Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
142 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 2016-2025
  • Restricted
  • Embargo
  • GB
  • AU

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Twigger Holroyd, Amy;
    Twigger Holroyd, Amy
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Twigger Holroyd, Amy in OpenAIRE

    This dataset was generated via a focused piece of research conducted by Dr Matilda Aspinall and Dr Amy Twigger Holroyd which investigated the experiences of students and staff involved in Fashion Fictions projects in 2022 at two institutions: LASALLE College of the Arts in Singapore and Nottingham Trent University. This focused research was situated within the broader Fashion Fictions project. Fashion Fictions, founded by Amy Twigger Holroyd in 2020, brings people together to generate, experience and reflect on engaging fictional visions of alternative fashion cultures and systems. Through these activities, we gain new perspectives on challenges, possibilities and pathways for change in the real world. The project is structured in three stages. Stage 1 prompts contributors to create brief written outlines of fictional fashion cultures and systems, known as Worlds; at Stage 2, participants put flesh on these outlines and create visual or material prototypes to represent their cultures, known as Explorations; at Stage 3, they performatively enact practices or events from the fictional worlds. To find out more about Fashion Fictions, visit the project website. To see other data linked to the project, visit the Fashion Fictions Zenodo community. -------------------------------- In both institutions, Fashion Fictions was initially introduced to the curriculum in the 2020/21 academic year; the activities discussed here took place in the following year, with a second cohort of students. At NTU, first-year undergraduate students from BA (Hons) courses in Fashion Design, Textile Design and Fashion Knitwear Design & Knitted Textiles undertook a short Stage 2 Fashion Fictions project. Spanning three two-hour workshops, the project was part of a Future Thinking toolkit within a module that aims to develop students’ intellectual curiosity and appreciation of the future as something that can be shaped and questioned. Working in small cross-course groups, students were given a specified Stage 1 fiction and asked to create a visual or material prototype to represent everyday life in that world, presented via a selection of images and a short explanatory text. At LASALLE, Fashion Fictions was set up as a major project extending across a 14-week semester for second-year students on two BA (Hons) programmes: Fashion Media and Industries and Fashion Design and Textiles. Also working in cross-course collaborative groups, the students first created their own Stage 1 world and then progressed to create a collection of Stage 2 prototypes in the form of garments and related media such as photographs and films, accompanied by an extensive body of supporting work. -------------------------------- in April and May 2022 we conducted semi-structured interviews with tutors involved in the projects – Lorraine Warde (Principal Lecturer in Fashion Design) at NTU and Martin Bonney and Kathryn Shannon Sim Yen Ping (Lecturers in Fashion, interviewed together) at LASALLE – and with three student groups, selected by the tutors, from each institution. The interview schedules for students and tutors each comprised four reflective questions, designed to gain an insight into the students’ experiences and the tutors’ observations. Each recorded interview lasted between twenty and sixty minutes. -------------------------------- The dataset is organised in nine folders: 1 Project context Project website About page from February 2022 (explaining the wider project at the time of this research). Project website Education projects page from January 2022 (giving context to the education projects taking place at the time of this research). 2 Activity guidance Project website Stage 1 (World) online guide from January 2022 (as available for use by LASALLE students). NTU virtual workspace Stage 2 (Exploration) guidance (as used by NTU students and providing an indication of the type of guidance that would have been offered to LASALLE students for their Stage 2 work - although their project was much longer in duration). 3 Interview documentation Information sheet and consent form given to research participants. Interview questions for staff and students, shared with all participants in advance. 4 LASALLE staff interview Transcript of interview with Martin Bonney and Kathryn Shannon Sim Yen Ping (Lecturers in Fashion). 5 LASALLE student interviews Transcripts of interviews with three student groups, each identified by the number/letter of the Stage 1 World and Stage 2 Exploration they created (as listed on the project website Worlds and Explorations pages). 6 LASALLE student work Project work (Stage 1 Worlds and Stage 2 Explorations) created by the three student groups interviewed, as displayed on the project website. One group (World 154) did not submit their Exploration for the website. 7 NTU staff interview Transcript of interview with Lorraine Warde (Principal Lecturer in Fashion Design). 8 NTU student interviews Transcripts of interviews with three student groups, each identified by the number/letter of the Stage 2 Exploration they created (as listed on the project website Explorations page). 9 NTU student work Project work (Stage 2 Explorations) created by the three student groups interviewed. Two groups' work is as displayed on the project website. One group (World 95, Exploration X) did not submit their Exploration for the website and so their internal presentation has been included instead.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Dataset . 2022
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Dataset . 2022
    Data sources: Datacite
    ZENODO
    Dataset . 2022
    Data sources: ZENODO
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Dataset . 2022
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Dataset . 2022
      Data sources: Datacite
      ZENODO
      Dataset . 2022
      Data sources: ZENODO
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: David P, Edwards; orcid Gianluca R, Cerullo;
    Gianluca R, Cerullo
    ORCID
    Harvested from ORCID Public Data File

    Gianluca R, Cerullo in OpenAIRE

    The global restoration agenda can help solve the biodiversity extinction crisis by regenerating biodiversity-rich ecosystems, maximising conservation benefits using natural regeneration. Yet, conservation is rarely the core objective of restoration, and biodiversity is often neglected in restoration projects targeted towards carbon sequestration or enhancing ecosystem services for improved local livelihoods. Here, we synthesise evidence to show that promoting biodiversity in restoration planning and delivery is integral to delivering other long-term restoration aims, such as carbon sequestration, timber production, enhanced local farm yields, reduced soil erosion, recovered hydrological services and improved human health. For each of these restoration goals, biodiversity must be a keystone objective to the entire process. Biodiversity integration requires improved evidence and action, delivered via a socio-ecological process operating at landscape scales and backed by supportive regulations and finance. Conceiving restoration and biodiversity conservation as synergistic, mutually reinforcing partners is critical for humanity's bids to tackle the global crises of climate change, land degradation and biodiversity extinction.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Apollo
    Article . 2024
    License: CC BY NC ND
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Current Biology
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Apollo
      Article . 2024
      License: CC BY NC ND
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Current Biology
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Silseth, Tobias;

    From the British debate on the depletion of coal in 1865 to the First World Power Conference held in London in 1924, scientists, engineers, industrialists, and politicians produced new interpretations of the past, present, and future in terms of the mobilisation of energy resources. This thesis identifies an emerging ‘energy developmentalism’, which called for maximising energy use to maintain or improve a nation’s place in international competition. Energy developmentalism was not a marginal worldview confined to ‘energeticists’, but a coherent set of claims, measurements, and arguments that informed energy governance on an international scale. Rather than focusing on a single resource, energy developmentalism applied a unified schema to all energy sources, including those like solar and tidal energy that were still mostly theoretical. Drawing on sources from across Europe, while staying grounded in political changes in Britain and France, makes it possible to understand how a general formula for transforming raw materials with maximum efficiency was applied differently depending on specific political contexts. This period saw the articulation of problems like the depletion of resources, the difference between renewable and nonrenewable energy, the intermittency of renewables, the overreliance on a single source of energy, and the centrality of energy to modern economies – problems that are often associated with later periods. Scientific measurements of efficiency, horsepower, and kilowatts became operators in political debates centred on questions of national standing and progress. Even as oil became increasingly important in the world economy, the delegates at the First World Power Conference transformed a vision of a renewable energy future into one of a general expansion of energy consumption as the basis of progress. In so doing, they downplayed the continued importance of fossil fuels and equated ‘conservation’ with the fullest possible use of all energy sources, renewable or not.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Schulz, Christopher;
    Schulz, Christopher
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Schulz, Christopher in OpenAIRE

    ON 16 NOVEMBER 2000, the final report of the World Commission on Dams (WCD) was launched in London, in the presence of South Africa’s former president Nelson Mandela. This represented a remarkable milestone in the history of dam policy and politics. During its two-year existence, WCD had conducted the most extensive review of research and evidence regarding the planning, impacts, and management of large dams. It had engaged with numerous stakeholders around the globe. It also made comprehensive recommendations about how to improve dam planning and management.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Apollo
    Article . 2020
    Data sources: Datacite
    addClaim
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility17
    visibilityviews17
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Apollo
      Article . 2020
      Data sources: Datacite
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Masera, Kemal;
    Masera, Kemal
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Masera, Kemal in OpenAIRE
    Tannous, Hadi; orcid bw Tassou, Savvas;
    Tassou, Savvas
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Tassou, Savvas in OpenAIRE
    orcid bw Stojceska, Valentina;
    Stojceska, Valentina
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Stojceska, Valentina in OpenAIRE
    +2 Authors

    This report aims to provide concept designs to integrate the SunDial/TES system with the MANDREKAS and ArcelorMittal end-users. These concept designs are important to understand how the ASTEP system will be integrated with the end-users including the tailored designs for the specific needs of each end-user. The end-user specific ASTEP system is introduced and existing heating/cooling systems are explained in schematic diagrams. A small number of integration options are presented in detailed schematics. Possible integration components such as steam generator for MANDREKAS and pipe heater for ArcelorMittal are investigated at the component level. In addition, key fluid properties at the critical locations such as inlet and outlet of the components are summarised.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Project deliverable . 2021
    Data sources: Datacite
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    ZENODO
    Project deliverable . 2021
    Data sources: Datacite
    ZENODO
    Other literature type . 2021
    Data sources: ZENODO
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility49
    visibilityviews49
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ZENODOarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Project deliverable . 2021
      Data sources: Datacite
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      ZENODO
      Project deliverable . 2021
      Data sources: Datacite
      ZENODO
      Other literature type . 2021
      Data sources: ZENODO
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Jiří Laurin;
    Jiří Laurin
    ORCID
    Harvested from ORCID Public Data File

    Jiří Laurin in OpenAIRE
    David Uličný; orcid bw Dave Waltham;
    Dave Waltham
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Dave Waltham in OpenAIRE
    Petr Toman; +2 Authors

    Climate-controlled changes in eustatic sea level (ESL) are linked to transfers of water between ocean and land, thus offering a rare insight into the past hydrological cycle. In this study, we examine the timing and phase of Milankovitch-scale ESL cycles in the peak Cretaceous greenhouse, the early Turonian (-93-94 million years, Myr, ago). A high-resolution astronomical framework established for the Bohemian Cretaceous Basin (central Europe) suggests a -400-kyr pace and a distinct asymmetry of interpreted ESL cycles. The rising limbs of ESL change constitute only 20-30 % of the cycle, and are encased entirely within the falling phase of the 405-kyr eccentricity. The intervening ESL falls (<= 6 m in magnitude) are more protracted, starting within 70 kyr prior to the eccentricity minima and culminating -60 kyr after the 405-kyr eccentricity maxima. Despite similarities to the sawtooth shape of -100-kyr glacioeustatic oscillations of the Late Pleistocene, the time scales and phasing are unparalleled in the Pleistocene icehouse. A similar, 405-kyr pace is found in ice-volume variations of the early Miocene, but the timing of glacioeustatic change relative to eccentricity forcing is incompatible with the phase of greenhouse sea-level oscillations. The phasing points to major differences in the geographic location and insolation sensitivity of the key hydrological reservoirs under icehouse and greenhouse regimes. The inferred structure of greenhouse eustasy points to low- or middle-latitude water storage, likely aquifers, that charge (expand) with rising seasonality variations and discharge (contract) with declining seasonality amplitudes on the 405-kyr scale. The net volume of water transferred on these time scales is within 2.2 x 106 km3, equivalent to <= 10 % of the present-day storage in the uppermost 2 km of continental crust. Potential additive interference with steric eustasy, proportionally relevant during greenhouse regimes, could reduce the volumes required for continental storage.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repository of the Cz...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Earth and Planetary Science Letters
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repository of the Cz...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Earth and Planetary Science Letters
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Elias Stathatos;
    Elias Stathatos
    ORCID
    Harvested from ORCID Public Data File

    Elias Stathatos in OpenAIRE
    orcid Zois Syrgiannis;
    Zois Syrgiannis
    ORCID
    Harvested from ORCID Public Data File

    Zois Syrgiannis in OpenAIRE
    orcid Tiziano Montini;
    Tiziano Montini
    ORCID
    Harvested from ORCID Public Data File

    Tiziano Montini in OpenAIRE
    orcid Konstantinos C. Christoforidis;
    Konstantinos C. Christoforidis
    ORCID
    Harvested from ORCID Public Data File

    Konstantinos C. Christoforidis in OpenAIRE
    +8 Authors

    Hydrogen generation from water using solar energy has grown into a promising approach for sustainable energy production. Over the last years, graphitic carbon nitrides (g-C3N4, CN), polymers based on the heptazine-group, have been widely applied as photocatalysts for H2 evolution. The poor charge separation efficiency of CN is considered the major drawback. Here, we investigated the effect of coupling CN with different types of carbon nanotubes on the charge transfer properties and the photocatalytic H2 evolution. We used carbon nanotubes (CNTs) of different wall number (single (SWCNTs), double (DWCNTs) and multi-walled (MWCNTs) CNTs) for the development of full-organic CN based composite photocatalysts. Photoactivity was drastically affected by the content but more importantly by the nature of the CNTs. The SWCNTs functionalized CN composites were the most active presenting approximately 2-5 times higher H2 evolution than the corresponding DWCNTs and MWCNTs functionalized CN under both solar and pure visible light irradiation. Photoactivity was primarily controlled by the improved electronic properties linked with the abundance and stability of photogenerated charges as evidenced by electron paramagnetic resonance spectroscopy. Transient absorption spectroscopy verified the transfer of reactive electrons from CN to CNTs. CNTs functioned as electron acceptors improving charge separation. The data suggest that charge transfer is inversely proportional to the wall number of the CNTs and that photoactivity is directly controlled by the size at the nanoscale of the CNTs used. In the CNTs/CN nanocomposites, photogenerated electrons are transferred more efficiently from CN when SWCNTs are used, providing more available electrons for H2 production.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2018
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Nano Energy
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    Access Routes
    Green
    bronze
    147
    citations147
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2018
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Nano Energy
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Luc Pelkmans;
    Luc Pelkmans
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Luc Pelkmans in OpenAIRE
    orcid Miet Van Dael;
    Miet Van Dael
    ORCID
    Harvested from ORCID Public Data File

    Miet Van Dael in OpenAIRE
    Martin Junginger; orcid Uwe R. Fritsche;
    Uwe R. Fritsche
    ORCID
    Harvested from ORCID Public Data File

    Uwe R. Fritsche in OpenAIRE
    +6 Authors

    AbstractProjections show that biomass will remain important for reaching future EU renewable energy targets. In addition to using domestic biomass, European bioenergy markets will also partly rely on imports of biomass, in particular in trade‐oriented EU member states like the United Kingdom, the Netherlands, Belgium, and Denmark. There has been a lot of debate on the sustainability of (imported) biomass and how policy should deal with this. In this research, therefore, we defined long‐term strategies for sustainable biomass imports in European bioenergy markets. We used the input of different stakeholders in our approach through focus‐group discussions and a global survey, focusing on the following aspects: key principles of sustainable biomass trade, risks and opportunities of biomass trade, both for import regions (EU countries) and for sourcing regions, and practical barriers for trade. Overall we conclude that policies should be stable and consistent within a long‐term vision. An overall sustainability assurance framework of biomass production and use is key, but should ultimately apply to all end uses of biomass. Furthermore, the mobilization of biomass should be supported, as well as commoditization, considering the large diversity of biomass. Side impacts of biomass use should be monitored. Reducing investors’ risk perception is crucial for future developments in the biobased economy, and a clear policy to phase out fossil fuels, e.g. through a carbon tax, needs to be implemented. The results of this research are of interest for policy makers when deciding on long‐term strategies concerning sustainable bioenergy markets. © 2018 Society of Chemical Industry and John Wiley & Sons, Ltd

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biofuels Bioproducts...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Biofuels Bioproducts and Biorefining
    Article . 2018 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    addClaim
    Access Routes
    Green
    bronze
    15
    citations15
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biofuels Bioproducts...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Biofuels Bioproducts and Biorefining
      Article . 2018 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Bosso, Luciano;
    Bosso, Luciano
    ORCID
    Harvested from ORCID Public Data File

    Bosso, Luciano in OpenAIRE
    Luchi, Nicola; orcid Maresi, Giorgio;
    Maresi, Giorgio
    ORCID
    Harvested from ORCID Public Data File

    Maresi, Giorgio in OpenAIRE
    Cristinzio, Gennaro; +2 Authors

    Species distribution models (SDMs) provide realistic scenarios to explain the influence of bioclimatic variables on plant pathogen distribution. Diplodia sapinea is most harmful to plantations of both exotic and native pine species in Italy, causing economic consequences expecially to edible seed production. In this study, we developed maximum entropy models for D. sapinea in Italy to reach the following goals: (i) to carry out the pathogen's first geographical distribution analysis in Italy and determine which ecogeographical variables (EGVs) may influence its outbreaks; (ii) to detect the effect of climate change on the potential occurrence of disease outbreaks by 2050 and 2070. We used Maxent ver. 3.4.0 to develop SDMs. We used six global climate models (BCC-CSM1-1, CCSM4, GISS-E2-R, MIROC5, HadGEM2-ES and MPI-ESM-LR) for two representative concentration pathways (4.5 and 8.5) and two time projections (2050 and 2070) to detect future climate projections of D. sapinea. The most important EGVs influencing outbreaks were land cover, altitude, mean temperature of driest and wettest quarter, precipitation of wettest quarter, precipitation seasonality and minimum temperature of coldest month. The distribution of D. sapinea mostly expanded in central and southern Italy and shifted in altitude upwards on average by ca. 93m a.s.l. Moreover the fungus expanded the range where disease outbreaks may be recorded in response to an increase in the mean temperature of wettest and driest quarter by ca. 1.9 C and 5.8 C, respectively in all climate change scenarios. Precipitation of wettest quarter did not differ between current and any of future models. Under different climate change scenarios D. sapinea's disease outbreaks will be likely to affect larger areas of pine forests in the country, probably causing heavy effects on the dynamics and evolution of these stands or perhaps constraining their survival.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2017
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Forest Ecology and Management
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    66
    citations66
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2017
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Forest Ecology and Management
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Rebecca Haboucha;

    Climate change has been widely recognised as one of the most urgent and growing threats to natural and cultural heritage in the twenty-first century, and the indelible impact of humanity has led to the definition of a new geological epoch, the Anthropocene. Indigenous peoples are disproportionately affected by natural and human-induced changes to the environment. Their vulnerability is exacerbated by centuries of cultural and territorial disenfranchisement within settler-colonial nations. This dissertation aims at understanding Indigenous perceptions of heritage in the face of climate change and its intersection with the impacts of settler- colonialism. It analyses how these on-the-ground perceptions can, in turn, inform heritage organisations and contribute to safeguarding the many facets of tangible and intangible Indigenous heritage for future generations in the Anthropocene. This is accomplished through a comparative, transnational case study of two communities each from the Dehcho First Nations in the Northwest Territories, Canada, and the Aymara and Quechua peoples in northern Chile. I use a multi-method approach consisting of semi-structured interviews, oral histories and participant observation. The data is complemented by environmental and heritage legislation and grey literature at multiple organisational scales for both case studies. Three lines of enquiry are explored through an applied comparative thematic analysis: i) the perceptions of climate change and associated land loss/change among Indigenous groups and how this impacts each group’s notions of challenges to its cultural identity; ii) the intersection of the effects of post- colonialism, ongoing industrial activities and climate change on the intergenerational transmission of ancestral knowledge and notions of place attachment; and iii) how international, national and regional political and sociocultural rhetoric on environmental and heritage conservation affect local, grassroots considerations for safeguarding heritage. The similarities and contrasts of the Dehcho First Nations, Aymara and Quechua experiences of climate change across the North-South divide are related from the grassroots to arrive at redefining heritage practices in the Anthropocene. The results demonstrate that decolonising heritage is not only necessary, but that this decolonisation depends on building and actively engaging in intercultural empathy through the global threat of climate change. In order to understand how Indigenous practices, places, and items are valorised—attributed value—as heritage in the face of climate change, one must empathise with the cultural loss that exists in the temporal and cognitive spaces between Indigenous individuals’ moments of nostalgic reference and today.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Apolloarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim