- home
- Advanced Search
- Energy Research
- 11. Sustainability
- PL
- IT
- FR
- Energies
- Energy Research
- 11. Sustainability
- PL
- IT
- FR
- Energies
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 PolandPublisher:MDPI AG Authors: Katarzyna Stasiuk; Dominika Maison;doi: 10.3390/en15041260
Energy efficiency is an increasingly important dimension of household appliances, which is why they are labeled to indicate their energy consumption. In 2020, the European Union countries changed the labeling system from the previous system: ranging from A+++ to D, to the new system: ranging from A to G, assuming it would be more transparent for the consumer. The aim of the study was to find out the extent to which consumers are aware of the new labeling system, and the impact that the new labels have (compared to the previous ones) on the perception of household appliances and consumer decision-making. For this purpose, the survey was conducted on a nationwide representative Polish sample (n = 1054). The research was partly experimental, where the same appliances were presented with new and previous energy labels. The results showed that currently most people do not identify the new energy classes. Furthermore, products with the new labels are perceived as being less energy efficient in comparison with products with the previous labels, which shows that there is some confusion among consumers in terms of the new energy efficiency labeling system.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1260/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041260&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1260/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041260&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Fabio Gualandri; Aleksandra Kuzior;doi: 10.3390/en16134946
The 2030 zero-net emission target in the E.U. demands a significant improvement in the energy performance of the building stock. This study analyses the adoption of connected thermostats and Home energy-management system solutions (HEMS) as an effective means to tackle the residential energy footprint. It reviews the main features of HEMS systems in terms of technology, cross-study performances, and the obstacles to widespread adoption; the study adopts the case-study methodology to examine the impact on the Italian real estate stock at a regional level. A matrix of adoption scenarios assesses the potential benefits of global residential energy savings, weighted by local climatic variations, dimension, number of single dwellings, and average primary energy reduction per household. Results demonstrate that all adoption scenarios dramatically reduce residential energy consumption, outperforming the E.U. targets for Italy by 2030.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/13/4946/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16134946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/13/4946/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16134946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Corti P.; Capannolo L.; Bonomo P.; De Berardinis P.; Frontini F.;doi: 10.3390/en13153827
handle: 11697/174172
The built environment remains a strategic research and innovation domain in view of the goal of full decarbonization. The priority is the retrofitting of existing buildings as zero-emission to improve their energy efficiency with renewable energy technologies pulling the market with cost-effective strategies. From the first age of photovoltaics (PV) mainly integrated in solar roofs, we rapidly moved towards complete active building skins where all the architectural surfaces are photoactive (Building Integrated Photovoltaics - BIPV). This change of paradigm, where PV replaces a conventional building material, shifted the attention to relate construction choices with energy and cost effectiveness. However, systematic investigations which put into action a cross-disciplinary approach between construction, economic and energy related domains is still missing. This paper provides the detailed assessment of a real multifamily building, taking into account retrofit scenarios for making active the building skin, with the goal to identify the sensitive aspects of the energetic and economic effectiveness of BIPV design options. By assuming a real case study with monitored data, the analysis will consider a breakdown of the main individual parts composing the building envelope, by then combining alternative re-configurations in merged clusters with different energy and construction goals. Results will highlight the correlation between building skin construction strategies and the energy and cost parameters by identifying the cornerstones for enhancing efficiency. The outcomes, related to the total life cost, self-consumption/sufficiency, in combination with different building design options (façade, roof, balconies, surface orientations, etc.), provide a practical insight for researchers and professionals to identify renovation strategies by synergistically exploiting the solar active parts towards lower global costs and higher energy efficiency of the whole building system.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3827/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3827/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2019Embargo end date: 01 Jan 2018 France, ItalyPublisher:MDPI AG Tantet, Alexis; Concettini, Silvia; d'Ambrosio, Claudia; Thomopulos, Dimitri; Tankov, Peter; St��fanon, Marc; Drobinski, Philippe; Badosa, Jordi; Cr��ti, Anna; Thomopulos, Dimitri;handle: 11568/1013293
We develop an open-source Python software integrating flexibility needs from Variable Renewable Energies (VREs) in the development of regional energy mixes. It provides a flexible and extensible tool to researchers/engineers, and for education/outreach. It aims at evaluating and optimizing energy deployment strategies with higher shares of VRE, assessing the impact of new technologies and of climate variability and conducting sensitivity studies. Specifically, to limit the algorithm’s complexity, we avoid solving a full-mix cost-minimization problem by taking the mean and variance of the renewable production–demand ratio as proxies to balance services. Second, observations of VRE technologies being typically too short or nonexistent, the hourly demand and production are estimated from climate time series and fitted to available observations. We illustrate e4clim’s potential with an optimal recommissioning-study of the 2015 Italian PV-wind mix testing different climate data sources and strategies and assessing the impact of climate variability and the robustness of the results.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/22/4299/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di PisaArticle . 2019License: CC BYData sources: Archivio della Ricerca - Università di PisaÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)Université François-Rabelais de Tours: HALArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12224299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/22/4299/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di PisaArticle . 2019License: CC BYData sources: Archivio della Ricerca - Università di PisaÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)Université François-Rabelais de Tours: HALArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12224299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Magdalena Tutak; Jarosław Brodny;doi: 10.3390/en12203840
With regard to underground mining, methane is a gas that, on the one hand, poses a threat to the exploitation process and, on the other hand, creates an opportunity for economic development. As a result of coal exploitation, large amounts of coal enter the natural environment mainly through ventilation systems. Since methane is a greenhouse gas, its emission has a significant impact on global warming. Nevertheless, methane is also a high-energy gas that can be utilized as a very valuable energy resource. These different properties of methane prompted an analysis of both the current and the future states of methane emissions from coal seams, taking into account the possibilities of its use. For this reason, the following article presents the results of the study of methane emissions from Polish hard coal mines between 1993–2018 and their forecast until 2025. In order to predict methane emissions, research methodology was developed based on artificial neural networks and selected statistical methods. The multi-layer perceptron (MLP) network was used to make a prognostic model. The aim of the study was to develop a method to predict methane emissions and determine trends in terms of the amount of methane that may enter the natural environment in the coming years and the amount that can be used as a result of the methane drainage process. The methodology developed with the use of neural networks, the conducted research, and the findings constitute a new approach in the scope of both analysis and prediction of methane emissions from hard coal mines. The results obtained confirm that this methodology works well in mining practice and can also be successfully used in other industries to forecast greenhouse gas and other substance emissions.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/20/3840/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12203840&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/20/3840/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12203840&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Mohamed Alwaeli; Viktoria Mannheim;doi: 10.3390/en15124275
Nuclear power can replace fossil fuels and will have a decisive impact on the change in the approach to conventional energy. However, nuclear (or radioactive) wastes are produced by the operation of the nuclear reactors should be safely and properly disposed of. This paper assesses the uranium resources and the global state of nuclear power plants and determines the energy mixes in different countries using the most nuclear energy. Furthermore, this paper analysed the nuclear waste management and disposal and the depletion of abiotic resources, and the primary energy sources of a basic production process using electricity mix and nuclear electricity for a basic production (PET bottle manufacturing) process. The life cycle assessment was completed by applying the GaBi 8.0 (version 10.6) software and the CML method. In this study, we limit our discussion to high-level nuclear waste (HLW) and spent nuclear fuel (SNF) waste. We do not consider waste generated from uranium mining and milling, which is usually disposed of in near-surface impoundments close to the mine or the mill. The investigation of waste management methods is limited to European countries. This research work is relevant because determining abiotic resources is important in a life cycle assessment and current literature available on LCA analysis for nuclear powers remains under-developed. These results can guide and compare manufacturing processes involving a nuclear electricity and electricity grid mix input. The results of this research can be used to develop production processes using nuclear energy with lower abiotic depletion impacts. This research work facilitates the industry in making predictions for a production-scale plant using an LCA of production processes with nuclear energy consumption.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/12/4275/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/12/4275/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Joanna Irena Odzijewicz; Elżbieta Wołejko; Urszula Wydro; Mariola Wasil; Agata Jabłońska-Trypuć;doi: 10.3390/en15249653
Biomass is one of the most important sources of renewable energy in the energy industry. It is assumed that by 2050 the global energy deposit could be covered in 33–50% of biomass combustion. As with conventional fuels, the combustion of biomass produces combustion by-products, such as fly ash. Therefore, along with the growing interest in the use of biomass as a source of energy, the production of ash as a combustion by-product increases every year. It is estimated that approximately 476 million tons of ashes per year can be produced from biomass combustion. For example, the calorific value of dry wood mass tends to be between 18.5 MJ × kg−1 and 19.5 MJ × kg−1, while the ash content resulting from thermal treatment of wood is from 0.4 to 3.9% of dry fuel mass. However, biomass ash is a waste that is particularly difficult to characterize due to the large variability of the chemical composition depending on the biomass and combustion technology. In addition, this waste is, on the one hand, a valuable fertilizer component, as it contains significant amounts of nutrients, e.g., calcium (Ca), potassium (K) and microelements, but on the other hand, it may contain toxic compounds harmful to the environment, including heavy metals and substances formed as a result of combustion, such as polycyclic aromatic hydrocarbons (PAHs) or volatile organic compounds (VOCs). PAHs and VOCs are formed mainly in the processes of incomplete combustion of coal and wood in low-power boilers, with unstable operating conditions. However, it is important to remember that before the fly ash is used in various industries (e.g., zeolite synthesis, recovery of rare earth metals or plastic production) as an additive to building materials or fertilizers for cultivation, a number of analyses are to be conducted so that the by-products of combustion could be used to allow the by-product of combustion to be used. It is important to conduct tests for the content of heavy metals, chlorides, sulphates, microelements and macroelements, grain and phase composition and organic compounds. If such ash is characterized by low pollution levels, it should be used in agriculture and reclamation of degraded land and not directed to landfills where it loses its valuable properties. The purpose of this review is to present the properties of ashes generated as a result of biomass combustion in Poland and the world, to discuss factors influencing changes in its composition and to present the possibilities of their reuse in the environment and in various branches of industry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 62 citations 62 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Authors: Tonini F.; Sanvito F. D.; Colombelli F.; Colombo E.;doi: 10.3390/en15051902
handle: 11311/1208728
As it emerges from the literature, electricity access in rural contexts is deeply intertwined with socioeconomic dynamics. However, the advent of a reliable and sufficient source of electricity is not the sole driver that might contribute to local development. Indeed, complementary activities might have a crucial role in sustaining the development of rural communities as well as the electricity access. The current research addresses the lack of counterfactual scenarios in which the impact of complementary activities on electrification projects can be investigated. The authors introduce the case study of Matembwe village, a rural community in the Njombe region of Tanzania. The data collection includes the electricity consumption, number of electricity connections, and number of income-generating activities in a timespan ranging from 1989 to 2015. The analysis is based on system dynamics. The study considers different scenarios representing the dynamics related to the following complementary actions: access to market measures, access to credit measures, and access to usable skills. On the one hand, the study reveals that the effectiveness of the considered complementary actions is limited except from the access to microcredit which fosters an increase in electricity connections by 17%. On the other hand, both access to microcredit and the starting up of a local cooperative by CEFA Onlus that reinvests its profits in the local market impact the socio-economic dimension by 69% and 22%, respectively.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/5/1902/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15051902&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/5/1902/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15051902&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:MDPI AG Authors: Luca Castellazzi; Maria Avgerinou; Paolo Bertoldi;doi: 10.3390/en10101470
Climate change is recognised as one of the key challenges humankind is facing. The Information and Communication Technology (ICT) sector including data centres generates up to 2% of the global CO2 emissions, a number on par to the aviation sector contribution, and data centres are estimated to have the fastest growing carbon footprint from across the whole ICT sector, mainly due to technological advances such as the cloud computing and the rapid growth of the use of Internet services. There are no recent estimations of the total energy consumption of the European data centre and of their energy efficiency. The aim of this paper is to evaluate, analyse and present the current trends in energy consumption and efficiency in data centres in the European Union using the data submitted by companies participating in the European Code of Conduct for Data Centre Energy Efficiency programme, a voluntary initiative created in 2008 in response to the increasing energy consumption in data centres and the need to reduce the related environmental, economic and energy supply security impacts. The analysis shows that the average Power Usage Effectiveness (PUE) of the facilities participating in the programme is declining year after year. This confirms that voluntary approaches could be effective in addressing climate and energy issue.
Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/10/1470/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10101470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 247 citations 247 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/10/1470/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10101470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Mateusz Płoszaj-Mazurek; Elżbieta Ryńska; Magdalena Grochulska-Salak;doi: 10.3390/en13205289
The analyzed research issue provides a model for Carbon Footprint estimation at an early design stage. In the context of climate neutrality, it is important to introduce regenerative design practices in the architect’s design process, especially in early design phases when the possibility of modifying the design is usually high. The research method was based on separate consecutive research works–partial tasks: Developing regenerative design guidelines for simulation purposes and for parametric modeling; generating a training set and a testing set of building designs with calculated total Carbon Footprint; using the pre-generated set to train a Machine Learning Model; applying the Machine Learning Model to predict optimal building features; prototyping an application for a quick estimation of the Total Carbon Footprint in the case of other projects in early design phases; updating the prototyped application with additional features; urban layout analysis; preparing a new approach based on Convolutional Neural Networks and training the new algorithm; and developing the final version of the application that can predict the Total Carbon Footprint of a building design based on basic building features and on the urban layout. The results of multi-criteria analyses showed relationships between the parameters of buildings and the possibility of introducing Carbon Footprint estimation and implementing building optimization at the initial design stage.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/20/5289/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/20/5289/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 PolandPublisher:MDPI AG Authors: Katarzyna Stasiuk; Dominika Maison;doi: 10.3390/en15041260
Energy efficiency is an increasingly important dimension of household appliances, which is why they are labeled to indicate their energy consumption. In 2020, the European Union countries changed the labeling system from the previous system: ranging from A+++ to D, to the new system: ranging from A to G, assuming it would be more transparent for the consumer. The aim of the study was to find out the extent to which consumers are aware of the new labeling system, and the impact that the new labels have (compared to the previous ones) on the perception of household appliances and consumer decision-making. For this purpose, the survey was conducted on a nationwide representative Polish sample (n = 1054). The research was partly experimental, where the same appliances were presented with new and previous energy labels. The results showed that currently most people do not identify the new energy classes. Furthermore, products with the new labels are perceived as being less energy efficient in comparison with products with the previous labels, which shows that there is some confusion among consumers in terms of the new energy efficiency labeling system.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1260/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041260&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1260/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041260&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors: Fabio Gualandri; Aleksandra Kuzior;doi: 10.3390/en16134946
The 2030 zero-net emission target in the E.U. demands a significant improvement in the energy performance of the building stock. This study analyses the adoption of connected thermostats and Home energy-management system solutions (HEMS) as an effective means to tackle the residential energy footprint. It reviews the main features of HEMS systems in terms of technology, cross-study performances, and the obstacles to widespread adoption; the study adopts the case-study methodology to examine the impact on the Italian real estate stock at a regional level. A matrix of adoption scenarios assesses the potential benefits of global residential energy savings, weighted by local climatic variations, dimension, number of single dwellings, and average primary energy reduction per household. Results demonstrate that all adoption scenarios dramatically reduce residential energy consumption, outperforming the E.U. targets for Italy by 2030.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/13/4946/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16134946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/13/4946/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16134946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Corti P.; Capannolo L.; Bonomo P.; De Berardinis P.; Frontini F.;doi: 10.3390/en13153827
handle: 11697/174172
The built environment remains a strategic research and innovation domain in view of the goal of full decarbonization. The priority is the retrofitting of existing buildings as zero-emission to improve their energy efficiency with renewable energy technologies pulling the market with cost-effective strategies. From the first age of photovoltaics (PV) mainly integrated in solar roofs, we rapidly moved towards complete active building skins where all the architectural surfaces are photoactive (Building Integrated Photovoltaics - BIPV). This change of paradigm, where PV replaces a conventional building material, shifted the attention to relate construction choices with energy and cost effectiveness. However, systematic investigations which put into action a cross-disciplinary approach between construction, economic and energy related domains is still missing. This paper provides the detailed assessment of a real multifamily building, taking into account retrofit scenarios for making active the building skin, with the goal to identify the sensitive aspects of the energetic and economic effectiveness of BIPV design options. By assuming a real case study with monitored data, the analysis will consider a breakdown of the main individual parts composing the building envelope, by then combining alternative re-configurations in merged clusters with different energy and construction goals. Results will highlight the correlation between building skin construction strategies and the energy and cost parameters by identifying the cornerstones for enhancing efficiency. The outcomes, related to the total life cost, self-consumption/sufficiency, in combination with different building design options (façade, roof, balconies, surface orientations, etc.), provide a practical insight for researchers and professionals to identify renovation strategies by synergistically exploiting the solar active parts towards lower global costs and higher energy efficiency of the whole building system.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3827/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3827/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2019Embargo end date: 01 Jan 2018 France, ItalyPublisher:MDPI AG Tantet, Alexis; Concettini, Silvia; d'Ambrosio, Claudia; Thomopulos, Dimitri; Tankov, Peter; St��fanon, Marc; Drobinski, Philippe; Badosa, Jordi; Cr��ti, Anna; Thomopulos, Dimitri;handle: 11568/1013293
We develop an open-source Python software integrating flexibility needs from Variable Renewable Energies (VREs) in the development of regional energy mixes. It provides a flexible and extensible tool to researchers/engineers, and for education/outreach. It aims at evaluating and optimizing energy deployment strategies with higher shares of VRE, assessing the impact of new technologies and of climate variability and conducting sensitivity studies. Specifically, to limit the algorithm’s complexity, we avoid solving a full-mix cost-minimization problem by taking the mean and variance of the renewable production–demand ratio as proxies to balance services. Second, observations of VRE technologies being typically too short or nonexistent, the hourly demand and production are estimated from climate time series and fitted to available observations. We illustrate e4clim’s potential with an optimal recommissioning-study of the 2015 Italian PV-wind mix testing different climate data sources and strategies and assessing the impact of climate variability and the robustness of the results.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/22/4299/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di PisaArticle . 2019License: CC BYData sources: Archivio della Ricerca - Università di PisaÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)Université François-Rabelais de Tours: HALArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12224299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/22/4299/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di PisaArticle . 2019License: CC BYData sources: Archivio della Ricerca - Università di PisaÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)Université François-Rabelais de Tours: HALArticle . 2019Full-Text: https://hal.science/hal-01962044Data sources: Bielefeld Academic Search Engine (BASE)https://dx.doi.org/10.48550/ar...Article . 2018License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12224299&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors: Magdalena Tutak; Jarosław Brodny;doi: 10.3390/en12203840
With regard to underground mining, methane is a gas that, on the one hand, poses a threat to the exploitation process and, on the other hand, creates an opportunity for economic development. As a result of coal exploitation, large amounts of coal enter the natural environment mainly through ventilation systems. Since methane is a greenhouse gas, its emission has a significant impact on global warming. Nevertheless, methane is also a high-energy gas that can be utilized as a very valuable energy resource. These different properties of methane prompted an analysis of both the current and the future states of methane emissions from coal seams, taking into account the possibilities of its use. For this reason, the following article presents the results of the study of methane emissions from Polish hard coal mines between 1993–2018 and their forecast until 2025. In order to predict methane emissions, research methodology was developed based on artificial neural networks and selected statistical methods. The multi-layer perceptron (MLP) network was used to make a prognostic model. The aim of the study was to develop a method to predict methane emissions and determine trends in terms of the amount of methane that may enter the natural environment in the coming years and the amount that can be used as a result of the methane drainage process. The methodology developed with the use of neural networks, the conducted research, and the findings constitute a new approach in the scope of both analysis and prediction of methane emissions from hard coal mines. The results obtained confirm that this methodology works well in mining practice and can also be successfully used in other industries to forecast greenhouse gas and other substance emissions.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/20/3840/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12203840&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/20/3840/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12203840&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Mohamed Alwaeli; Viktoria Mannheim;doi: 10.3390/en15124275
Nuclear power can replace fossil fuels and will have a decisive impact on the change in the approach to conventional energy. However, nuclear (or radioactive) wastes are produced by the operation of the nuclear reactors should be safely and properly disposed of. This paper assesses the uranium resources and the global state of nuclear power plants and determines the energy mixes in different countries using the most nuclear energy. Furthermore, this paper analysed the nuclear waste management and disposal and the depletion of abiotic resources, and the primary energy sources of a basic production process using electricity mix and nuclear electricity for a basic production (PET bottle manufacturing) process. The life cycle assessment was completed by applying the GaBi 8.0 (version 10.6) software and the CML method. In this study, we limit our discussion to high-level nuclear waste (HLW) and spent nuclear fuel (SNF) waste. We do not consider waste generated from uranium mining and milling, which is usually disposed of in near-surface impoundments close to the mine or the mill. The investigation of waste management methods is limited to European countries. This research work is relevant because determining abiotic resources is important in a life cycle assessment and current literature available on LCA analysis for nuclear powers remains under-developed. These results can guide and compare manufacturing processes involving a nuclear electricity and electricity grid mix input. The results of this research can be used to develop production processes using nuclear energy with lower abiotic depletion impacts. This research work facilitates the industry in making predictions for a production-scale plant using an LCA of production processes with nuclear energy consumption.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/12/4275/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/12/4275/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Joanna Irena Odzijewicz; Elżbieta Wołejko; Urszula Wydro; Mariola Wasil; Agata Jabłońska-Trypuć;doi: 10.3390/en15249653
Biomass is one of the most important sources of renewable energy in the energy industry. It is assumed that by 2050 the global energy deposit could be covered in 33–50% of biomass combustion. As with conventional fuels, the combustion of biomass produces combustion by-products, such as fly ash. Therefore, along with the growing interest in the use of biomass as a source of energy, the production of ash as a combustion by-product increases every year. It is estimated that approximately 476 million tons of ashes per year can be produced from biomass combustion. For example, the calorific value of dry wood mass tends to be between 18.5 MJ × kg−1 and 19.5 MJ × kg−1, while the ash content resulting from thermal treatment of wood is from 0.4 to 3.9% of dry fuel mass. However, biomass ash is a waste that is particularly difficult to characterize due to the large variability of the chemical composition depending on the biomass and combustion technology. In addition, this waste is, on the one hand, a valuable fertilizer component, as it contains significant amounts of nutrients, e.g., calcium (Ca), potassium (K) and microelements, but on the other hand, it may contain toxic compounds harmful to the environment, including heavy metals and substances formed as a result of combustion, such as polycyclic aromatic hydrocarbons (PAHs) or volatile organic compounds (VOCs). PAHs and VOCs are formed mainly in the processes of incomplete combustion of coal and wood in low-power boilers, with unstable operating conditions. However, it is important to remember that before the fly ash is used in various industries (e.g., zeolite synthesis, recovery of rare earth metals or plastic production) as an additive to building materials or fertilizers for cultivation, a number of analyses are to be conducted so that the by-products of combustion could be used to allow the by-product of combustion to be used. It is important to conduct tests for the content of heavy metals, chlorides, sulphates, microelements and macroelements, grain and phase composition and organic compounds. If such ash is characterized by low pollution levels, it should be used in agriculture and reclamation of degraded land and not directed to landfills where it loses its valuable properties. The purpose of this review is to present the properties of ashes generated as a result of biomass combustion in Poland and the world, to discuss factors influencing changes in its composition and to present the possibilities of their reuse in the environment and in various branches of industry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 62 citations 62 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Authors: Tonini F.; Sanvito F. D.; Colombelli F.; Colombo E.;doi: 10.3390/en15051902
handle: 11311/1208728
As it emerges from the literature, electricity access in rural contexts is deeply intertwined with socioeconomic dynamics. However, the advent of a reliable and sufficient source of electricity is not the sole driver that might contribute to local development. Indeed, complementary activities might have a crucial role in sustaining the development of rural communities as well as the electricity access. The current research addresses the lack of counterfactual scenarios in which the impact of complementary activities on electrification projects can be investigated. The authors introduce the case study of Matembwe village, a rural community in the Njombe region of Tanzania. The data collection includes the electricity consumption, number of electricity connections, and number of income-generating activities in a timespan ranging from 1989 to 2015. The analysis is based on system dynamics. The study considers different scenarios representing the dynamics related to the following complementary actions: access to market measures, access to credit measures, and access to usable skills. On the one hand, the study reveals that the effectiveness of the considered complementary actions is limited except from the access to microcredit which fosters an increase in electricity connections by 17%. On the other hand, both access to microcredit and the starting up of a local cooperative by CEFA Onlus that reinvests its profits in the local market impact the socio-economic dimension by 69% and 22%, respectively.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/5/1902/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15051902&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/5/1902/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15051902&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:MDPI AG Authors: Luca Castellazzi; Maria Avgerinou; Paolo Bertoldi;doi: 10.3390/en10101470
Climate change is recognised as one of the key challenges humankind is facing. The Information and Communication Technology (ICT) sector including data centres generates up to 2% of the global CO2 emissions, a number on par to the aviation sector contribution, and data centres are estimated to have the fastest growing carbon footprint from across the whole ICT sector, mainly due to technological advances such as the cloud computing and the rapid growth of the use of Internet services. There are no recent estimations of the total energy consumption of the European data centre and of their energy efficiency. The aim of this paper is to evaluate, analyse and present the current trends in energy consumption and efficiency in data centres in the European Union using the data submitted by companies participating in the European Code of Conduct for Data Centre Energy Efficiency programme, a voluntary initiative created in 2008 in response to the increasing energy consumption in data centres and the need to reduce the related environmental, economic and energy supply security impacts. The analysis shows that the average Power Usage Effectiveness (PUE) of the facilities participating in the programme is declining year after year. This confirms that voluntary approaches could be effective in addressing climate and energy issue.
Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/10/1470/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10101470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 247 citations 247 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/10/1470/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10101470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors: Mateusz Płoszaj-Mazurek; Elżbieta Ryńska; Magdalena Grochulska-Salak;doi: 10.3390/en13205289
The analyzed research issue provides a model for Carbon Footprint estimation at an early design stage. In the context of climate neutrality, it is important to introduce regenerative design practices in the architect’s design process, especially in early design phases when the possibility of modifying the design is usually high. The research method was based on separate consecutive research works–partial tasks: Developing regenerative design guidelines for simulation purposes and for parametric modeling; generating a training set and a testing set of building designs with calculated total Carbon Footprint; using the pre-generated set to train a Machine Learning Model; applying the Machine Learning Model to predict optimal building features; prototyping an application for a quick estimation of the Total Carbon Footprint in the case of other projects in early design phases; updating the prototyped application with additional features; urban layout analysis; preparing a new approach based on Convolutional Neural Networks and training the new algorithm; and developing the final version of the application that can predict the Total Carbon Footprint of a building design based on basic building features and on the urban layout. The results of multi-criteria analyses showed relationships between the parameters of buildings and the possibility of introducing Carbon Footprint estimation and implementing building optimization at the initial design stage.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/20/5289/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/20/5289/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu