- home
- Advanced Search
- Energy Research
- 2025-2025
- BD
- EC
- Energy Research
- 2025-2025
- BD
- EC
description Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:PeerJ Funded by:UKRI | Ozone impacts on tropical...UKRI| Ozone impacts on tropical vegetation; implications for forest productivity (Trop-Oz)Mst Nahid Farha; Flossie Brown; Lucas A. Cernusak; Stephen Sitch; Alexander W. Cheesman;Ozone (O3), a major air pollutant, can negatively impact plant growth and yield. While O3 impacts have been widely documented in crops such as wheat and soybean, few studies have looked at the effects of O3 on sorghum, a C4 plant and the fifth most important cereal crop worldwide. We exposed grain sorghum (Sorghum bicolor cv. HAT150843) to a range of O3 concentrations (daytime mean O3 concentrations ranged between 20 and 97 ppb) in open-top chambers, and examined how whole plant and leaf morphological traits varied in response to O3 exposure. Results showed no significant impact of realistic O3 exposure on whole plant biomass and its partitioning in sorghum. These findings suggest that sorghum is generally resistant to O3 and should be considered as a favourable crop in O3 polluted regions, while acknowledging further research is needed to understand the mechanistic basis of O3 tolerance in sorghum.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7717/peerj.18844&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7717/peerj.18844&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:PeerJ Funded by:UKRI | Ozone impacts on tropical...UKRI| Ozone impacts on tropical vegetation; implications for forest productivity (Trop-Oz)Mst Nahid Farha; Flossie Brown; Lucas A. Cernusak; Stephen Sitch; Alexander W. Cheesman;Ozone (O3), a major air pollutant, can negatively impact plant growth and yield. While O3 impacts have been widely documented in crops such as wheat and soybean, few studies have looked at the effects of O3 on sorghum, a C4 plant and the fifth most important cereal crop worldwide. We exposed grain sorghum (Sorghum bicolor cv. HAT150843) to a range of O3 concentrations (daytime mean O3 concentrations ranged between 20 and 97 ppb) in open-top chambers, and examined how whole plant and leaf morphological traits varied in response to O3 exposure. Results showed no significant impact of realistic O3 exposure on whole plant biomass and its partitioning in sorghum. These findings suggest that sorghum is generally resistant to O3 and should be considered as a favourable crop in O3 polluted regions, while acknowledging further research is needed to understand the mechanistic basis of O3 tolerance in sorghum.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7717/peerj.18844&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7717/peerj.18844&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 SpainPublisher:MDPI AG Authors: Daniel Icaza Alvarez; Fernando González-Ladrón-de-Guevara; Jorge Rojas Espinoza; David Borge-Diez; +2 AuthorsDaniel Icaza Alvarez; Fernando González-Ladrón-de-Guevara; Jorge Rojas Espinoza; David Borge-Diez; Santiago Pulla Galindo; Carlos Flores-Vázquez;doi: 10.3390/en18061523
The transformation of energy markets is at a crossroads in the search for how they must evolve to become ecologically friendly systems and meet the growing energy demand. Currently, methodologies based on bibliographic data analysis are supported by information and communication technologies and have become necessary. More sophisticated processes are being used in energy systems, including new digitalization models, particularly driven by artificial intelligence (AI) technology. In the present bibliographic review, 342 documents indexed in Scopus have been identified that promote synergies between AI and the energy transition (ET), considering a time range from 1990 to 2024. The analysis methodology includes an evaluation of keywords related to the areas of AI and ET. The analyses extend to a review by authorship, co-authorship, and areas of AI’s influence in energy system subareas. The integration of energy resources, including supply and demand, in which renewable energy sources play a leading role at the end-customer level, now conceived as both producer and consumer, is intensively studied. The results identified that AI has experienced notable growth in the last five years and will undoubtedly play a leading role in the future in achieving decarbonization goals. Among the applications that it will enable will be the design of new energy markets up to the execution and start-up of new power plants with energy control and optimization. This study aims to present a baseline that allows researchers, legislators, and government decision-makers to compare their benefits, ambitions, strategies, and novel applications for formulating AI policies in the energy field. The developments and scope of AI in the energy sector were explored in relation to the AI domain in parts of the energy supply chain. While these processes involve complex data analysis, AI techniques provide powerful solutions for designing and managing energy markets with high renewable energy penetration. This integration of AI with energy systems represents a fundamental shift in market design, enabling more efficient and sustainable energy transitions. Future lines of research could focus on energy demand forecasting, dynamic adjustments in energy distribution between different generation sources, energy storage, and usage optimization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18061523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18061523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 SpainPublisher:MDPI AG Authors: Daniel Icaza Alvarez; Fernando González-Ladrón-de-Guevara; Jorge Rojas Espinoza; David Borge-Diez; +2 AuthorsDaniel Icaza Alvarez; Fernando González-Ladrón-de-Guevara; Jorge Rojas Espinoza; David Borge-Diez; Santiago Pulla Galindo; Carlos Flores-Vázquez;doi: 10.3390/en18061523
The transformation of energy markets is at a crossroads in the search for how they must evolve to become ecologically friendly systems and meet the growing energy demand. Currently, methodologies based on bibliographic data analysis are supported by information and communication technologies and have become necessary. More sophisticated processes are being used in energy systems, including new digitalization models, particularly driven by artificial intelligence (AI) technology. In the present bibliographic review, 342 documents indexed in Scopus have been identified that promote synergies between AI and the energy transition (ET), considering a time range from 1990 to 2024. The analysis methodology includes an evaluation of keywords related to the areas of AI and ET. The analyses extend to a review by authorship, co-authorship, and areas of AI’s influence in energy system subareas. The integration of energy resources, including supply and demand, in which renewable energy sources play a leading role at the end-customer level, now conceived as both producer and consumer, is intensively studied. The results identified that AI has experienced notable growth in the last five years and will undoubtedly play a leading role in the future in achieving decarbonization goals. Among the applications that it will enable will be the design of new energy markets up to the execution and start-up of new power plants with energy control and optimization. This study aims to present a baseline that allows researchers, legislators, and government decision-makers to compare their benefits, ambitions, strategies, and novel applications for formulating AI policies in the energy field. The developments and scope of AI in the energy sector were explored in relation to the AI domain in parts of the energy supply chain. While these processes involve complex data analysis, AI techniques provide powerful solutions for designing and managing energy markets with high renewable energy penetration. This integration of AI with energy systems represents a fundamental shift in market design, enabling more efficient and sustainable energy transitions. Future lines of research could focus on energy demand forecasting, dynamic adjustments in energy distribution between different generation sources, energy storage, and usage optimization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18061523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18061523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Springer Science and Business Media LLC Adriana Uquillas; Nathaly Bonilla; Stephany Arizala; Yves Basset; Héctor Barrios; David A. Donoso;Forecasting insect responses to environmental variables at local and global spatial scales remains a crucial task in Ecology. However, predicting future responses requires long-term datasets, which are rarely available for insects, especially in the tropics. From 2002 to 2017, we recorded male ant incidence of 155 ant species at ten malaise traps on the 50-ha ForestGEO plot in Barro Colorado Island. In this Panamanian tropical rainforest, traps were deployed for two weeks during the wet and dry seasons. Short-term changes in the timing of male flying activity were pronounced, and compositionally distinct assemblages flew during the wet and dry seasons. Notably, the composition of these distinct flying assemblages oscillated in consistent 4-year cycles but did not change during the 16-year study period. Across time, a Seasonal Auto-Regressive Integrated Moving Average model explained 75% of long-term variability in male ant production (i.e., the summed incidence of male species across traps), which responded negatively to monthly maximum temperature, and positively to sea surface temperature, a surrogate for El Niño Southern Oscillation (ENSO) events. Establishing these relationships allowed us to forecast ant production until 2022 when year-long local climate variables were available. Consistent with the data, the forecast indicated no significant changes in long-term temporal trends of male ant production. However, simulations of different scenarios of climate variables found that strong ENSO events and maximum temperature impacted male ant production positively and negatively, respectively. Our results highlight the dependence of ant male production on both short- and long-term temperature changes, which is critical under current global warming.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-84789-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-84789-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Springer Science and Business Media LLC Adriana Uquillas; Nathaly Bonilla; Stephany Arizala; Yves Basset; Héctor Barrios; David A. Donoso;Forecasting insect responses to environmental variables at local and global spatial scales remains a crucial task in Ecology. However, predicting future responses requires long-term datasets, which are rarely available for insects, especially in the tropics. From 2002 to 2017, we recorded male ant incidence of 155 ant species at ten malaise traps on the 50-ha ForestGEO plot in Barro Colorado Island. In this Panamanian tropical rainforest, traps were deployed for two weeks during the wet and dry seasons. Short-term changes in the timing of male flying activity were pronounced, and compositionally distinct assemblages flew during the wet and dry seasons. Notably, the composition of these distinct flying assemblages oscillated in consistent 4-year cycles but did not change during the 16-year study period. Across time, a Seasonal Auto-Regressive Integrated Moving Average model explained 75% of long-term variability in male ant production (i.e., the summed incidence of male species across traps), which responded negatively to monthly maximum temperature, and positively to sea surface temperature, a surrogate for El Niño Southern Oscillation (ENSO) events. Establishing these relationships allowed us to forecast ant production until 2022 when year-long local climate variables were available. Consistent with the data, the forecast indicated no significant changes in long-term temporal trends of male ant production. However, simulations of different scenarios of climate variables found that strong ENSO events and maximum temperature impacted male ant production positively and negatively, respectively. Our results highlight the dependence of ant male production on both short- and long-term temperature changes, which is critical under current global warming.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-84789-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-84789-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: William Villegas-Ch; Jaime Govea; Rommel Gutierrez; Aracely Mera-Navarrete;The exponential growth of the Internet of Things (IoT) has boosted connectivity across various sectors, such as Industry 4.0 and smart cities. However, this expansion has also exposed IoT devices to critical vulnerabilities, including spoofing, DoS attacks, and unauthorized access. Traditional security solutions, based on centralized architectures, are neither scalable nor efficient enough to handle the increasing complexity and number of IoT devices, leading to high latencies, increased energy consumption, and inadequate intrusion detection. In this work, we propose a hybrid solution that combines Blockchain and artificial intelligence (AI) to improve security and operational efficiency in IoT networks. Blockchain ensures device authentication and data integrity through a lightweight consensus protocol, while AI enables real-time intrusion detection using deep learning models. The simulations demonstrate that the proposed system improves the precision of detecting phishing attacks by up to 95.2%. At the same time, the authentication latency is reduced to 15 ms in networks with 1000 connected devices, 66.6% faster than traditional solutions. In addition, the energy consumption of the hybrid system is 31.8% lower than that of conventional approaches, validating its scalability and efficiency in large-scale IoT networks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2025.3532800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2025.3532800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: William Villegas-Ch; Jaime Govea; Rommel Gutierrez; Aracely Mera-Navarrete;The exponential growth of the Internet of Things (IoT) has boosted connectivity across various sectors, such as Industry 4.0 and smart cities. However, this expansion has also exposed IoT devices to critical vulnerabilities, including spoofing, DoS attacks, and unauthorized access. Traditional security solutions, based on centralized architectures, are neither scalable nor efficient enough to handle the increasing complexity and number of IoT devices, leading to high latencies, increased energy consumption, and inadequate intrusion detection. In this work, we propose a hybrid solution that combines Blockchain and artificial intelligence (AI) to improve security and operational efficiency in IoT networks. Blockchain ensures device authentication and data integrity through a lightweight consensus protocol, while AI enables real-time intrusion detection using deep learning models. The simulations demonstrate that the proposed system improves the precision of detecting phishing attacks by up to 95.2%. At the same time, the authentication latency is reduced to 15 ms in networks with 1000 connected devices, 66.6% faster than traditional solutions. In addition, the energy consumption of the hybrid system is 31.8% lower than that of conventional approaches, validating its scalability and efficiency in large-scale IoT networks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2025.3532800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2025.3532800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025 United Kingdom, France, France, Italy, Netherlands, United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:UKRI | A Socio-Ecological Observ..., EC | AMAZALERT, NSF | Collaborative Research: L... +11 projectsUKRI| A Socio-Ecological Observatory for the Southern African Woodlands ,EC| AMAZALERT ,NSF| Collaborative Research: LTREB: A natural laboratory for studying biodiversity, ecosystem function, and responses to environmental change from Amazonian lowlands to Andean treeline ,EC| GEOCARBON ,EC| TreeMort ,UKRI| SECO: Resolving the current and future carbon dynamics of the dry tropics ,UKRI| Nordeste ,UKRI| Biodiversity and ecosystem functioning in degraded and recovering Amazonian and Atlantic forests ,UKRI| BIOmes of Brasil - Resilience, rEcovery, and Diversity: BIO-RED ,EC| T-FORCES ,UKRI| ARBOLES: A trait-based Understanding of LATAM Forest Biodiversity and Resilience ,UKRI| NI: Lightning in African tropical forests: from tree mortality to carbon dynamics ,UKRI| TREMOR: Mechanisms and consequences of increasing TREe MORtality in Amazonian rainforests ,UKRI| Amazon Integrated Carbon Analysis / AMAZONICASullivan, Martin; Phillips, Oliver; Galbraith, David; Almeida, Everton; de Oliveira, Edmar; Almeida, Jarcilene; Dávila, Esteban; Alves, Luciana; Andrade, Ana; Aragão, Luiz; Araujo-Murakami, Alejandro; Arets, Eric; Arroyo, Luzmila; Cruz, Omar; Baccaro, Fabrício; Baker, Timothy; Banki, Olaf; Baraloto, Christopher; Barlow, Jos; Barroso, Jorcely; Berenguer, Erika; Blanc, Lilian; Blundo, Cecilia; Bonal, Damien; Bongers, Frans; Bordin, Kauane; Brienen, Roel; Broggio, Igor; Burban, Benoit; Cabral, George; Camargo, José; Cardoso, Domingos; Carniello, Maria; Castro, Wendeson; de Lima, Haroldo; Cavalheiro, Larissa; Ribeiro, Sabina; Ramos, Sonia; Moscoso, Victor; Chave, Jerôme; Coelho, Fernanda; Comiskey, James; Valverde, Fernando; Costa, Flávia; Coutinho, Italo; da Costa, Antonio; de Medeiros, Marcelo; del Aguila Pasquel, Jhon; Derroire, Géraldine; Dexter, Kyle; Disney, Mat; Do Espírito Santo, Mário; Domingues, Tomas; Dourdain, Aurélie; Duque, Alvaro; Rangel, Cristabel; Elias, Fernando; Esquivel-Muelbert, Adriane; Farfan-Rios, William; Fauset, Sophie; Feldpausch, Ted; Fernandes, G; Ferreira, Joice; Nunes, Yule; Figueiredo, João; Cabreara, Karina; Gonzalez, Roy; Hernández, Lionel; Herrera, Rafael; Honorio Coronado, Eurídice; Huasco, Walter; Iguatemy, Mariana; Joly, Carlos; Kalamandeen, Michelle; Killeen, Timothy; Klipel, Joice; Klitgaard, Bente; Laurance, Susan; Laurance, William; Levesley, Aurora; Lewis, Simon; Lima Dan, Maurício; Lopez-Gonzalez, Gabriela; Magnusson, William; Malhi, Yadvinder; Malizia, Lucio; Malizia, Augustina; Manzatto, Angelo; Peña, Jose; Marimon, Beatriz; Marimon Junior, Ben; Martínez-Villa, Johanna; Reis, Simone; Metzker, Thiago; Milliken, William; Monteagudo-Mendoza, Abel; Moonlight, Peter; Morandi, Paulo; Moser, Pamela; Müller, Sandra; Nascimento, Marcelo; Negreiros, Daniel; Lima, Adriano; Vargas, Percy; Oliveira, Washington; Palacios, Walter; Pallqui Camacho, Nadir; Gutierrez, Alexander; Pardo Molina, Guido; Pedra de Abreu, Karla; Peña-Claros, Marielos; Pena Rodrigues, Pablo; Pennington, R; Pickavance, Georgia; Pipoly, John; Pitman, Nigel; Playfair, Maureen; Pontes-Lopes, Aline; Poorter, Lourens; Prestes, Nayane; Ramírez-Angulo, Hirma; Réjou-Méchain, Maxime; Reynel Rodriguez, Carlos; Rivas-Torres, Gonzalo; Rodrigues, Priscyla; de Jesus Rodrigues, Domingos; de Sousa, Thaiane; Rodrigues Pinto, José; Rodriguez M, Gina; Roucoux, Katherine; Ruokolainen, Kalle; Ryan, Casey; Revilla, Norma; Salomão, Rafael; Santos, Rubens; Sarkinen, Tiina; Scabin, Andressa; Bergamin, Rodrigo; Schietti, Juliana; de Meira Junior, Milton; Serrano, Julio; Silman, Miles; Silva, Richarlly; Silva, Camila; Silva, Jhonathan; Silveira, Marcos; Simon, Marcelo; Soto-Shareva, Yahn; Souza, Priscila; Souza, Rodolfo; Sposito, Tereza; Talbot, Joey; ter Steege, Hans; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; Trujillo, William; van der Hout, Peter; Veloso, Maria; Vieira, Simone; Vilanova, Emilio; Villalobos Cayo, Jeanneth; Villela, Dora; Viscarra, Laura; Vos, Vincent; Wortel, Verginia; Ishida, Francoise; Zuidema, Pieter; Zwerts, Joeri;Abstract Wood density is a critical control on tree biomass, so poor understanding of its spatial variation can lead to large and systematic errors in forest biomass estimates and carbon maps. The need to understand how and why wood density varies is especially critical in tropical America where forests have exceptional species diversity and spatial turnover in composition. As tree identity and forest composition are challenging to estimate remotely, ground surveys are essential to know the wood density of trees, whether measured directly or inferred from their identity. Here, we assemble an extensive dataset of variation in wood density across the most forested and tree-diverse continent, examine how it relates to spatial and environmental variables, and use these relationships to predict spatial variation in wood density over tropical and sub-tropical South America. Our analysis refines previously identified east-west Amazon gradients in wood density, improves them by revealing fine-scale variation, and extends predictions into Andean, dry, and Atlantic forests. The results halve biomass prediction errors compared to a naïve scenario with no knowledge of spatial variation in wood density. Our findings will help improve remote sensing-based estimates of aboveground biomass carbon stocks across tropical South America.
Archivio Istituziona... arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research ArchiveWageningen Staff PublicationsArticle . 2025License: CC BYData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2025 . Peer-reviewedData sources: St Andrews Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-025-56175-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research ArchiveWageningen Staff PublicationsArticle . 2025License: CC BYData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2025 . Peer-reviewedData sources: St Andrews Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-025-56175-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025 United Kingdom, France, France, Italy, Netherlands, United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:UKRI | A Socio-Ecological Observ..., EC | AMAZALERT, NSF | Collaborative Research: L... +11 projectsUKRI| A Socio-Ecological Observatory for the Southern African Woodlands ,EC| AMAZALERT ,NSF| Collaborative Research: LTREB: A natural laboratory for studying biodiversity, ecosystem function, and responses to environmental change from Amazonian lowlands to Andean treeline ,EC| GEOCARBON ,EC| TreeMort ,UKRI| SECO: Resolving the current and future carbon dynamics of the dry tropics ,UKRI| Nordeste ,UKRI| Biodiversity and ecosystem functioning in degraded and recovering Amazonian and Atlantic forests ,UKRI| BIOmes of Brasil - Resilience, rEcovery, and Diversity: BIO-RED ,EC| T-FORCES ,UKRI| ARBOLES: A trait-based Understanding of LATAM Forest Biodiversity and Resilience ,UKRI| NI: Lightning in African tropical forests: from tree mortality to carbon dynamics ,UKRI| TREMOR: Mechanisms and consequences of increasing TREe MORtality in Amazonian rainforests ,UKRI| Amazon Integrated Carbon Analysis / AMAZONICASullivan, Martin; Phillips, Oliver; Galbraith, David; Almeida, Everton; de Oliveira, Edmar; Almeida, Jarcilene; Dávila, Esteban; Alves, Luciana; Andrade, Ana; Aragão, Luiz; Araujo-Murakami, Alejandro; Arets, Eric; Arroyo, Luzmila; Cruz, Omar; Baccaro, Fabrício; Baker, Timothy; Banki, Olaf; Baraloto, Christopher; Barlow, Jos; Barroso, Jorcely; Berenguer, Erika; Blanc, Lilian; Blundo, Cecilia; Bonal, Damien; Bongers, Frans; Bordin, Kauane; Brienen, Roel; Broggio, Igor; Burban, Benoit; Cabral, George; Camargo, José; Cardoso, Domingos; Carniello, Maria; Castro, Wendeson; de Lima, Haroldo; Cavalheiro, Larissa; Ribeiro, Sabina; Ramos, Sonia; Moscoso, Victor; Chave, Jerôme; Coelho, Fernanda; Comiskey, James; Valverde, Fernando; Costa, Flávia; Coutinho, Italo; da Costa, Antonio; de Medeiros, Marcelo; del Aguila Pasquel, Jhon; Derroire, Géraldine; Dexter, Kyle; Disney, Mat; Do Espírito Santo, Mário; Domingues, Tomas; Dourdain, Aurélie; Duque, Alvaro; Rangel, Cristabel; Elias, Fernando; Esquivel-Muelbert, Adriane; Farfan-Rios, William; Fauset, Sophie; Feldpausch, Ted; Fernandes, G; Ferreira, Joice; Nunes, Yule; Figueiredo, João; Cabreara, Karina; Gonzalez, Roy; Hernández, Lionel; Herrera, Rafael; Honorio Coronado, Eurídice; Huasco, Walter; Iguatemy, Mariana; Joly, Carlos; Kalamandeen, Michelle; Killeen, Timothy; Klipel, Joice; Klitgaard, Bente; Laurance, Susan; Laurance, William; Levesley, Aurora; Lewis, Simon; Lima Dan, Maurício; Lopez-Gonzalez, Gabriela; Magnusson, William; Malhi, Yadvinder; Malizia, Lucio; Malizia, Augustina; Manzatto, Angelo; Peña, Jose; Marimon, Beatriz; Marimon Junior, Ben; Martínez-Villa, Johanna; Reis, Simone; Metzker, Thiago; Milliken, William; Monteagudo-Mendoza, Abel; Moonlight, Peter; Morandi, Paulo; Moser, Pamela; Müller, Sandra; Nascimento, Marcelo; Negreiros, Daniel; Lima, Adriano; Vargas, Percy; Oliveira, Washington; Palacios, Walter; Pallqui Camacho, Nadir; Gutierrez, Alexander; Pardo Molina, Guido; Pedra de Abreu, Karla; Peña-Claros, Marielos; Pena Rodrigues, Pablo; Pennington, R; Pickavance, Georgia; Pipoly, John; Pitman, Nigel; Playfair, Maureen; Pontes-Lopes, Aline; Poorter, Lourens; Prestes, Nayane; Ramírez-Angulo, Hirma; Réjou-Méchain, Maxime; Reynel Rodriguez, Carlos; Rivas-Torres, Gonzalo; Rodrigues, Priscyla; de Jesus Rodrigues, Domingos; de Sousa, Thaiane; Rodrigues Pinto, José; Rodriguez M, Gina; Roucoux, Katherine; Ruokolainen, Kalle; Ryan, Casey; Revilla, Norma; Salomão, Rafael; Santos, Rubens; Sarkinen, Tiina; Scabin, Andressa; Bergamin, Rodrigo; Schietti, Juliana; de Meira Junior, Milton; Serrano, Julio; Silman, Miles; Silva, Richarlly; Silva, Camila; Silva, Jhonathan; Silveira, Marcos; Simon, Marcelo; Soto-Shareva, Yahn; Souza, Priscila; Souza, Rodolfo; Sposito, Tereza; Talbot, Joey; ter Steege, Hans; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; Trujillo, William; van der Hout, Peter; Veloso, Maria; Vieira, Simone; Vilanova, Emilio; Villalobos Cayo, Jeanneth; Villela, Dora; Viscarra, Laura; Vos, Vincent; Wortel, Verginia; Ishida, Francoise; Zuidema, Pieter; Zwerts, Joeri;Abstract Wood density is a critical control on tree biomass, so poor understanding of its spatial variation can lead to large and systematic errors in forest biomass estimates and carbon maps. The need to understand how and why wood density varies is especially critical in tropical America where forests have exceptional species diversity and spatial turnover in composition. As tree identity and forest composition are challenging to estimate remotely, ground surveys are essential to know the wood density of trees, whether measured directly or inferred from their identity. Here, we assemble an extensive dataset of variation in wood density across the most forested and tree-diverse continent, examine how it relates to spatial and environmental variables, and use these relationships to predict spatial variation in wood density over tropical and sub-tropical South America. Our analysis refines previously identified east-west Amazon gradients in wood density, improves them by revealing fine-scale variation, and extends predictions into Andean, dry, and Atlantic forests. The results halve biomass prediction errors compared to a naïve scenario with no knowledge of spatial variation in wood density. Our findings will help improve remote sensing-based estimates of aboveground biomass carbon stocks across tropical South America.
Archivio Istituziona... arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research ArchiveWageningen Staff PublicationsArticle . 2025License: CC BYData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2025 . Peer-reviewedData sources: St Andrews Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-025-56175-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research ArchiveWageningen Staff PublicationsArticle . 2025License: CC BYData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2025 . Peer-reviewedData sources: St Andrews Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-025-56175-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Zenodo Authors: Siddika, Saifa; Hoque, Md Emdadul;Hybrid renewable energy systems, well-known for their ability to use multiple renewable sources parallelly to supply power, generate significant energy excess to demand. This study optimizes a standalone hybrid renewable energy system (HRES) for Rangabali Upazila, Bangladesh, integrating PV, wind turbines, a diesel generator, and either pumped-hydro storage (PHS) or batteries. The system addresses electricity demand and freshwater production using excess energy. Simulations in HOMER Pro indicate that PHS outperforms battery storage in both economic and environmental aspects. Systems with PHS achieve a net present cost (NPC) of $28.33M and a cost of energy (COE) of $0.175/kWh in both load-following and cycle-charging strategies, compared to $33.57M NPC and $0.207/kWh COE for the systems with battery. Additionally, PHS systems achieve zero emission as they do not require diesel generator operation, while battery systems consume up to 415 L of fuel and emit 1098 kg of CO₂ annually. The results demonstrate that the proposed systems ensure reliable power and freshwater supply, contributing to sustainable development in remote regions. Note: This paper was accepted at ICMIME 2024, organized by Faculty of Mechanical Engineering, RUET. The proceedings were not formally published or assigned a DOI. This version is uploaded as a preprint to ensure open access and proper citation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.15240849&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.15240849&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Zenodo Authors: Siddika, Saifa; Hoque, Md Emdadul;Hybrid renewable energy systems, well-known for their ability to use multiple renewable sources parallelly to supply power, generate significant energy excess to demand. This study optimizes a standalone hybrid renewable energy system (HRES) for Rangabali Upazila, Bangladesh, integrating PV, wind turbines, a diesel generator, and either pumped-hydro storage (PHS) or batteries. The system addresses electricity demand and freshwater production using excess energy. Simulations in HOMER Pro indicate that PHS outperforms battery storage in both economic and environmental aspects. Systems with PHS achieve a net present cost (NPC) of $28.33M and a cost of energy (COE) of $0.175/kWh in both load-following and cycle-charging strategies, compared to $33.57M NPC and $0.207/kWh COE for the systems with battery. Additionally, PHS systems achieve zero emission as they do not require diesel generator operation, while battery systems consume up to 415 L of fuel and emit 1098 kg of CO₂ annually. The results demonstrate that the proposed systems ensure reliable power and freshwater supply, contributing to sustainable development in remote regions. Note: This paper was accepted at ICMIME 2024, organized by Faculty of Mechanical Engineering, RUET. The proceedings were not formally published or assigned a DOI. This version is uploaded as a preprint to ensure open access and proper citation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.15240849&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.15240849&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Authors: Jorge Martínez Macancela; Alexander Aguila Téllez; Nataly Gabriela Valencia Pavón; Javier Rojas Urbano;doi: 10.3390/en18061519
This paper presents the development of an energization system prototype for IoT sensor nodes using Peltier cells as energy harvesters; its operation is optimized by applying a maximum power point tracking algorithm (MPPT) to capture as much electrical energy as possible, even if the cell temperature conditions have variations. In the IoT sensor node, a power management algorithm that works in accordance with the measurement and transmission operations can extend the node operating time, to obtain a greater amount of information and reducing the need for battery maintenance. The proposed methodology consists of developing an energization system, as well as the IoT sensor node. The energization system consists of a block of Peltier cells to obtain up to 4 V, a SEPIC-type DC-DC converter, and a 3.7 V lithium battery for energy storage. The converter works in a closed loop with the MPPT algorithm and delivers a voltage that guarantees the maximum power transfer to the battery. The sensor node was developed based on the ESP8266 development board, it allows data acquisition of temperature, humidity, light intensity, presence, and sound. The node transmits this information to the Ubidots platform for real-time visualization; to take advantage of its processing capacity, MPPT and energy management algorithms are also implemented. The results showed that to obtain a minimum voltage of 3.3 V in the energization system, a temperature difference of 59±1 °C between the plates of the Peltier cells is required. The MPPT algorithm allows working at the maximum power point and keeps the power delivered to the battery stable, with small transients when the information is transmitted; however, the overshoot and the settling time are reduced and do not affect the node operation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18061519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18061519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Authors: Jorge Martínez Macancela; Alexander Aguila Téllez; Nataly Gabriela Valencia Pavón; Javier Rojas Urbano;doi: 10.3390/en18061519
This paper presents the development of an energization system prototype for IoT sensor nodes using Peltier cells as energy harvesters; its operation is optimized by applying a maximum power point tracking algorithm (MPPT) to capture as much electrical energy as possible, even if the cell temperature conditions have variations. In the IoT sensor node, a power management algorithm that works in accordance with the measurement and transmission operations can extend the node operating time, to obtain a greater amount of information and reducing the need for battery maintenance. The proposed methodology consists of developing an energization system, as well as the IoT sensor node. The energization system consists of a block of Peltier cells to obtain up to 4 V, a SEPIC-type DC-DC converter, and a 3.7 V lithium battery for energy storage. The converter works in a closed loop with the MPPT algorithm and delivers a voltage that guarantees the maximum power transfer to the battery. The sensor node was developed based on the ESP8266 development board, it allows data acquisition of temperature, humidity, light intensity, presence, and sound. The node transmits this information to the Ubidots platform for real-time visualization; to take advantage of its processing capacity, MPPT and energy management algorithms are also implemented. The results showed that to obtain a minimum voltage of 3.3 V in the energization system, a temperature difference of 59±1 °C between the plates of the Peltier cells is required. The MPPT algorithm allows working at the maximum power point and keeps the power delivered to the battery stable, with small transients when the information is transmitted; however, the overshoot and the settling time are reduced and do not affect the node operation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18061519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18061519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Pensoft Publishers Authors: Md. Abidur Rahman Ishraq; Sabyasachi Roy; Valery Victorevich Afanasiev;In this study, a simplified computational model of the blanket mock-up is created using the SERPENT Monte Carlo Code. The nuclear data is obtained from the enriched ENDF/B.VII.1 data library to conduct this study. The model is validated, as the error percentage for 63Cu(n,2n)62Cu and 65Cu(n,2n)64Cu reactions is less than 10% when compared to experimental results. The computational model is used to calculate the tritium production rate in different lithium zones with various neutron multipliers (U, Pb) and without any multipliers. The results show that the tritium production rate with a uranium multiplier is 86% higher than with a lead multiplier and 238% higher than with no multiplier. The neutron energy spectrum shows a peak in the 0.1 MeV to 10 MeV energy range for every case. This study also examines the effects of fusion neutrons on different isotopes, providing valuable data on how materials behave under high-speed neutron exposure.
Nuclear Energy and T... arrow_drop_down Nuclear Energy and TechnologyArticle . 2025Full-Text: https://doi.org/10.3897/nucet.11.143957Data sources: Pensoftadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3897/nucet.11.143957&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nuclear Energy and T... arrow_drop_down Nuclear Energy and TechnologyArticle . 2025Full-Text: https://doi.org/10.3897/nucet.11.143957Data sources: Pensoftadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3897/nucet.11.143957&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Pensoft Publishers Authors: Md. Abidur Rahman Ishraq; Sabyasachi Roy; Valery Victorevich Afanasiev;In this study, a simplified computational model of the blanket mock-up is created using the SERPENT Monte Carlo Code. The nuclear data is obtained from the enriched ENDF/B.VII.1 data library to conduct this study. The model is validated, as the error percentage for 63Cu(n,2n)62Cu and 65Cu(n,2n)64Cu reactions is less than 10% when compared to experimental results. The computational model is used to calculate the tritium production rate in different lithium zones with various neutron multipliers (U, Pb) and without any multipliers. The results show that the tritium production rate with a uranium multiplier is 86% higher than with a lead multiplier and 238% higher than with no multiplier. The neutron energy spectrum shows a peak in the 0.1 MeV to 10 MeV energy range for every case. This study also examines the effects of fusion neutrons on different isotopes, providing valuable data on how materials behave under high-speed neutron exposure.
Nuclear Energy and T... arrow_drop_down Nuclear Energy and TechnologyArticle . 2025Full-Text: https://doi.org/10.3897/nucet.11.143957Data sources: Pensoftadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3897/nucet.11.143957&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nuclear Energy and T... arrow_drop_down Nuclear Energy and TechnologyArticle . 2025Full-Text: https://doi.org/10.3897/nucet.11.143957Data sources: Pensoftadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3897/nucet.11.143957&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Wiley Funded by:EC | DRYvEREC| DRYvERDaniel Escobar‐Camacho; Julie Crabot; Rachel Stubbington; Judy England; Romain Sarremejane; Núria Bonada; José María Fernández‐Calero; Miguel Cañedo‐Argüelles; Carla Ferreira Rezende; Pierre Chanut; Zoltán Csabai; Andrea C. Encalada; Alex Laini; Heikki Mykrä; Nabor Moya; Petr Pařil; Daniela Rosero‐López; Thibault Datry;ABSTRACTDrying river networks include non‐perennial reaches that cease to flow or dry, and drying is becoming more prevalent with ongoing climate change. Biodiversity responses to drying have been explored mostly at local scales in a few regions, such as Europe and North America, limiting our ability to predict future global scenarios of freshwater biodiversity. Locally, drying acts as a strong environmental filter that selects for species with adaptations promoting resistance or resilience to desiccation, thus reducing aquatic α‐diversity. At the river network scale, drying generates complex mosaics of dry and wet habitats, shaping metacommunities driven by both environmental and dispersal processes. By repeatedly resetting community succession, drying can enhance β‐diversity in space and time. To investigate the transferability of these concepts across continents, we compiled and analyzed a unique dataset of 43 aquatic invertebrate metacommunities from drying river networks in Europe and South America. In Europe, α‐diversity was consistently lower in non‐perennial than perennial reaches, whereas this pattern was not evident in South America. Concomitantly, β‐diversity was higher in non‐perennial reaches than in perennial ones in Europe but not in South America. In general, β‐diversity was predominantly driven by turnover rather than nestedness. Dispersal was the main driver of metacommunity dynamics, challenging prevailing views in river science that environmental filtering is the primary process shaping aquatic metacommunities. Lastly, α‐diversity decreased as drying duration increased, but this was not consistent across Europe. Overall, drying had continent‐specific effects, suggesting limited transferability of knowledge accumulated from North America and Europe to other biogeographic regions. As climate change intensifies, river drying is increasing, and our results underscore the importance of studying its effects across different regions. The importance of dispersal also suggests that management efforts should seek to enhance connectivity between reaches to effectively monitor, restore and conserve freshwater biodiversity.
Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Wiley Funded by:EC | DRYvEREC| DRYvERDaniel Escobar‐Camacho; Julie Crabot; Rachel Stubbington; Judy England; Romain Sarremejane; Núria Bonada; José María Fernández‐Calero; Miguel Cañedo‐Argüelles; Carla Ferreira Rezende; Pierre Chanut; Zoltán Csabai; Andrea C. Encalada; Alex Laini; Heikki Mykrä; Nabor Moya; Petr Pařil; Daniela Rosero‐López; Thibault Datry;ABSTRACTDrying river networks include non‐perennial reaches that cease to flow or dry, and drying is becoming more prevalent with ongoing climate change. Biodiversity responses to drying have been explored mostly at local scales in a few regions, such as Europe and North America, limiting our ability to predict future global scenarios of freshwater biodiversity. Locally, drying acts as a strong environmental filter that selects for species with adaptations promoting resistance or resilience to desiccation, thus reducing aquatic α‐diversity. At the river network scale, drying generates complex mosaics of dry and wet habitats, shaping metacommunities driven by both environmental and dispersal processes. By repeatedly resetting community succession, drying can enhance β‐diversity in space and time. To investigate the transferability of these concepts across continents, we compiled and analyzed a unique dataset of 43 aquatic invertebrate metacommunities from drying river networks in Europe and South America. In Europe, α‐diversity was consistently lower in non‐perennial than perennial reaches, whereas this pattern was not evident in South America. Concomitantly, β‐diversity was higher in non‐perennial reaches than in perennial ones in Europe but not in South America. In general, β‐diversity was predominantly driven by turnover rather than nestedness. Dispersal was the main driver of metacommunity dynamics, challenging prevailing views in river science that environmental filtering is the primary process shaping aquatic metacommunities. Lastly, α‐diversity decreased as drying duration increased, but this was not consistent across Europe. Overall, drying had continent‐specific effects, suggesting limited transferability of knowledge accumulated from North America and Europe to other biogeographic regions. As climate change intensifies, river drying is increasing, and our results underscore the importance of studying its effects across different regions. The importance of dispersal also suggests that management efforts should seek to enhance connectivity between reaches to effectively monitor, restore and conserve freshwater biodiversity.
Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Springer Science and Business Media LLC Mohammad Nur-E-Alam; Tarek Abedin; Nur Aini Samsudin; Jana Petrů; Abdulwasa Bakr Barnawi; Manzoore Elahi M. Soudagar; T. M. Yunus Khan; Muhammad Nasir Bashir; Mohammad Aminul Islam; Boon Kar Yap; Tiong Sieh Kiong;pmid: 39762244
The microgrid (MG) faces significant security issues due to the two-way power and information flow. Integrating an Energy Management System (EMS) to balance energy supply and demand in Malaysian microgrids, this study designs a Fuzzy Logic Controller (FLC) that considers intermittent renewable sources and fluctuating demand patterns. FLC offers a flexible solution to energy scheduling effectively assessed by MATLAB/Simulink simulations. The microgrid consists of PV, battery, grid, and load. A Maximum Power Point Tracking (MPPT) controller helps to extract the maximum PV output and manages the power storage by providing or absorbing excess power. System analysis is performed by observing the State of Charge (SoC)of the battery and output power for each source. The grid supplies additional power if the battery and PV fail to meet the load demand. Total Harmonic Distortion (THD) analysis compares the performance of the Proportional-Integral Controller (PIC) and FLC. The results show that the PI controller design reduces the THD in the current signal, while FLC does not reduce the THD of the grid current when used in the EMS. However, FLC offers better control over the battery's SOC, effectively preventing overcharging and over-discharging. While PI reduces THD, FLC provides superior SOC control in a system comprising PV, battery, grid, and load. The findings demonstrate that the output current is zero when the SOC is higher than 80% or lower than 20%, signifying that no charging or discharging takes place to avoid overcharging and over-discharging. The third goal was accomplished by comparing and confirming that the grid current's THD for the EMS designed with both the PI Controller and the FLC is maintained below 5%, following the IEEE 519 harmonic standard, using the THD block in MATLAB Simulink. This analysis highlights FLC's potential to address demand-supply mismatches and renewable energy variability, which is crucial for optimizing microgrid performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-82360-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-82360-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Springer Science and Business Media LLC Mohammad Nur-E-Alam; Tarek Abedin; Nur Aini Samsudin; Jana Petrů; Abdulwasa Bakr Barnawi; Manzoore Elahi M. Soudagar; T. M. Yunus Khan; Muhammad Nasir Bashir; Mohammad Aminul Islam; Boon Kar Yap; Tiong Sieh Kiong;pmid: 39762244
The microgrid (MG) faces significant security issues due to the two-way power and information flow. Integrating an Energy Management System (EMS) to balance energy supply and demand in Malaysian microgrids, this study designs a Fuzzy Logic Controller (FLC) that considers intermittent renewable sources and fluctuating demand patterns. FLC offers a flexible solution to energy scheduling effectively assessed by MATLAB/Simulink simulations. The microgrid consists of PV, battery, grid, and load. A Maximum Power Point Tracking (MPPT) controller helps to extract the maximum PV output and manages the power storage by providing or absorbing excess power. System analysis is performed by observing the State of Charge (SoC)of the battery and output power for each source. The grid supplies additional power if the battery and PV fail to meet the load demand. Total Harmonic Distortion (THD) analysis compares the performance of the Proportional-Integral Controller (PIC) and FLC. The results show that the PI controller design reduces the THD in the current signal, while FLC does not reduce the THD of the grid current when used in the EMS. However, FLC offers better control over the battery's SOC, effectively preventing overcharging and over-discharging. While PI reduces THD, FLC provides superior SOC control in a system comprising PV, battery, grid, and load. The findings demonstrate that the output current is zero when the SOC is higher than 80% or lower than 20%, signifying that no charging or discharging takes place to avoid overcharging and over-discharging. The third goal was accomplished by comparing and confirming that the grid current's THD for the EMS designed with both the PI Controller and the FLC is maintained below 5%, following the IEEE 519 harmonic standard, using the THD block in MATLAB Simulink. This analysis highlights FLC's potential to address demand-supply mismatches and renewable energy variability, which is crucial for optimizing microgrid performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-82360-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-82360-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:PeerJ Funded by:UKRI | Ozone impacts on tropical...UKRI| Ozone impacts on tropical vegetation; implications for forest productivity (Trop-Oz)Mst Nahid Farha; Flossie Brown; Lucas A. Cernusak; Stephen Sitch; Alexander W. Cheesman;Ozone (O3), a major air pollutant, can negatively impact plant growth and yield. While O3 impacts have been widely documented in crops such as wheat and soybean, few studies have looked at the effects of O3 on sorghum, a C4 plant and the fifth most important cereal crop worldwide. We exposed grain sorghum (Sorghum bicolor cv. HAT150843) to a range of O3 concentrations (daytime mean O3 concentrations ranged between 20 and 97 ppb) in open-top chambers, and examined how whole plant and leaf morphological traits varied in response to O3 exposure. Results showed no significant impact of realistic O3 exposure on whole plant biomass and its partitioning in sorghum. These findings suggest that sorghum is generally resistant to O3 and should be considered as a favourable crop in O3 polluted regions, while acknowledging further research is needed to understand the mechanistic basis of O3 tolerance in sorghum.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7717/peerj.18844&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7717/peerj.18844&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:PeerJ Funded by:UKRI | Ozone impacts on tropical...UKRI| Ozone impacts on tropical vegetation; implications for forest productivity (Trop-Oz)Mst Nahid Farha; Flossie Brown; Lucas A. Cernusak; Stephen Sitch; Alexander W. Cheesman;Ozone (O3), a major air pollutant, can negatively impact plant growth and yield. While O3 impacts have been widely documented in crops such as wheat and soybean, few studies have looked at the effects of O3 on sorghum, a C4 plant and the fifth most important cereal crop worldwide. We exposed grain sorghum (Sorghum bicolor cv. HAT150843) to a range of O3 concentrations (daytime mean O3 concentrations ranged between 20 and 97 ppb) in open-top chambers, and examined how whole plant and leaf morphological traits varied in response to O3 exposure. Results showed no significant impact of realistic O3 exposure on whole plant biomass and its partitioning in sorghum. These findings suggest that sorghum is generally resistant to O3 and should be considered as a favourable crop in O3 polluted regions, while acknowledging further research is needed to understand the mechanistic basis of O3 tolerance in sorghum.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7717/peerj.18844&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.7717/peerj.18844&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 SpainPublisher:MDPI AG Authors: Daniel Icaza Alvarez; Fernando González-Ladrón-de-Guevara; Jorge Rojas Espinoza; David Borge-Diez; +2 AuthorsDaniel Icaza Alvarez; Fernando González-Ladrón-de-Guevara; Jorge Rojas Espinoza; David Borge-Diez; Santiago Pulla Galindo; Carlos Flores-Vázquez;doi: 10.3390/en18061523
The transformation of energy markets is at a crossroads in the search for how they must evolve to become ecologically friendly systems and meet the growing energy demand. Currently, methodologies based on bibliographic data analysis are supported by information and communication technologies and have become necessary. More sophisticated processes are being used in energy systems, including new digitalization models, particularly driven by artificial intelligence (AI) technology. In the present bibliographic review, 342 documents indexed in Scopus have been identified that promote synergies between AI and the energy transition (ET), considering a time range from 1990 to 2024. The analysis methodology includes an evaluation of keywords related to the areas of AI and ET. The analyses extend to a review by authorship, co-authorship, and areas of AI’s influence in energy system subareas. The integration of energy resources, including supply and demand, in which renewable energy sources play a leading role at the end-customer level, now conceived as both producer and consumer, is intensively studied. The results identified that AI has experienced notable growth in the last five years and will undoubtedly play a leading role in the future in achieving decarbonization goals. Among the applications that it will enable will be the design of new energy markets up to the execution and start-up of new power plants with energy control and optimization. This study aims to present a baseline that allows researchers, legislators, and government decision-makers to compare their benefits, ambitions, strategies, and novel applications for formulating AI policies in the energy field. The developments and scope of AI in the energy sector were explored in relation to the AI domain in parts of the energy supply chain. While these processes involve complex data analysis, AI techniques provide powerful solutions for designing and managing energy markets with high renewable energy penetration. This integration of AI with energy systems represents a fundamental shift in market design, enabling more efficient and sustainable energy transitions. Future lines of research could focus on energy demand forecasting, dynamic adjustments in energy distribution between different generation sources, energy storage, and usage optimization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18061523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18061523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 SpainPublisher:MDPI AG Authors: Daniel Icaza Alvarez; Fernando González-Ladrón-de-Guevara; Jorge Rojas Espinoza; David Borge-Diez; +2 AuthorsDaniel Icaza Alvarez; Fernando González-Ladrón-de-Guevara; Jorge Rojas Espinoza; David Borge-Diez; Santiago Pulla Galindo; Carlos Flores-Vázquez;doi: 10.3390/en18061523
The transformation of energy markets is at a crossroads in the search for how they must evolve to become ecologically friendly systems and meet the growing energy demand. Currently, methodologies based on bibliographic data analysis are supported by information and communication technologies and have become necessary. More sophisticated processes are being used in energy systems, including new digitalization models, particularly driven by artificial intelligence (AI) technology. In the present bibliographic review, 342 documents indexed in Scopus have been identified that promote synergies between AI and the energy transition (ET), considering a time range from 1990 to 2024. The analysis methodology includes an evaluation of keywords related to the areas of AI and ET. The analyses extend to a review by authorship, co-authorship, and areas of AI’s influence in energy system subareas. The integration of energy resources, including supply and demand, in which renewable energy sources play a leading role at the end-customer level, now conceived as both producer and consumer, is intensively studied. The results identified that AI has experienced notable growth in the last five years and will undoubtedly play a leading role in the future in achieving decarbonization goals. Among the applications that it will enable will be the design of new energy markets up to the execution and start-up of new power plants with energy control and optimization. This study aims to present a baseline that allows researchers, legislators, and government decision-makers to compare their benefits, ambitions, strategies, and novel applications for formulating AI policies in the energy field. The developments and scope of AI in the energy sector were explored in relation to the AI domain in parts of the energy supply chain. While these processes involve complex data analysis, AI techniques provide powerful solutions for designing and managing energy markets with high renewable energy penetration. This integration of AI with energy systems represents a fundamental shift in market design, enabling more efficient and sustainable energy transitions. Future lines of research could focus on energy demand forecasting, dynamic adjustments in energy distribution between different generation sources, energy storage, and usage optimization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18061523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18061523&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Springer Science and Business Media LLC Adriana Uquillas; Nathaly Bonilla; Stephany Arizala; Yves Basset; Héctor Barrios; David A. Donoso;Forecasting insect responses to environmental variables at local and global spatial scales remains a crucial task in Ecology. However, predicting future responses requires long-term datasets, which are rarely available for insects, especially in the tropics. From 2002 to 2017, we recorded male ant incidence of 155 ant species at ten malaise traps on the 50-ha ForestGEO plot in Barro Colorado Island. In this Panamanian tropical rainforest, traps were deployed for two weeks during the wet and dry seasons. Short-term changes in the timing of male flying activity were pronounced, and compositionally distinct assemblages flew during the wet and dry seasons. Notably, the composition of these distinct flying assemblages oscillated in consistent 4-year cycles but did not change during the 16-year study period. Across time, a Seasonal Auto-Regressive Integrated Moving Average model explained 75% of long-term variability in male ant production (i.e., the summed incidence of male species across traps), which responded negatively to monthly maximum temperature, and positively to sea surface temperature, a surrogate for El Niño Southern Oscillation (ENSO) events. Establishing these relationships allowed us to forecast ant production until 2022 when year-long local climate variables were available. Consistent with the data, the forecast indicated no significant changes in long-term temporal trends of male ant production. However, simulations of different scenarios of climate variables found that strong ENSO events and maximum temperature impacted male ant production positively and negatively, respectively. Our results highlight the dependence of ant male production on both short- and long-term temperature changes, which is critical under current global warming.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-84789-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-84789-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Springer Science and Business Media LLC Adriana Uquillas; Nathaly Bonilla; Stephany Arizala; Yves Basset; Héctor Barrios; David A. Donoso;Forecasting insect responses to environmental variables at local and global spatial scales remains a crucial task in Ecology. However, predicting future responses requires long-term datasets, which are rarely available for insects, especially in the tropics. From 2002 to 2017, we recorded male ant incidence of 155 ant species at ten malaise traps on the 50-ha ForestGEO plot in Barro Colorado Island. In this Panamanian tropical rainforest, traps were deployed for two weeks during the wet and dry seasons. Short-term changes in the timing of male flying activity were pronounced, and compositionally distinct assemblages flew during the wet and dry seasons. Notably, the composition of these distinct flying assemblages oscillated in consistent 4-year cycles but did not change during the 16-year study period. Across time, a Seasonal Auto-Regressive Integrated Moving Average model explained 75% of long-term variability in male ant production (i.e., the summed incidence of male species across traps), which responded negatively to monthly maximum temperature, and positively to sea surface temperature, a surrogate for El Niño Southern Oscillation (ENSO) events. Establishing these relationships allowed us to forecast ant production until 2022 when year-long local climate variables were available. Consistent with the data, the forecast indicated no significant changes in long-term temporal trends of male ant production. However, simulations of different scenarios of climate variables found that strong ENSO events and maximum temperature impacted male ant production positively and negatively, respectively. Our results highlight the dependence of ant male production on both short- and long-term temperature changes, which is critical under current global warming.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-84789-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-84789-z&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: William Villegas-Ch; Jaime Govea; Rommel Gutierrez; Aracely Mera-Navarrete;The exponential growth of the Internet of Things (IoT) has boosted connectivity across various sectors, such as Industry 4.0 and smart cities. However, this expansion has also exposed IoT devices to critical vulnerabilities, including spoofing, DoS attacks, and unauthorized access. Traditional security solutions, based on centralized architectures, are neither scalable nor efficient enough to handle the increasing complexity and number of IoT devices, leading to high latencies, increased energy consumption, and inadequate intrusion detection. In this work, we propose a hybrid solution that combines Blockchain and artificial intelligence (AI) to improve security and operational efficiency in IoT networks. Blockchain ensures device authentication and data integrity through a lightweight consensus protocol, while AI enables real-time intrusion detection using deep learning models. The simulations demonstrate that the proposed system improves the precision of detecting phishing attacks by up to 95.2%. At the same time, the authentication latency is reduced to 15 ms in networks with 1000 connected devices, 66.6% faster than traditional solutions. In addition, the energy consumption of the hybrid system is 31.8% lower than that of conventional approaches, validating its scalability and efficiency in large-scale IoT networks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2025.3532800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2025.3532800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: William Villegas-Ch; Jaime Govea; Rommel Gutierrez; Aracely Mera-Navarrete;The exponential growth of the Internet of Things (IoT) has boosted connectivity across various sectors, such as Industry 4.0 and smart cities. However, this expansion has also exposed IoT devices to critical vulnerabilities, including spoofing, DoS attacks, and unauthorized access. Traditional security solutions, based on centralized architectures, are neither scalable nor efficient enough to handle the increasing complexity and number of IoT devices, leading to high latencies, increased energy consumption, and inadequate intrusion detection. In this work, we propose a hybrid solution that combines Blockchain and artificial intelligence (AI) to improve security and operational efficiency in IoT networks. Blockchain ensures device authentication and data integrity through a lightweight consensus protocol, while AI enables real-time intrusion detection using deep learning models. The simulations demonstrate that the proposed system improves the precision of detecting phishing attacks by up to 95.2%. At the same time, the authentication latency is reduced to 15 ms in networks with 1000 connected devices, 66.6% faster than traditional solutions. In addition, the energy consumption of the hybrid system is 31.8% lower than that of conventional approaches, validating its scalability and efficiency in large-scale IoT networks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2025.3532800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/access.2025.3532800&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025 United Kingdom, France, France, Italy, Netherlands, United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:UKRI | A Socio-Ecological Observ..., EC | AMAZALERT, NSF | Collaborative Research: L... +11 projectsUKRI| A Socio-Ecological Observatory for the Southern African Woodlands ,EC| AMAZALERT ,NSF| Collaborative Research: LTREB: A natural laboratory for studying biodiversity, ecosystem function, and responses to environmental change from Amazonian lowlands to Andean treeline ,EC| GEOCARBON ,EC| TreeMort ,UKRI| SECO: Resolving the current and future carbon dynamics of the dry tropics ,UKRI| Nordeste ,UKRI| Biodiversity and ecosystem functioning in degraded and recovering Amazonian and Atlantic forests ,UKRI| BIOmes of Brasil - Resilience, rEcovery, and Diversity: BIO-RED ,EC| T-FORCES ,UKRI| ARBOLES: A trait-based Understanding of LATAM Forest Biodiversity and Resilience ,UKRI| NI: Lightning in African tropical forests: from tree mortality to carbon dynamics ,UKRI| TREMOR: Mechanisms and consequences of increasing TREe MORtality in Amazonian rainforests ,UKRI| Amazon Integrated Carbon Analysis / AMAZONICASullivan, Martin; Phillips, Oliver; Galbraith, David; Almeida, Everton; de Oliveira, Edmar; Almeida, Jarcilene; Dávila, Esteban; Alves, Luciana; Andrade, Ana; Aragão, Luiz; Araujo-Murakami, Alejandro; Arets, Eric; Arroyo, Luzmila; Cruz, Omar; Baccaro, Fabrício; Baker, Timothy; Banki, Olaf; Baraloto, Christopher; Barlow, Jos; Barroso, Jorcely; Berenguer, Erika; Blanc, Lilian; Blundo, Cecilia; Bonal, Damien; Bongers, Frans; Bordin, Kauane; Brienen, Roel; Broggio, Igor; Burban, Benoit; Cabral, George; Camargo, José; Cardoso, Domingos; Carniello, Maria; Castro, Wendeson; de Lima, Haroldo; Cavalheiro, Larissa; Ribeiro, Sabina; Ramos, Sonia; Moscoso, Victor; Chave, Jerôme; Coelho, Fernanda; Comiskey, James; Valverde, Fernando; Costa, Flávia; Coutinho, Italo; da Costa, Antonio; de Medeiros, Marcelo; del Aguila Pasquel, Jhon; Derroire, Géraldine; Dexter, Kyle; Disney, Mat; Do Espírito Santo, Mário; Domingues, Tomas; Dourdain, Aurélie; Duque, Alvaro; Rangel, Cristabel; Elias, Fernando; Esquivel-Muelbert, Adriane; Farfan-Rios, William; Fauset, Sophie; Feldpausch, Ted; Fernandes, G; Ferreira, Joice; Nunes, Yule; Figueiredo, João; Cabreara, Karina; Gonzalez, Roy; Hernández, Lionel; Herrera, Rafael; Honorio Coronado, Eurídice; Huasco, Walter; Iguatemy, Mariana; Joly, Carlos; Kalamandeen, Michelle; Killeen, Timothy; Klipel, Joice; Klitgaard, Bente; Laurance, Susan; Laurance, William; Levesley, Aurora; Lewis, Simon; Lima Dan, Maurício; Lopez-Gonzalez, Gabriela; Magnusson, William; Malhi, Yadvinder; Malizia, Lucio; Malizia, Augustina; Manzatto, Angelo; Peña, Jose; Marimon, Beatriz; Marimon Junior, Ben; Martínez-Villa, Johanna; Reis, Simone; Metzker, Thiago; Milliken, William; Monteagudo-Mendoza, Abel; Moonlight, Peter; Morandi, Paulo; Moser, Pamela; Müller, Sandra; Nascimento, Marcelo; Negreiros, Daniel; Lima, Adriano; Vargas, Percy; Oliveira, Washington; Palacios, Walter; Pallqui Camacho, Nadir; Gutierrez, Alexander; Pardo Molina, Guido; Pedra de Abreu, Karla; Peña-Claros, Marielos; Pena Rodrigues, Pablo; Pennington, R; Pickavance, Georgia; Pipoly, John; Pitman, Nigel; Playfair, Maureen; Pontes-Lopes, Aline; Poorter, Lourens; Prestes, Nayane; Ramírez-Angulo, Hirma; Réjou-Méchain, Maxime; Reynel Rodriguez, Carlos; Rivas-Torres, Gonzalo; Rodrigues, Priscyla; de Jesus Rodrigues, Domingos; de Sousa, Thaiane; Rodrigues Pinto, José; Rodriguez M, Gina; Roucoux, Katherine; Ruokolainen, Kalle; Ryan, Casey; Revilla, Norma; Salomão, Rafael; Santos, Rubens; Sarkinen, Tiina; Scabin, Andressa; Bergamin, Rodrigo; Schietti, Juliana; de Meira Junior, Milton; Serrano, Julio; Silman, Miles; Silva, Richarlly; Silva, Camila; Silva, Jhonathan; Silveira, Marcos; Simon, Marcelo; Soto-Shareva, Yahn; Souza, Priscila; Souza, Rodolfo; Sposito, Tereza; Talbot, Joey; ter Steege, Hans; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; Trujillo, William; van der Hout, Peter; Veloso, Maria; Vieira, Simone; Vilanova, Emilio; Villalobos Cayo, Jeanneth; Villela, Dora; Viscarra, Laura; Vos, Vincent; Wortel, Verginia; Ishida, Francoise; Zuidema, Pieter; Zwerts, Joeri;Abstract Wood density is a critical control on tree biomass, so poor understanding of its spatial variation can lead to large and systematic errors in forest biomass estimates and carbon maps. The need to understand how and why wood density varies is especially critical in tropical America where forests have exceptional species diversity and spatial turnover in composition. As tree identity and forest composition are challenging to estimate remotely, ground surveys are essential to know the wood density of trees, whether measured directly or inferred from their identity. Here, we assemble an extensive dataset of variation in wood density across the most forested and tree-diverse continent, examine how it relates to spatial and environmental variables, and use these relationships to predict spatial variation in wood density over tropical and sub-tropical South America. Our analysis refines previously identified east-west Amazon gradients in wood density, improves them by revealing fine-scale variation, and extends predictions into Andean, dry, and Atlantic forests. The results halve biomass prediction errors compared to a naïve scenario with no knowledge of spatial variation in wood density. Our findings will help improve remote sensing-based estimates of aboveground biomass carbon stocks across tropical South America.
Archivio Istituziona... arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research ArchiveWageningen Staff PublicationsArticle . 2025License: CC BYData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2025 . Peer-reviewedData sources: St Andrews Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-025-56175-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research ArchiveWageningen Staff PublicationsArticle . 2025License: CC BYData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2025 . Peer-reviewedData sources: St Andrews Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-025-56175-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025 United Kingdom, France, France, Italy, Netherlands, United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:UKRI | A Socio-Ecological Observ..., EC | AMAZALERT, NSF | Collaborative Research: L... +11 projectsUKRI| A Socio-Ecological Observatory for the Southern African Woodlands ,EC| AMAZALERT ,NSF| Collaborative Research: LTREB: A natural laboratory for studying biodiversity, ecosystem function, and responses to environmental change from Amazonian lowlands to Andean treeline ,EC| GEOCARBON ,EC| TreeMort ,UKRI| SECO: Resolving the current and future carbon dynamics of the dry tropics ,UKRI| Nordeste ,UKRI| Biodiversity and ecosystem functioning in degraded and recovering Amazonian and Atlantic forests ,UKRI| BIOmes of Brasil - Resilience, rEcovery, and Diversity: BIO-RED ,EC| T-FORCES ,UKRI| ARBOLES: A trait-based Understanding of LATAM Forest Biodiversity and Resilience ,UKRI| NI: Lightning in African tropical forests: from tree mortality to carbon dynamics ,UKRI| TREMOR: Mechanisms and consequences of increasing TREe MORtality in Amazonian rainforests ,UKRI| Amazon Integrated Carbon Analysis / AMAZONICASullivan, Martin; Phillips, Oliver; Galbraith, David; Almeida, Everton; de Oliveira, Edmar; Almeida, Jarcilene; Dávila, Esteban; Alves, Luciana; Andrade, Ana; Aragão, Luiz; Araujo-Murakami, Alejandro; Arets, Eric; Arroyo, Luzmila; Cruz, Omar; Baccaro, Fabrício; Baker, Timothy; Banki, Olaf; Baraloto, Christopher; Barlow, Jos; Barroso, Jorcely; Berenguer, Erika; Blanc, Lilian; Blundo, Cecilia; Bonal, Damien; Bongers, Frans; Bordin, Kauane; Brienen, Roel; Broggio, Igor; Burban, Benoit; Cabral, George; Camargo, José; Cardoso, Domingos; Carniello, Maria; Castro, Wendeson; de Lima, Haroldo; Cavalheiro, Larissa; Ribeiro, Sabina; Ramos, Sonia; Moscoso, Victor; Chave, Jerôme; Coelho, Fernanda; Comiskey, James; Valverde, Fernando; Costa, Flávia; Coutinho, Italo; da Costa, Antonio; de Medeiros, Marcelo; del Aguila Pasquel, Jhon; Derroire, Géraldine; Dexter, Kyle; Disney, Mat; Do Espírito Santo, Mário; Domingues, Tomas; Dourdain, Aurélie; Duque, Alvaro; Rangel, Cristabel; Elias, Fernando; Esquivel-Muelbert, Adriane; Farfan-Rios, William; Fauset, Sophie; Feldpausch, Ted; Fernandes, G; Ferreira, Joice; Nunes, Yule; Figueiredo, João; Cabreara, Karina; Gonzalez, Roy; Hernández, Lionel; Herrera, Rafael; Honorio Coronado, Eurídice; Huasco, Walter; Iguatemy, Mariana; Joly, Carlos; Kalamandeen, Michelle; Killeen, Timothy; Klipel, Joice; Klitgaard, Bente; Laurance, Susan; Laurance, William; Levesley, Aurora; Lewis, Simon; Lima Dan, Maurício; Lopez-Gonzalez, Gabriela; Magnusson, William; Malhi, Yadvinder; Malizia, Lucio; Malizia, Augustina; Manzatto, Angelo; Peña, Jose; Marimon, Beatriz; Marimon Junior, Ben; Martínez-Villa, Johanna; Reis, Simone; Metzker, Thiago; Milliken, William; Monteagudo-Mendoza, Abel; Moonlight, Peter; Morandi, Paulo; Moser, Pamela; Müller, Sandra; Nascimento, Marcelo; Negreiros, Daniel; Lima, Adriano; Vargas, Percy; Oliveira, Washington; Palacios, Walter; Pallqui Camacho, Nadir; Gutierrez, Alexander; Pardo Molina, Guido; Pedra de Abreu, Karla; Peña-Claros, Marielos; Pena Rodrigues, Pablo; Pennington, R; Pickavance, Georgia; Pipoly, John; Pitman, Nigel; Playfair, Maureen; Pontes-Lopes, Aline; Poorter, Lourens; Prestes, Nayane; Ramírez-Angulo, Hirma; Réjou-Méchain, Maxime; Reynel Rodriguez, Carlos; Rivas-Torres, Gonzalo; Rodrigues, Priscyla; de Jesus Rodrigues, Domingos; de Sousa, Thaiane; Rodrigues Pinto, José; Rodriguez M, Gina; Roucoux, Katherine; Ruokolainen, Kalle; Ryan, Casey; Revilla, Norma; Salomão, Rafael; Santos, Rubens; Sarkinen, Tiina; Scabin, Andressa; Bergamin, Rodrigo; Schietti, Juliana; de Meira Junior, Milton; Serrano, Julio; Silman, Miles; Silva, Richarlly; Silva, Camila; Silva, Jhonathan; Silveira, Marcos; Simon, Marcelo; Soto-Shareva, Yahn; Souza, Priscila; Souza, Rodolfo; Sposito, Tereza; Talbot, Joey; ter Steege, Hans; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; Trujillo, William; van der Hout, Peter; Veloso, Maria; Vieira, Simone; Vilanova, Emilio; Villalobos Cayo, Jeanneth; Villela, Dora; Viscarra, Laura; Vos, Vincent; Wortel, Verginia; Ishida, Francoise; Zuidema, Pieter; Zwerts, Joeri;Abstract Wood density is a critical control on tree biomass, so poor understanding of its spatial variation can lead to large and systematic errors in forest biomass estimates and carbon maps. The need to understand how and why wood density varies is especially critical in tropical America where forests have exceptional species diversity and spatial turnover in composition. As tree identity and forest composition are challenging to estimate remotely, ground surveys are essential to know the wood density of trees, whether measured directly or inferred from their identity. Here, we assemble an extensive dataset of variation in wood density across the most forested and tree-diverse continent, examine how it relates to spatial and environmental variables, and use these relationships to predict spatial variation in wood density over tropical and sub-tropical South America. Our analysis refines previously identified east-west Amazon gradients in wood density, improves them by revealing fine-scale variation, and extends predictions into Andean, dry, and Atlantic forests. The results halve biomass prediction errors compared to a naïve scenario with no knowledge of spatial variation in wood density. Our findings will help improve remote sensing-based estimates of aboveground biomass carbon stocks across tropical South America.
Archivio Istituziona... arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research ArchiveWageningen Staff PublicationsArticle . 2025License: CC BYData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2025 . Peer-reviewedData sources: St Andrews Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-025-56175-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Oxford University Research ArchiveArticle . 2025License: CC BYData sources: Oxford University Research ArchiveWageningen Staff PublicationsArticle . 2025License: CC BYData sources: Wageningen Staff PublicationsSt Andrews Research RepositoryArticle . 2025 . Peer-reviewedData sources: St Andrews Research Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-025-56175-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Zenodo Authors: Siddika, Saifa; Hoque, Md Emdadul;Hybrid renewable energy systems, well-known for their ability to use multiple renewable sources parallelly to supply power, generate significant energy excess to demand. This study optimizes a standalone hybrid renewable energy system (HRES) for Rangabali Upazila, Bangladesh, integrating PV, wind turbines, a diesel generator, and either pumped-hydro storage (PHS) or batteries. The system addresses electricity demand and freshwater production using excess energy. Simulations in HOMER Pro indicate that PHS outperforms battery storage in both economic and environmental aspects. Systems with PHS achieve a net present cost (NPC) of $28.33M and a cost of energy (COE) of $0.175/kWh in both load-following and cycle-charging strategies, compared to $33.57M NPC and $0.207/kWh COE for the systems with battery. Additionally, PHS systems achieve zero emission as they do not require diesel generator operation, while battery systems consume up to 415 L of fuel and emit 1098 kg of CO₂ annually. The results demonstrate that the proposed systems ensure reliable power and freshwater supply, contributing to sustainable development in remote regions. Note: This paper was accepted at ICMIME 2024, organized by Faculty of Mechanical Engineering, RUET. The proceedings were not formally published or assigned a DOI. This version is uploaded as a preprint to ensure open access and proper citation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.15240849&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.15240849&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Zenodo Authors: Siddika, Saifa; Hoque, Md Emdadul;Hybrid renewable energy systems, well-known for their ability to use multiple renewable sources parallelly to supply power, generate significant energy excess to demand. This study optimizes a standalone hybrid renewable energy system (HRES) for Rangabali Upazila, Bangladesh, integrating PV, wind turbines, a diesel generator, and either pumped-hydro storage (PHS) or batteries. The system addresses electricity demand and freshwater production using excess energy. Simulations in HOMER Pro indicate that PHS outperforms battery storage in both economic and environmental aspects. Systems with PHS achieve a net present cost (NPC) of $28.33M and a cost of energy (COE) of $0.175/kWh in both load-following and cycle-charging strategies, compared to $33.57M NPC and $0.207/kWh COE for the systems with battery. Additionally, PHS systems achieve zero emission as they do not require diesel generator operation, while battery systems consume up to 415 L of fuel and emit 1098 kg of CO₂ annually. The results demonstrate that the proposed systems ensure reliable power and freshwater supply, contributing to sustainable development in remote regions. Note: This paper was accepted at ICMIME 2024, organized by Faculty of Mechanical Engineering, RUET. The proceedings were not formally published or assigned a DOI. This version is uploaded as a preprint to ensure open access and proper citation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.15240849&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.15240849&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Authors: Jorge Martínez Macancela; Alexander Aguila Téllez; Nataly Gabriela Valencia Pavón; Javier Rojas Urbano;doi: 10.3390/en18061519
This paper presents the development of an energization system prototype for IoT sensor nodes using Peltier cells as energy harvesters; its operation is optimized by applying a maximum power point tracking algorithm (MPPT) to capture as much electrical energy as possible, even if the cell temperature conditions have variations. In the IoT sensor node, a power management algorithm that works in accordance with the measurement and transmission operations can extend the node operating time, to obtain a greater amount of information and reducing the need for battery maintenance. The proposed methodology consists of developing an energization system, as well as the IoT sensor node. The energization system consists of a block of Peltier cells to obtain up to 4 V, a SEPIC-type DC-DC converter, and a 3.7 V lithium battery for energy storage. The converter works in a closed loop with the MPPT algorithm and delivers a voltage that guarantees the maximum power transfer to the battery. The sensor node was developed based on the ESP8266 development board, it allows data acquisition of temperature, humidity, light intensity, presence, and sound. The node transmits this information to the Ubidots platform for real-time visualization; to take advantage of its processing capacity, MPPT and energy management algorithms are also implemented. The results showed that to obtain a minimum voltage of 3.3 V in the energization system, a temperature difference of 59±1 °C between the plates of the Peltier cells is required. The MPPT algorithm allows working at the maximum power point and keeps the power delivered to the battery stable, with small transients when the information is transmitted; however, the overshoot and the settling time are reduced and do not affect the node operation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18061519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18061519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:MDPI AG Authors: Jorge Martínez Macancela; Alexander Aguila Téllez; Nataly Gabriela Valencia Pavón; Javier Rojas Urbano;doi: 10.3390/en18061519
This paper presents the development of an energization system prototype for IoT sensor nodes using Peltier cells as energy harvesters; its operation is optimized by applying a maximum power point tracking algorithm (MPPT) to capture as much electrical energy as possible, even if the cell temperature conditions have variations. In the IoT sensor node, a power management algorithm that works in accordance with the measurement and transmission operations can extend the node operating time, to obtain a greater amount of information and reducing the need for battery maintenance. The proposed methodology consists of developing an energization system, as well as the IoT sensor node. The energization system consists of a block of Peltier cells to obtain up to 4 V, a SEPIC-type DC-DC converter, and a 3.7 V lithium battery for energy storage. The converter works in a closed loop with the MPPT algorithm and delivers a voltage that guarantees the maximum power transfer to the battery. The sensor node was developed based on the ESP8266 development board, it allows data acquisition of temperature, humidity, light intensity, presence, and sound. The node transmits this information to the Ubidots platform for real-time visualization; to take advantage of its processing capacity, MPPT and energy management algorithms are also implemented. The results showed that to obtain a minimum voltage of 3.3 V in the energization system, a temperature difference of 59±1 °C between the plates of the Peltier cells is required. The MPPT algorithm allows working at the maximum power point and keeps the power delivered to the battery stable, with small transients when the information is transmitted; however, the overshoot and the settling time are reduced and do not affect the node operation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18061519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en18061519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Pensoft Publishers Authors: Md. Abidur Rahman Ishraq; Sabyasachi Roy; Valery Victorevich Afanasiev;In this study, a simplified computational model of the blanket mock-up is created using the SERPENT Monte Carlo Code. The nuclear data is obtained from the enriched ENDF/B.VII.1 data library to conduct this study. The model is validated, as the error percentage for 63Cu(n,2n)62Cu and 65Cu(n,2n)64Cu reactions is less than 10% when compared to experimental results. The computational model is used to calculate the tritium production rate in different lithium zones with various neutron multipliers (U, Pb) and without any multipliers. The results show that the tritium production rate with a uranium multiplier is 86% higher than with a lead multiplier and 238% higher than with no multiplier. The neutron energy spectrum shows a peak in the 0.1 MeV to 10 MeV energy range for every case. This study also examines the effects of fusion neutrons on different isotopes, providing valuable data on how materials behave under high-speed neutron exposure.
Nuclear Energy and T... arrow_drop_down Nuclear Energy and TechnologyArticle . 2025Full-Text: https://doi.org/10.3897/nucet.11.143957Data sources: Pensoftadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3897/nucet.11.143957&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nuclear Energy and T... arrow_drop_down Nuclear Energy and TechnologyArticle . 2025Full-Text: https://doi.org/10.3897/nucet.11.143957Data sources: Pensoftadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3897/nucet.11.143957&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Pensoft Publishers Authors: Md. Abidur Rahman Ishraq; Sabyasachi Roy; Valery Victorevich Afanasiev;In this study, a simplified computational model of the blanket mock-up is created using the SERPENT Monte Carlo Code. The nuclear data is obtained from the enriched ENDF/B.VII.1 data library to conduct this study. The model is validated, as the error percentage for 63Cu(n,2n)62Cu and 65Cu(n,2n)64Cu reactions is less than 10% when compared to experimental results. The computational model is used to calculate the tritium production rate in different lithium zones with various neutron multipliers (U, Pb) and without any multipliers. The results show that the tritium production rate with a uranium multiplier is 86% higher than with a lead multiplier and 238% higher than with no multiplier. The neutron energy spectrum shows a peak in the 0.1 MeV to 10 MeV energy range for every case. This study also examines the effects of fusion neutrons on different isotopes, providing valuable data on how materials behave under high-speed neutron exposure.
Nuclear Energy and T... arrow_drop_down Nuclear Energy and TechnologyArticle . 2025Full-Text: https://doi.org/10.3897/nucet.11.143957Data sources: Pensoftadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3897/nucet.11.143957&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Nuclear Energy and T... arrow_drop_down Nuclear Energy and TechnologyArticle . 2025Full-Text: https://doi.org/10.3897/nucet.11.143957Data sources: Pensoftadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3897/nucet.11.143957&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Wiley Funded by:EC | DRYvEREC| DRYvERDaniel Escobar‐Camacho; Julie Crabot; Rachel Stubbington; Judy England; Romain Sarremejane; Núria Bonada; José María Fernández‐Calero; Miguel Cañedo‐Argüelles; Carla Ferreira Rezende; Pierre Chanut; Zoltán Csabai; Andrea C. Encalada; Alex Laini; Heikki Mykrä; Nabor Moya; Petr Pařil; Daniela Rosero‐López; Thibault Datry;ABSTRACTDrying river networks include non‐perennial reaches that cease to flow or dry, and drying is becoming more prevalent with ongoing climate change. Biodiversity responses to drying have been explored mostly at local scales in a few regions, such as Europe and North America, limiting our ability to predict future global scenarios of freshwater biodiversity. Locally, drying acts as a strong environmental filter that selects for species with adaptations promoting resistance or resilience to desiccation, thus reducing aquatic α‐diversity. At the river network scale, drying generates complex mosaics of dry and wet habitats, shaping metacommunities driven by both environmental and dispersal processes. By repeatedly resetting community succession, drying can enhance β‐diversity in space and time. To investigate the transferability of these concepts across continents, we compiled and analyzed a unique dataset of 43 aquatic invertebrate metacommunities from drying river networks in Europe and South America. In Europe, α‐diversity was consistently lower in non‐perennial than perennial reaches, whereas this pattern was not evident in South America. Concomitantly, β‐diversity was higher in non‐perennial reaches than in perennial ones in Europe but not in South America. In general, β‐diversity was predominantly driven by turnover rather than nestedness. Dispersal was the main driver of metacommunity dynamics, challenging prevailing views in river science that environmental filtering is the primary process shaping aquatic metacommunities. Lastly, α‐diversity decreased as drying duration increased, but this was not consistent across Europe. Overall, drying had continent‐specific effects, suggesting limited transferability of knowledge accumulated from North America and Europe to other biogeographic regions. As climate change intensifies, river drying is increasing, and our results underscore the importance of studying its effects across different regions. The importance of dispersal also suggests that management efforts should seek to enhance connectivity between reaches to effectively monitor, restore and conserve freshwater biodiversity.
Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Wiley Funded by:EC | DRYvEREC| DRYvERDaniel Escobar‐Camacho; Julie Crabot; Rachel Stubbington; Judy England; Romain Sarremejane; Núria Bonada; José María Fernández‐Calero; Miguel Cañedo‐Argüelles; Carla Ferreira Rezende; Pierre Chanut; Zoltán Csabai; Andrea C. Encalada; Alex Laini; Heikki Mykrä; Nabor Moya; Petr Pařil; Daniela Rosero‐López; Thibault Datry;ABSTRACTDrying river networks include non‐perennial reaches that cease to flow or dry, and drying is becoming more prevalent with ongoing climate change. Biodiversity responses to drying have been explored mostly at local scales in a few regions, such as Europe and North America, limiting our ability to predict future global scenarios of freshwater biodiversity. Locally, drying acts as a strong environmental filter that selects for species with adaptations promoting resistance or resilience to desiccation, thus reducing aquatic α‐diversity. At the river network scale, drying generates complex mosaics of dry and wet habitats, shaping metacommunities driven by both environmental and dispersal processes. By repeatedly resetting community succession, drying can enhance β‐diversity in space and time. To investigate the transferability of these concepts across continents, we compiled and analyzed a unique dataset of 43 aquatic invertebrate metacommunities from drying river networks in Europe and South America. In Europe, α‐diversity was consistently lower in non‐perennial than perennial reaches, whereas this pattern was not evident in South America. Concomitantly, β‐diversity was higher in non‐perennial reaches than in perennial ones in Europe but not in South America. In general, β‐diversity was predominantly driven by turnover rather than nestedness. Dispersal was the main driver of metacommunity dynamics, challenging prevailing views in river science that environmental filtering is the primary process shaping aquatic metacommunities. Lastly, α‐diversity decreased as drying duration increased, but this was not consistent across Europe. Overall, drying had continent‐specific effects, suggesting limited transferability of knowledge accumulated from North America and Europe to other biogeographic regions. As climate change intensifies, river drying is increasing, and our results underscore the importance of studying its effects across different regions. The importance of dispersal also suggests that management efforts should seek to enhance connectivity between reaches to effectively monitor, restore and conserve freshwater biodiversity.
Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70068&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Springer Science and Business Media LLC Mohammad Nur-E-Alam; Tarek Abedin; Nur Aini Samsudin; Jana Petrů; Abdulwasa Bakr Barnawi; Manzoore Elahi M. Soudagar; T. M. Yunus Khan; Muhammad Nasir Bashir; Mohammad Aminul Islam; Boon Kar Yap; Tiong Sieh Kiong;pmid: 39762244
The microgrid (MG) faces significant security issues due to the two-way power and information flow. Integrating an Energy Management System (EMS) to balance energy supply and demand in Malaysian microgrids, this study designs a Fuzzy Logic Controller (FLC) that considers intermittent renewable sources and fluctuating demand patterns. FLC offers a flexible solution to energy scheduling effectively assessed by MATLAB/Simulink simulations. The microgrid consists of PV, battery, grid, and load. A Maximum Power Point Tracking (MPPT) controller helps to extract the maximum PV output and manages the power storage by providing or absorbing excess power. System analysis is performed by observing the State of Charge (SoC)of the battery and output power for each source. The grid supplies additional power if the battery and PV fail to meet the load demand. Total Harmonic Distortion (THD) analysis compares the performance of the Proportional-Integral Controller (PIC) and FLC. The results show that the PI controller design reduces the THD in the current signal, while FLC does not reduce the THD of the grid current when used in the EMS. However, FLC offers better control over the battery's SOC, effectively preventing overcharging and over-discharging. While PI reduces THD, FLC provides superior SOC control in a system comprising PV, battery, grid, and load. The findings demonstrate that the output current is zero when the SOC is higher than 80% or lower than 20%, signifying that no charging or discharging takes place to avoid overcharging and over-discharging. The third goal was accomplished by comparing and confirming that the grid current's THD for the EMS designed with both the PI Controller and the FLC is maintained below 5%, following the IEEE 519 harmonic standard, using the THD block in MATLAB Simulink. This analysis highlights FLC's potential to address demand-supply mismatches and renewable energy variability, which is crucial for optimizing microgrid performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-82360-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-82360-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Springer Science and Business Media LLC Mohammad Nur-E-Alam; Tarek Abedin; Nur Aini Samsudin; Jana Petrů; Abdulwasa Bakr Barnawi; Manzoore Elahi M. Soudagar; T. M. Yunus Khan; Muhammad Nasir Bashir; Mohammad Aminul Islam; Boon Kar Yap; Tiong Sieh Kiong;pmid: 39762244
The microgrid (MG) faces significant security issues due to the two-way power and information flow. Integrating an Energy Management System (EMS) to balance energy supply and demand in Malaysian microgrids, this study designs a Fuzzy Logic Controller (FLC) that considers intermittent renewable sources and fluctuating demand patterns. FLC offers a flexible solution to energy scheduling effectively assessed by MATLAB/Simulink simulations. The microgrid consists of PV, battery, grid, and load. A Maximum Power Point Tracking (MPPT) controller helps to extract the maximum PV output and manages the power storage by providing or absorbing excess power. System analysis is performed by observing the State of Charge (SoC)of the battery and output power for each source. The grid supplies additional power if the battery and PV fail to meet the load demand. Total Harmonic Distortion (THD) analysis compares the performance of the Proportional-Integral Controller (PIC) and FLC. The results show that the PI controller design reduces the THD in the current signal, while FLC does not reduce the THD of the grid current when used in the EMS. However, FLC offers better control over the battery's SOC, effectively preventing overcharging and over-discharging. While PI reduces THD, FLC provides superior SOC control in a system comprising PV, battery, grid, and load. The findings demonstrate that the output current is zero when the SOC is higher than 80% or lower than 20%, signifying that no charging or discharging takes place to avoid overcharging and over-discharging. The third goal was accomplished by comparing and confirming that the grid current's THD for the EMS designed with both the PI Controller and the FLC is maintained below 5%, following the IEEE 519 harmonic standard, using the THD block in MATLAB Simulink. This analysis highlights FLC's potential to address demand-supply mismatches and renewable energy variability, which is crucial for optimizing microgrid performance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-82360-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41598-024-82360-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu