plants, and by taking into account the seasonal drops in plant aerial biomass following winter, harvesting or consumption by herbivores. We develop a hybrid inference method for this novel modelling framework that both uses numerical simulations and likelihood computations. Applying this methodology to empirical data from the Jena biodiversity experiment, we find that environmental stochasticity has a larger effect on community dynamics than demographic stochasticity, and that both effects are generally smaller than observation errors at the plot scale. We further evidence that plant intrinsic growth rates and carrying capacities are moderately predictable from plant vegetative height, specific leaf area and leaf dry matter content. We do not find any trade-off between demographical components, since species with larger intrinsic growth rates tend to also have lower demographic and environmental variances. Finally, we find that our model is able to make relatively good predictions of multi-specific community dynamics based on the assumption of competitive symmetry.
Hyper Article en Lig... arrow_drop_down Zurich Open Repository and ArchiveArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Zurich Open Repository and ArchiveInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Journal of Theoretical BiologyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jtbi.2016.03.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Average influence Average impulse Average Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Zurich Open Repository and ArchiveArticle . 2016 . Peer-reviewedLicense: CC BY NC NDData sources: Zurich Open Repository and ArchiveInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Journal of Theoretical BiologyArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jtbi.2016.03.043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2017 France, France, GermanyPublisher:Frontiers Media SA Authors:Lecourieux, Fatma;
Lecourieux, Fatma
Lecourieux, Fatma in OpenAIREKappel, Christian;
Kappel, Christian
Kappel, Christian in OpenAIREPieri, Philippe;
Pieri, Philippe
Pieri, Philippe in OpenAIRECharon, Justine;
+6 AuthorsCharon, Justine
Charon, Justine in OpenAIRELecourieux, Fatma;
Lecourieux, Fatma
Lecourieux, Fatma in OpenAIREKappel, Christian;
Kappel, Christian
Kappel, Christian in OpenAIREPieri, Philippe;
Pieri, Philippe
Pieri, Philippe in OpenAIRECharon, Justine;
Pillet, Jérémy;Charon, Justine
Charon, Justine in OpenAIREHilbert, Ghislaine;
Hilbert, Ghislaine
Hilbert, Ghislaine in OpenAIRERenaud, Christel;
Renaud, Christel
Renaud, Christel in OpenAIREGomès, Eric;
Delrot, Serge; Lecourieux, David;Gomès, Eric
Gomès, Eric in OpenAIREReproductive development of grapevine and berry composition are both strongly influenced by temperature. To date, the molecular mechanisms involved in grapevine berries response to high temperatures are poorly understood. Unlike recent data that addressed the effects on berry development of elevated temperatures applied at the whole plant level, the present work particularly focuses on the fruit responses triggered by direct exposure to heat treatment (HT). In the context of climate change, this work focusing on temperature effect at the microclimate level is of particular interest as it can help to better understand the consequences of leaf removal (a common viticultural practice) on berry development. HT (+ 8°C) was locally applied to clusters from Cabernet Sauvignon fruiting cuttings at three different developmental stages (middle green, veraison and middle ripening). Samples were collected 1, 7, and 14 days after treatment and used for metabolic and transcriptomic analyses. The results showed dramatic and specific biochemical and transcriptomic changes in heat exposed berries, depending on the developmental stage and the stress duration. When applied at the herbaceous stage, HT delayed the onset of veraison. Heating also strongly altered the berry concentration of amino acids and organic acids (e.g., phenylalanine, γ-aminobutyric acid and malate) and decreased the anthocyanin content at maturity. These physiological alterations could be partly explained by the deep remodeling of transcriptome in heated berries. More than 7000 genes were deregulated in at least one of the nine experimental conditions. The most affected processes belong to the categories "stress responses," "protein metabolism" and "secondary metabolism," highlighting the intrinsic capacity of grape berries to perceive HT and to build adaptive responses. Additionally, important changes in processes related to "transport," "hormone" and "cell wall" might contribute to the postponing of veraison. Finally, opposite effects depending on heating duration were observed for genes encoding enzymes of the general phenylpropanoid pathway, suggesting that the HT-induced decrease in anthocyanin content may result from a combination of transcript abundance and product degradation.
Frontiers in Plant S... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2017License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2017.00053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 107 citations 107 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Frontiers in Plant S... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Publikationsserver der Universität PotsdamArticle . 2017License: CC BYData sources: Publikationsserver der Universität Potsdamadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpls.2017.00053&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2013 Netherlands, France, France, FrancePublisher:American Geophysical Union (AGU) Authors: Zhang, Xia; Gurney, Kevin;Peylin, Philippe;
Peylin, Philippe
Peylin, Philippe in OpenAIREChevallier, Frederic;
+5 AuthorsChevallier, Frederic
Chevallier, Frederic in OpenAIREZhang, Xia; Gurney, Kevin;Peylin, Philippe;
Peylin, Philippe
Peylin, Philippe in OpenAIREChevallier, Frederic;
Chevallier, Frederic
Chevallier, Frederic in OpenAIRELaw, Rachel;
Law, Rachel
Law, Rachel in OpenAIREPatra, Prabir;
Patra, Prabir
Patra, Prabir in OpenAIRERayner, Peter;
Röedenbeck, Christian;Rayner, Peter
Rayner, Peter in OpenAIREKrol, Maarten;
Krol, Maarten
Krol, Maarten in OpenAIREdoi: 10.1002/gbc.20091
AbstractInverse‐estimated net carbon exchange time series spanning two decades for six North American regions are analyzed to examine long‐term trends and relationships to temperature and precipitation variations. Results reveal intensification of carbon uptake in eastern boreal North America (0.1 PgC/decade) and the Midwest United States (0.08 PgC/decade). Seasonal cross‐correlation analysis shows a significant relationship between net carbon exchange and temperature/precipitation anomalies during the western United States growing season with warmer, dryer conditions leading reduced carbon uptake. This relationship is consistent with “global change‐type drought” dynamics which drive increased vegetation mortality, increases in dry woody material, and increased wildfire occurrence. This finding supports the contention that future climate change may increase carbon loss in this region. Similarly, higher temperatures and reduced precipitation are accompanied by decreased net carbon uptake in the Midwestern United States toward the end of the growing season. Additionally, intensified net carbon uptake during the eastern boreal North America growing season is led by increased precipitation anomalies in the previous year, suggesting the influence of “climate memory” carried by regional snowmelt water. The two regions of boreal North America exhibit opposing seasonal carbon‐temperature relationships with the eastern half experiencing a net carbon loss with near coincident increases in temperature and the western half showing increased net carbon uptake. The carbon response in the boreal west region lags the temperature anomalies by roughly 6 months. This opposing carbon‐temperature relationship in boreal North America may be a combination of different dominant vegetation types, the amount and timing of snowfall, and temperature anomaly differences across boreal North America.
Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-02957432Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-02957432Data sources: Bielefeld Academic Search Engine (BASE)Global Biogeochemical CyclesArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Global Biogeochemical CyclesArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/gbc.20091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 10 citations 10 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2013Full-Text: https://hal.science/hal-02957432Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2013Full-Text: https://hal.science/hal-02957432Data sources: Bielefeld Academic Search Engine (BASE)Global Biogeochemical CyclesArticle . 2013Data sources: DANS (Data Archiving and Networked Services)Global Biogeochemical CyclesArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/gbc.20091&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2015 Italy, Belgium, France, Italy, Netherlands, Netherlands, SpainPublisher:Springer Science and Business Media LLC Funded by:EC | SRF-OZO, EC | DOFOCO, NSERC +2 projectsEC| SRF-OZO ,EC| DOFOCO ,NSERC ,EC| GEM-TRAIT ,EC| IMBALANCE-PAuthors: Patrick F. Sullivan;Philippe Ciais;
Philippe Ciais
Philippe Ciais in OpenAIRETerenzio Zenone;
Terenzio Zenone; +16 AuthorsTerenzio Zenone
Terenzio Zenone in OpenAIREPatrick F. Sullivan;Philippe Ciais;
Philippe Ciais
Philippe Ciais in OpenAIRETerenzio Zenone;
Terenzio Zenone;Terenzio Zenone
Terenzio Zenone in OpenAIREEric Ceschia;
Eric Ceschia
Eric Ceschia in OpenAIREJosep Peñuelas;
Josep Peñuelas
Josep Peñuelas in OpenAIREXuhui Wang;
F. S. Chapin; Joke Bilcke;Xuhui Wang
Xuhui Wang in OpenAIRESara Vicca;
Michael Obersteiner;Sara Vicca
Sara Vicca in OpenAIREIvan A. Janssens;
Ivan A. Janssens
Ivan A. Janssens in OpenAIREMatteo Campioli;
Shilong Piao; Shilong Piao;Matteo Campioli
Matteo Campioli in OpenAIREDario Papale;
Dario Papale
Dario Papale in OpenAIREYadvinder Malhi;
Yadvinder Malhi
Yadvinder Malhi in OpenAIREMarcos Fernández-Martínez;
Marcos Fernández-Martínez
Marcos Fernández-Martínez in OpenAIRESebastiaan Luyssaert;
Sebastiaan Luyssaert
Sebastiaan Luyssaert in OpenAIREDavid Olefeldt;
David Olefeldt
David Olefeldt in OpenAIREPlants acquire carbon through photosynthesis to sustain biomass production, autotrophic respiration and production of non-structural compounds for multiple purposes. The fraction of photosynthetic production used for biomass production, the biomass production efficiency, is a key determinant of the conversion of solar energy to biomass. In forest ecosystems, biomass production efficiency was suggested to be related to site fertility. Here we present a database of biomass production efficiency from 131 sites compiled from individual studies using harvest, biometric, eddy covariance, or process-based model estimates of production. The database is global, but dominated by data from Europe and North America. We show that instead of site fertility, ecosystem management is the key factor that controls biomass production efficiency in terrestrial ecosystems. In addition, in natural forests, grasslands, tundra, boreal peatlands and marshes, biomass production efficiency is independent of vegetation, environmental and climatic drivers. This similarity of biomass production efficiency across natural ecosystem types suggests that the ratio of biomass production to gross primary productivity is constant across natural ecosystems. We suggest that plant adaptation results in similar growth efficiency in high- and low-fertility natural systems, but that nutrient influxes under managed conditions favour a shift to carbon investment from the belowground flux of non-structural compounds to aboveground biomass.
Nature Geoscience arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2015Data sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2015Data sources: Institutional Repository Universiteit AntwerpenInstitutional Repository Universiteit AntwerpenOther literature type . 2015Data sources: Institutional Repository Universiteit AntwerpenNature GeoscienceArticle . 2015http://dx.doi.org/10.1038/NGEO...Article . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.1038/ngeo...Other literature typeData sources: European Union Open Data PortalUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ngeo2553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 118 citations 118 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Geoscience arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2021Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2015Data sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2015Data sources: Diposit Digital de Documents de la UABInstitutional Repository Universiteit AntwerpenArticle . 2015Data sources: Institutional Repository Universiteit AntwerpenInstitutional Repository Universiteit AntwerpenOther literature type . 2015Data sources: Institutional Repository Universiteit AntwerpenNature GeoscienceArticle . 2015http://dx.doi.org/10.1038/NGEO...Article . Peer-reviewedData sources: European Union Open Data Portalhttp://dx.doi.org/10.1038/ngeo...Other literature typeData sources: European Union Open Data PortalUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ngeo2553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2019 Netherlands, France, Germany, FrancePublisher:The Royal Society Funded by:UKRI | RootDetect: Remote Detect..., NSF | Collaborative Research: M...UKRI| RootDetect: Remote Detection and Precision Management of Root Health ,NSF| Collaborative Research: Megaherbivore and climatic controls on fire and vegetation dynamics during the last deglaciationAuthors:Kevin D. Burke;
Kevin D. Burke
Kevin D. Burke in OpenAIREJohn W. Williams;
John W. Williams
John W. Williams in OpenAIRESimon Brewer;
Simon Brewer
Simon Brewer in OpenAIREWalter Finsinger;
+3 AuthorsWalter Finsinger
Walter Finsinger in OpenAIREKevin D. Burke;
Kevin D. Burke
Kevin D. Burke in OpenAIREJohn W. Williams;
John W. Williams
John W. Williams in OpenAIRESimon Brewer;
Simon Brewer
Simon Brewer in OpenAIREWalter Finsinger;
Walter Finsinger
Walter Finsinger in OpenAIREThomas Giesecke;
Thomas Giesecke
Thomas Giesecke in OpenAIREDavid J. Lorenz;
David J. Lorenz
David J. Lorenz in OpenAIREAlejandro Ordonez;
Alejandro Ordonez
Alejandro Ordonez in OpenAIREUnderstanding the mechanisms of climate that produce novel ecosystems is of joint interest to conservation biologists and palaeoecologists. Here, we define and differentiate transient from accumulated novelty and evaluate four climatic mechanisms proposed to cause species to reshuffle into novel assemblages: high climatic novelty, high spatial rates of change (displacement), high variance among displacement rates for individual climate variables, and divergence among displacement vector bearings. We use climate simulations to quantify climate novelty, displacement and divergence across Europe and eastern North America from the last glacial maximum to the present, and fossil pollen records to quantify vegetation novelty. Transient climate novelty is consistently the strongest predictor of transient vegetation novelty, while displacement rates (mean and variance) are equally important in Europe. However, transient vegetation novelty is lower in Europe and its relationship to climatic predictors is the opposite of expectation. For both continents, accumulated novelty is greater than transient novelty, and climate novelty is the strongest predictor of accumulated ecological novelty. These results suggest that controls on novel ecosystems vary with timescale and among continents, and that the twenty-first century emergence of novelty will be driven by both rapid rates of climate change and the emergence of novel climate states. This article is part of a discussion meeting issue ‘The past is a foreign country: how much can the fossil record actually inform conservation?’
Hyper Article en Lig... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019Full-Text: https://hal.science/hal-02344475Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2019License: taverneData sources: Pure Utrecht UniversityPublikationenserver der Georg-August-Universität GöttingenArticle . 2020Mémoires en Sciences de l'Information et de la CommunicationConference object . 2019Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2019 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2019.0218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019Full-Text: https://hal.science/hal-02344475Data sources: Bielefeld Academic Search Engine (BASE)Philosophical Transactions of the Royal Society B Biological SciencesArticleData sources: UnpayWallPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2019License: taverneData sources: Pure Utrecht UniversityPublikationenserver der Georg-August-Universität GöttingenArticle . 2020Mémoires en Sciences de l'Information et de la CommunicationConference object . 2019Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2019 . Peer-reviewedLicense: Royal Society Data Sharing and AccessibilityData sources: CrossrefPhilosophical Transactions of the Royal Society B Biological SciencesArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Philosophical Transactions of the Royal Society B Biological SciencesArticle . 2020Data sources: Europe PubMed Centraladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rstb.2019.0218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 France, Netherlands, France, France, France, Germany, France, FrancePublisher:Copernicus GmbH Funded by:EC | GHG EUROPEEC| GHG EUROPEAuthors:Nicolas Vuichard;
Nicolas Vuichard
Nicolas Vuichard in OpenAIREXiuchen Wu;
Xiuchen Wu; Eddy Moors; +21 AuthorsXiuchen Wu
Xiuchen Wu in OpenAIRENicolas Vuichard;
Nicolas Vuichard
Nicolas Vuichard in OpenAIREXiuchen Wu;
Xiuchen Wu; Eddy Moors; P. Ciais; N. de Noblet-Ducoudré; Pierre Cellier;Xiuchen Wu
Xiuchen Wu in OpenAIREXuhui Wang;
Xuhui Wang
Xuhui Wang in OpenAIREP. Di Tommasi;
Christine Moureaux;P. Di Tommasi
P. Di Tommasi in OpenAIREEric Larmanou;
Tanguy Manise; W.W.P. Jans; Luca Vitale;Eric Larmanou
Eric Larmanou in OpenAIREThomas Grünwald;
Vincenzo Magliulo;Thomas Grünwald
Thomas Grünwald in OpenAIREJan Elbers;
Dominique Ripoche;Jan Elbers
Jan Elbers in OpenAIRETiphaine Tallec;
Tiphaine Tallec
Tiphaine Tallec in OpenAIREEric Ceschia;
Anne De Ligne;Eric Ceschia
Eric Ceschia in OpenAIREMartin Wattenbach;
Martin Wattenbach
Martin Wattenbach in OpenAIREBenjamin Loubet;
Benjamin Loubet
Benjamin Loubet in OpenAIRENicolas Viovy;
Nicolas Viovy
Nicolas Viovy in OpenAIREChristian Bernhofer;
Christian Bernhofer
Christian Bernhofer in OpenAIREAbstract. The responses of crop functioning to changing climate and atmospheric CO2 concentration ([CO2]) could have large effects on food production, and impact carbon, water and energy fluxes, causing feedbacks to climate. To simulate the responses of temperate crops to changing climate and [CO2], accounting for the specific phenology of crops mediated by management practice, we present here the development of a process-oriented terrestrial biogeochemical model named ORCHIDEE-CROP (v0), which integrates a generic crop phenology and harvest module and a very simple parameterization of nitrogen fertilization, into the land surface model (LSM) ORCHIDEEv196, in order to simulate biophysical and biochemical interactions in croplands, as well as plant productivity and harvested yield. The model is applicable for a range of temperate crops, but it is tested here for maize and winter wheat, with the phenological parameterizations of two European varieties originating from the STICS agronomical model. We evaluate the ORCHIDEE-CROP (v0) model against eddy covariance and biometric measurements at 7 winter wheat and maize sites in Europe. The specific ecosystem variables used in the evaluation are CO2 fluxes (NEE), latent heat and sensible heat fluxes. Additional measurements of leaf area index (LAI), aboveground biomass and yield are used as well. Evaluation results reveal that ORCHIDEE-CROP (v0) reproduces the observed timing of crop development stages and the amplitude of pertaining LAI changes in contrast to ORCHIDEEv196 in which by default crops have the same phenology than grass. A near-halving of the root mean square error of LAI from 2.38 ± 0.77 to 1.08 ± 0.34 m2 m−2 is obtained between ORCHIDEEv196 and ORCHIDEE-CROP (v0) across the 7 study sites. Improved crop phenology and carbon allocation lead to a general good match between modelled and observed aboveground biomass (with a normalized root mean squared error (NRMSE) of 11.0–54.2 %), crop yield, as well as of the daily carbon and energy fluxes with NRMSE of ~9.0–20.1 and ~9.4–22.3 % for NEE, and sensible and latent heat fluxes, respectively. The model data mistfit for energy fluxes are within uncertainties of the measurements, which themselves show an incomplete energy balance closure within the range 80.6–86.3 %. The remaining discrepancies between modelled and observed LAI and other variables at specific sites are partly attributable to unrealistic representation of management events. In addition, ORCHIDEE-CROP (v0) is shown to have the ability to capture the spatial gradients of carbon and energy-related variables, such as gross primary productivity, NEE, sensible heat fluxes and latent heat fluxes, across the sites in Europe, an important requirement for future spatially explicit simulations. Further improvement of the model with an explicit parameterization of nutrition dynamics and of management, is expected to improve its predictive ability to simulate croplands in an Earth System Model.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmdd-8...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016GFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmdd-8-4653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924/documentUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.science/hal-01587289Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2016Full-Text: https://hal.inrae.fr/hal-02635924Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/gmdd-8...Article . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefGeoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Geoscientific Model DevelopmentArticle . 2016GFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2016Data sources: GFZ German Research Centre for GeosciencesINRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/gmdd-8-4653-2015&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu