- home
- Advanced Search
- Energy Research
- 2016-2025
- GB
- BE
- University of California System
- Energy Research
- 2016-2025
- GB
- BE
- University of California System
description Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 23 Feb 2021 Switzerland, United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: ..., NSF | Belmont Forum Collaborati...NSF| Collaborative Research: Combining NEON and remotely sensed habitats to determine climate impacts on community dynamics ,NSF| Belmont Forum Collaborative Research: Scenarios of Biodiversity and Ecosystem ServiceOrrin Myers; Georges Kunstler; Jalene M. LaMontagne; James A. Lutz; Istem Fer; Jordan Luongo; Renata Poulton-Kamakura; Janneke HilleRisLambers; Yassine Messaoud; Sam Pearse; Gregory S. Gilbert; Natalie L. Cleavitt; C. D. Reid; Inés Ibáñez; Michael A. Steele; Miranda D. Redmond; Susan L. Cohen; Jerry F. Franklin; Benoît Courbaud; Don C. Bragg; Ethan Ready; C. Lane Scher; Andreas P. Wion; William H. Schlesinger; Shubhi Sharma; Robert R. Parmenter; Amanda M. Schwantes; Scott M. Pearson; Thomas G. Whitham; Thomas T. Veblen; Christopher L. Kilner; Samantha Sutton; Chase L. Nuñez; Emily V. Moran; Nathan L. Stephenson; Adrian J. Das; Jennifer J. Swenson; Cathryn H. Greenberg; Roman Zlotin; James S. Clark; James S. Clark; Walter D. Koenig; Robert A. Andrus; Amy V. Whipple; Jill F. Johnstone; Eliot J. B. McIntire; Kyle C. Rodman; Timothy J. Fahey; Erin Shanahan; Jonathan Myers; Johannes M. H. Knops; Catherine A. Gehring; Diana Macias; Qinfeng Guo; Christopher M. Moore; Michael Dietze; Mélaine Aubry-Kientz; Dale G. Brockway; Michał Bogdziewicz; Kai Zhu; Yves Bergeron; Robert Daley; Margaret Swift; Kristin Legg;pmc: PMC7902660
AbstractIndirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.
Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20836-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20836-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Qatar, Norway, United Kingdom, Denmark, Qatar, United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSERC, UKRI | The role of Arctic sea ic..., AKA | RESILIENCE IN SOCIAL-ECOL... +6 projectsNSERC ,UKRI| The role of Arctic sea ice in climatic and ecological processes ,AKA| RESILIENCE IN SOCIAL-ECOLOGICAL SYSTEMS IN IN NORTHWEST EURASIA (RISES) ,RCN| Understanding ecosystem functionality, expansion and retreat of species in the Scandinavian mountain tundra under multiple drivers of change ,UKRI| Permafrost catchments in transition: hydrological controls on carbon cycling and greenhouse gas budgets ,AKA| Consequences of climate-driven changes in background below- and aboveground herbivory for tree growth, forest productivity, and ecosystem functions ,[no funder available] ,EC| INTERACT ,NWO| Feedbacks of vegetation change to permafrost thawing, soil nutrient availability and carbon storage in tundra ecosystemsSigne Normand; Maite Gartzia; Philip A. Wookey; Maja K. Sundqvist; Maja K. Sundqvist; Martin Wilmking; Juha M. Alatalo; Alexander Sokolov; James D. M. Speed; Anna Skoracka; Dagmar Egelkraut; Lee Ann Fishback; Ashley L. Asmus; C. Guillermo Bueno; Timo Kumpula; Dorothee Ehrich; Agata Buchwal; Agata Buchwal; Elina Kaarlejärvi; Elina Kaarlejärvi; Toke T. Høye; Martin Hallinger; Vitali Zverev; Milena Holmgren; Mariska te Beest; Eeva M. Soininen; Jean-Pierre Tremblay; Kari Anne Bråthen; Sergey A. Uvarov; Natalya A. Sokolova; Elin Lindén; Judith Sitters; Judith Sitters; Isla H. Myers-Smith; Johan Olofsson; Katherine S. Christie; Eric Post; Cynthia Y.M.J.G. Lange; Esther Lévesque; Ingibjörg S. Jónsdóttir; Ingibjörg S. Jónsdóttir; Juul Limpens; Paul Grogan; Yulia V. Denisova; Tommi Andersson; Marc Macias-Fauria; David A. Watts; Heike Zimmermann; Adrian V. Rocha; Diane C. Huebner; Julia Boike; David S. Hik; Otso Suominen; Christine Urbanowicz; Isabel C. Barrio; Nikita Tananaev; Annika Hofgaard; Jelena Lange; Bruce C. Forbes; John P. Bryant; Lorna E. Street; Monique M. P. D. Heijmans; Mikhail V. Kozlov; Erik J. van Nieukerken; Niels Martin Schmidt;Chronic, low intensity herbivory by invertebrates, termed background herbivory, has been understudied in tundra, yet its impacts are likely to increase in a warmer Arctic. The magnitude of these changes is however hard to predict as we know little about the drivers of current levels of invertebrate herbivory in tundra. We assessed the intensity of invertebrate herbivory on a common tundra plant, the dwarf birch (Betula glandulosa-nana complex), and investigated its relationship to latitude and climate across the tundra biome. Leaf damage by defoliating, mining and gall-forming invertebrates was measured in samples collected from 192 sites at 56 locations. Our results indicate that invertebrate herbivory is nearly ubiquitous across the tundra biome but occurs at low intensity. On average, invertebrates damaged 11.2% of the leaves and removed 1.4% of total leaf area. The damage was mainly caused by external leaf feeders, and most damaged leaves were only slightly affected (12% leaf area lost). Foliar damage was consistently positively correlated with mid-summer (July) temperature and, to a lesser extent, precipitation in the year of data collection, irrespective of latitude. Our models predict that, on average, foliar losses to invertebrates on dwarf birch are likely to increase by 6--7% over the current levels with a 1 textdegreeC increase in summer temperatures. Our results show that invertebrate herbivory on dwarf birch is small in magnitude but given its prevalence and dependence on climatic variables, background invertebrate herbivory should be included in predictions of climate change impacts on tundra ecosystems.
CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-017-2139-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
download 63download downloads 63 Powered bymore_vert CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-017-2139-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 New Zealand, Denmark, Spain, United States, New ZealandPublisher:American Association for the Advancement of Science (AAAS) Wu-Bing Xu; Wen-Yong Guo; Josep M. Serra-Diaz; Franziska Schrodt; Wolf L. Eiserhardt; Brian J. Enquist; Brian S. Maitner; Cory Merow; Cyrille Violle; Madhur Anand; Michaël Belluau; Hans Henrik Bruun; Chaeho Byun; Jane A. Catford; Bruno E. L. Cerabolini; Eduardo Chacón-Madrigal; Daniela Ciccarelli; J. Hans C. Cornelissen; Anh Tuan Dang-Le; Angel de Frutos; Arildo S. Dias; Aelton B. Giroldo; Alvaro G. Gutiérrez; Wesley Hattingh; Tianhua He; Peter Hietz; Nate Hough-Snee; Steven Jansen; Jens Kattge; Benjamin Komac; Nathan J. B. Kraft; Koen Kramer; Sandra Lavorel; Christopher H. Lusk; Adam R. Martin; Ke-Ping Ma; Maurizio Mencuccini; Sean T. Michaletz; Vanessa Minden; Akira S. Mori; Ülo Niinemets; Yusuke Onoda; Renske E. Onstein; Josep Peñuelas; Valério D. Pillar; Jan Pisek; Matthew J. Pound; Bjorn J. M. Robroek; Brandon Schamp; Martijn Slot; Miao Sun; Ênio E. Sosinski; Nadejda A. Soudzilovskaia; Nelson Thiffault; Peter M. van Bodegom; Fons van der Plas; Jingming Zheng; Jens-Christian Svenning; Alejandro Ordonez;As Earth’s climate has varied strongly through geological time, studying the impacts of past climate change on biodiversity helps to understand the risks from future climate change. However, it remains unclear how paleoclimate shapes spatial variation in biodiversity. Here, we assessed the influence of Quaternary climate change on spatial dissimilarity in taxonomic, phylogenetic, and functional composition among neighboring 200-kilometer cells (beta-diversity) for angiosperm trees worldwide. We found that larger glacial-interglacial temperature change was strongly associated with lower spatial turnover (species replacements) and higher nestedness (richness changes) components of beta-diversity across all three biodiversity facets. Moreover, phylogenetic and functional turnover was lower and nestedness higher than random expectations based on taxonomic beta-diversity in regions that experienced large temperature change, reflecting phylogenetically and functionally selective processes in species replacement, extinction, and colonization during glacial-interglacial oscillations. Our results suggest that future human-driven climate change could cause local homogenization and reduction in taxonomic, phylogenetic, and functional diversity of angiosperm trees worldwide.
The University of Wa... arrow_drop_down The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/15686Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.add8553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Wa... arrow_drop_down The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/15686Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.add8553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United StatesPublisher:Elsevier BV Zhenyuan Yin; Zhenyuan Yin; George J. Moridis; George J. Moridis; George J. Moridis; Zheng Rong Chong; Praveen Linga;Laboratory-created samples of methane hydrate (MH)-bearing media are a necessity because of the rarity and difficulty of obtaining naturally-occurring samples. The hypothesis that the inevitable heterogeneity in the phase saturations of the laboratory samples may lead to unreliable and non-repeatable results provided the impetus for this study, which aimed to determine the conditions under which maximum uniformity can be achieved. To that end, we designed four experiments involving different multi-stage cooling regimes (in terms of their duration and number of stages) to induce MH formation under excess-water conditions. In the absence of direct visualization capabilities, we analysed the experimental results by means of numerical simulation, which provided high-resolution predictions of the spatial distributions of the phase saturations in the cores and enabled the estimation of the parameters controlling the kinetic MH-formation behaviour through history-matching. Analysis of the numerical results indicated that, under the conditions of the experiments and with the design of the reactor, significant heterogeneities in phase saturation distributions were observed in all cases, leading to the conclusion that it is not possible to obtain cores with uniform phase saturation. Additionally, contrary to expectations, heterogeneities increased with the number of cooling stages and the duration of cooling, and this was attributed to imperfect insulation of the upper part of the reactor. A set of simulations involving perfect insulation of the reactor top confirmed the validity of this assumption: (a) predicting the formation of high-uniformity MH-bearing cores that became more homogeneous as the number of cooling stages and the length of the cooling period increased; and (b) providing important information for the improvement of the standard design of the experimental apparatus for the laboratory creation of MH-bearing cores using the excess water method.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.05.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 53 citations 53 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.05.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Germany, France, Spain, United Kingdom, France, Spain, United States, Australia, AustraliaPublisher:Proceedings of the National Academy of Sciences Funded by:EC | BIGSEA, NSERC, EC | MERCES +1 projectsEC| BIGSEA ,NSERC ,EC| MERCES ,EC| CERESDavid A. Carozza; Steve Mackinson; Jeroen Steenbeek; Villy Christensen; Philippe Verley; Susa Niiranen; Andrea Bryndum-Buchholz; Matthias Büchner; Derek P. Tittensor; Derek P. Tittensor; Jan Volkholz; John P. Dunne; Elizabeth A. Fulton; Julia L. Blanchard; Ricardo Oliveros-Ramos; Jacob Schewe; Simon Jennings; Simon Jennings; Manuel Barange; Charles A. Stock; Boris Worm; Miranda C. Jones; Nicola D. Walker; Laurent Bopp; Olivier Maury; Olivier Maury; William W. L. Cheung; Tiago H. Silva; Daniele Bianchi; Heike K. Lotze; Tilla Roy; Catherine M. Bulman; Tyler D. Eddy; Tyler D. Eddy; Nicolas Barrier; Marta Coll; Eric D. Galbraith; Eric D. Galbraith; Jose A. Fernandes; Yunne-Jai Shin; Yunne-Jai Shin;While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (±4% SD) under low emissions and 17% (±11% SD) under high emissions by 2100, with an average 5% decline for every 1 °C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends.
CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BY NC NDData sources: Diposit Digital de Documents de la UABProceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1900194116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 397 citations 397 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 30visibility views 30 download downloads 97 Powered bymore_vert CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BY NC NDData sources: Diposit Digital de Documents de la UABProceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1900194116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United Kingdom, United StatesPublisher:Wiley Camrin D. Braun; Martin C. Arostegui; Nima Farchadi; Michael Alexander; Pedro Afonso; Andrew Allyn; Steven J. Bograd; Stephanie Brodie; Daniel P. Crear; Emmett F. Culhane; Tobey H. Curtis; Elliott L. Hazen; Alex Kerney; Nerea Lezama‐Ochoa; Katherine E. Mills; Dylan Pugh; Nuno Queiroz; James D. Scott; Gregory B. Skomal; David W. Sims; Simon R. Thorrold; Heather Welch; Riley Young‐Morse; Rebecca L. Lewison;pmid: 37285072
AbstractSpecies distribution models (SDMs) are becoming an important tool for marine conservation and management. Yet while there is an increasing diversity and volume of marine biodiversity data for training SDMs, little practical guidance is available on how to leverage distinct data types to build robust models. We explored the effect of different data types on the fit, performance and predictive ability of SDMs by comparing models trained with four data types for a heavily exploited pelagic fish, the blue shark (Prionace glauca), in the Northwest Atlantic: two fishery dependent (conventional mark‐recapture tags, fisheries observer records) and two fishery independent (satellite‐linked electronic tags, pop‐up archival tags). We found that all four data types can result in robust models, but differences among spatial predictions highlighted the need to consider ecological realism in model selection and interpretation regardless of data type. Differences among models were primarily attributed to biases in how each data type, and the associated representation of absences, sampled the environment and summarized the resulting species distributions. Outputs from model ensembles and a model trained on all pooled data both proved effective for combining inferences across data types and provided more ecologically realistic predictions than individual models. Our results provide valuable guidance for practitioners developing SDMs. With increasing access to diverse data sources, future work should further develop truly integrative modeling approaches that can explicitly leverage the strengths of individual data types while statistically accounting for limitations, such as sampling biases.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEcological ApplicationsArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2893&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEcological ApplicationsArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2893&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United StatesPublisher:American Geophysical Union (AGU) E. D. Crook; Jennifer Walker; K. M. Walter Anthony; B. Lam; Claudia I. Czimczik; Xiaomei Xu; M. Schweiger; C. Elder; C. Elder;doi: 10.1029/2018jg004735
AbstractThe lakes that form via ice‐rich permafrost thaw emit CH4 and CO2 to the atmosphere from previously frozen ancient permafrost sources. Despite this potential to positively feedback to climate change, lake carbon emission sources are not well understood on whole‐lake scales, complicating upscaling. In this study, we used observations of radiocarbon (14C) and stable carbon (13C) isotopes in the summer and winter dissolved CH4 and CO2 pools, ebullition‐CH4, and multiple independent mass balance approaches to characterize whole‐lake emission sources and apportion annual emission pathways. Observations focused on five lakes with variable thermokarst in interior Alaska. The 14C age of discrete ebullition‐CH4 seeps ranged from 395 ± 15 to 28,240 ± 150 YBP across all study lakes; however, dissolved 14CH4 was younger than 4,730 YBP. In the primary study lake, Goldstream L., the integrated whole‐lake 14C age of ebullition‐CH4, as determined by three different approaches, ranged from 3,290 to 6,740 YBP. A new dissolved‐14C‐CH4‐based approach to estimating ebullition 14C age and flux showed close agreement to previous ice‐bubble surveys and bubble‐trap flux estimates. Differences in open water versus ice‐covered dissolved gas concentrations and their 14C and 13C isotopes revealed the influence of winter ice trapping and forcing ebullition‐CH4 into the underlying water column, where it comprised 50% of the total dissolved CH4 pool by the end of winter. Across the study lakes, we found a relationship between the whole‐lake 14C age of dissolved CH4 and CO2 and the extent of active thermokarst, representing a positive feedback system that is sensitive to climate warming.
Journal of Geophysic... arrow_drop_down Journal of Geophysical Research BiogeosciencesArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018jg004735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Geophysic... arrow_drop_down Journal of Geophysical Research BiogeosciencesArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018jg004735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United StatesPublisher:Wiley Jared Williams; John C. Stella; Steven L. Voelker; Adam M. Lambert; Lissa M. Pelletier; John E. Drake; Jonathan M. Friedman; Dar A. Roberts; Michael Bliss Singer;AbstractDryland riparian woodlands are considered to be locally buffered from droughts by shallow and stable groundwater levels. However, climate change is causing more frequent and severe drought events, accompanied by warmer temperatures, collectively threatening the persistence of these groundwater dependent ecosystems through a combination of increasing evaporative demand and decreasing groundwater supply. We conducted a dendro‐isotopic analysis of radial growth and seasonal (semi‐annual) carbon isotope discrimination (Δ13C) to investigate the response of riparian cottonwood stands to the unprecedented California‐wide drought from 2012 to 2019, along the largest remaining free‐flowing river in Southern California. Our goals were to identify principal drivers and indicators of drought stress for dryland riparian woodlands, determine their thresholds of tolerance to hydroclimatic stressors, and ultimately assess their vulnerability to climate change. Riparian trees were highly responsive to drought conditions along the river, exhibiting suppressed growth and strong stomatal closure (inferred from reduced Δ13C) during peak drought years. However, patterns of radial growth and Δ13C were quite variable among sites that differed in climatic conditions and rate of groundwater decline. We show that the rate of groundwater decline, as opposed to climate factors, was the primary driver of site differences in drought stress, and trees showed greater sensitivity to temperature at sites subjected to faster groundwater decline. Across sites, higher correlation between radial growth and Δ13C for individual trees, and higher inter‐correlation of Δ13C among trees were indicative of greater drought stress. Trees showed a threshold of tolerance to groundwater decline at 0.5 m year−1 beyond which drought stress became increasingly evident and severe. For sites that exceeded this threshold, peak physiological stress occurred when total groundwater recession exceeded ~3 m. These findings indicate that drought‐induced groundwater decline associated with more extreme droughts is a primary threat to dryland riparian woodlands and increases their susceptibility to projected warmer temperatures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
download 71download downloads 71 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Authors: Erin Coughlan de Perez; Erin Coughlan de Perez; Ignacio Fuentes; Ignacio Fuentes; +9 AuthorsErin Coughlan de Perez; Erin Coughlan de Perez; Ignacio Fuentes; Ignacio Fuentes; Christopher Jack; Christopher Jack; Andrew Kruczkiewicz; Andrew Kruczkiewicz; Andrew Kruczkiewicz; Izidine Pinto; Izidine Pinto; Elisabeth Stephens; Elisabeth Stephens;Climate change and solar geoengineering have different implications for drought. Climate change can “speed up” the hydrological cycle, but it causesgreater evapotranspiration than the historical climate because of higher temperatures. Solar geoengineering (stratospheric aerosol injection), on the other hand, tends to “slow down” the hydrological cycle while reducing potential evapotranspiration. There are two common definitions of drought that take this into account; rainfall-only (SPI) and potential-evapotranspiration (SPEI). In different regions of Africa, this can result in different versions of droughts for each scenario, with drier rainfall (SPI) droughts under geoengineering and drier potential-evapotranspiration (SPEI) droughts under climate change. However, the societal implications of these different types of drought are not clear. We present a systematic review of all papers comparing the relationship between real-world outcomes (streamflow, vegetation, and agricultural yields) with these two definitions of drought in Africa. We also correlate the two drought definitions (SPI and SPEI) with historical vegetation conditions across the continent. We find that potential-evapotranspiration-droughts (SPEI) tend to be more closely related with vegetation conditions, while rainfall-droughts (SPI) tend to be more closely related with streamflows across Africa. In many regions, adaptation plans are likely to be affected differently by these two drought types. In parts of East Africa and coastal West Africa, geoengineering could exacerbate both types of drought, which has implications for current investments in water infrastructure. The reverse is true in parts of Southern Africa. In the Sahel, sectors more sensitive to rainfall-drought (SPI), such as reservoir management, could see reduced water availability under solar geoengineering, while sectors more sensitive to potential-evapotranspiration-drought (SPEI), such as rainfed agriculture, could see increased water availability under solar geoengineering. Given that the implications of climate change and solar geoengineering futures are different in different regions and also for different sectors, we recommend that deliberations on solar geoengineering include the widest possible representation of stakeholders.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.959519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.959519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Report , Research , Preprint , Journal 2018Embargo end date: 10 Jul 2018 Italy, Hungary, Portugal, Germany, Spain, Switzerland, Belgium, United States, Italy, United Kingdom, United States, Germany, United States, United States, Portugal, France, United Kingdom, Italy, Italy, Hungary, Greece, United Kingdom, Brazil, France, United Kingdom, Germany, FrancePublisher:Elsevier BV Publicly fundedFunded by:EC | AMVA4NewPhysics, , GSRIEC| AMVA4NewPhysics ,[no funder available] ,GSRINathan Mirman; Riccardo Paramatti; Annika Vanhoefer; Thomas Ferguson; Thierry Maerschalk; Gregor Mittag; Faridah Mohamad Idris; Cesare Calabria; Sanjay Padhi; Daniele Trocino; Carlos Florez; Michal Olszewski; David Cussans; Luca Pacher; Grant Riley; Marco Alexander Harrendorf; Giacomo Ortona; Georgios Daskalakis; Shuichi Kunori; William John Womersley; Sandra S. Padula; Apichart Hortiangtham; James Rohlf; Heiner Tholen; Konrad Deiters; Vincenzo Daponte; Yacine Haddad; Carlo Battilana; Prakash Thapa; Weimin Wu; Gino Bolla; Alessia Tricomi; Dhanush Anil Hangal; Kirika Uchida; Pierre Piroué; Davide Cieri; Peter Wittich; Federica Primavera; Samuel Bein; Andrey Popov; Andrew Hart; Salvatore Costa; Martino Margoni; Martino Margoni; Markus Spanring; Alice Cocoros; Andreas Kornmayer; Marco Paganoni; Marco Paganoni; Suman Chatterjee; Robert Fischer; Michael Reichmann; Marina Chadeeva; Fábio Lúcio Alves; Jared Turkewitz; Houmani El Mamouni; Johan Borg; Ta-Yung Ling; Thi Hien Doan; Andris Skuja; Amina Zghiche; Shervin Nourbakhsh; Damir Lelas; Fabrizio Margaroli; Kai Yi; Fred-Markus Helmut Stober; Yi-ting Duh; Nathan Kellams; Russell Richard Betts; Johannes Grossmann; Zoltan Laszlo Trocsanyi; Andre Sznajder; Alessio Magitteri; Oliver Buchmuller; Ferdinando Giordano; David Colling; Daniel Robert Marlow; J William Gary; Jan Krolikowski; Souvik Das; Yongbin Feng; Wit Busza; Rachael Bucci; Jack Wright; Georgios Mavromanolakis; Luiz Mundim; Konstantinos Theofilatos; Richard Loveless; Elizabeth Locci; Olga Kodolova; Ferenc Sikler; Cristina Oropeza Barrera; Giancarlo Mantovani; Ada Solano; Nikolay Terentyev; Paul Sheldon; Robert Klanner; Zhoudunming Tu; Paul David Luckey; Mia Tosi; Roumyana Hadjiiska; Mauro Verzetti; Ravi Janjam; Daniele Vadruccio; Aobo Zhang; Pietro Faccioli; Helio Nogima; Peter Thomassen; Ian R Tomalin; Thomas James; Stephan Linn; Martti Raidal; Iurii Antropov; Rino Castaldi; Douglas Berry; Susan Dittmer; Thomas Weiler; Simranjit Singh Chhibra; James Alexander; Andrew Mehta; Yang Yang; Ksenia Shchelina; Igor Bayshev; Alberto Sánchez Hernández; Helena Malbouisson; Rafael Teixeira De Lima; Christian Veelken; Alfredo Castaneda Hernandez; Yuta Takahashi; Steven R. Simon; Simon Kudella; Quan Wang; Armen Tumasyan; Diego Beghin; Diego Ciangottini; Yagya Raj Joshi; Martina Vit; Engin Eren; Livio Fanò; Ajeeta Khatiwada; Frank Hartmann; Tao Huang; David Mark Raymond; Shubham Pandey; Aditee Rane; Frédéric Drouhin; Andreas Hinzmann; C. A. Carrillo Montoya; Joseph Heideman; Ignacio Redondo; Marc M Baarmand; Alexander Zhokin; Clemens Wöhrmann; Adolf Bornheim; Maxwell Chertok; Luca Perrozzi; Gigi Rolandi; Valentin Sulimov; Basil Schneider; Alexander Ershov; Kunal Kothekar; Alessandro Montanari; Thomas Esch; Kelly Beernaert; Emanuele Di Marco; Georgios Anagnostou; Jacopo Pazzini; Sudhir Malik; Yong Ban; Kyungwook Nam; Bruno Galinhas; James D. Olsen; Jamal Rorie; Dominik Nowatschin; Candan Dozen; Marc Osherson; Salvatore My; Harry Cheung; Ioannis Papadopoulos; Salvatore Nuzzo; Hannsjoerg Artur Weber; Christian Barth; Abhigyan Dasgupta; Hui Li; Juan Pablo Fernández Ramos; Andrew Whitbeck; Cédric Prieels; Deborah Pinna; Antonio María Pérez-Calero Yzquierdo; Ivan Marchesini; Gregory R Snow; Mariana Shopova; Dmitry Elumakhov; John N. Wood; Andreas Künsken; Vadim Oreshkin; Manuel Giffels; Andrew Melo; Raman Khurana; Joosep Pata;doi: 10.1016/j.physletb.2018.05.062 , 10.3929/ethz-b-000269943 , 10.5167/uzh-160181 , 10.48550/arxiv.1801.01846 , 10.3204/pubdb-2019-00404 , 10.3204/pubdb-2018-00232 , 10.18154/rwth-2018-227120
arXiv: 1801.01846
A search is presented for new physics in events with two low-momentum, oppositely charged leptons (electrons or muons) and missing transverse momentum in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data collected using the CMS detector at the LHC correspond to an integrated luminosity of 35.9. The observed event yields are consistent with the expectations from the standard model. The results are interpreted in terms of pair production of charginos and neutralinos (X1 and X2) with nearly degenerate masses, as expected in natural supersymmetry models with light higgsinos, as well as in terms of the pair production of top squarks (t), when the lightest neutralino and the top squark have similar masses. At 95% confidence level, wino-like X1/X2 masses are excluded up to 230 GeV for a mass difference of 20 GeV relative to the lightest neutralino. In the higgsino-like model, masses are excluded up to 168 GeV for the same mass difference. For pair production, top squark masses up to 450 GeV are excluded for a mass difference of 40 GeV relative to the lightest neutralino. Physics Letters B, 782 ISSN:0370-2693 ISSN:0031-9163 ISSN:1873-2445
e-Prints Soton arrow_drop_down DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/62301Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2018Full-Text: https://arxiv.org/abs/1801.01846Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Rice Research RepositoryArticle . 2018License: CC BYFull-Text: https://hdl.handle.net/1911/103464Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de OviedoArticle . 2018License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoZurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and ArchiveArchivio Istituzionale Università di BergamoArticle . 2018Data sources: Archivio Istituzionale Università di BergamoÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physletb.2018.05.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 79 citations 79 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/62301Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2018Full-Text: https://arxiv.org/abs/1801.01846Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Rice Research RepositoryArticle . 2018License: CC BYFull-Text: https://hdl.handle.net/1911/103464Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de OviedoArticle . 2018License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoZurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and ArchiveArchivio Istituzionale Università di BergamoArticle . 2018Data sources: Archivio Istituzionale Università di BergamoÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physletb.2018.05.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 23 Feb 2021 Switzerland, United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: ..., NSF | Belmont Forum Collaborati...NSF| Collaborative Research: Combining NEON and remotely sensed habitats to determine climate impacts on community dynamics ,NSF| Belmont Forum Collaborative Research: Scenarios of Biodiversity and Ecosystem ServiceOrrin Myers; Georges Kunstler; Jalene M. LaMontagne; James A. Lutz; Istem Fer; Jordan Luongo; Renata Poulton-Kamakura; Janneke HilleRisLambers; Yassine Messaoud; Sam Pearse; Gregory S. Gilbert; Natalie L. Cleavitt; C. D. Reid; Inés Ibáñez; Michael A. Steele; Miranda D. Redmond; Susan L. Cohen; Jerry F. Franklin; Benoît Courbaud; Don C. Bragg; Ethan Ready; C. Lane Scher; Andreas P. Wion; William H. Schlesinger; Shubhi Sharma; Robert R. Parmenter; Amanda M. Schwantes; Scott M. Pearson; Thomas G. Whitham; Thomas T. Veblen; Christopher L. Kilner; Samantha Sutton; Chase L. Nuñez; Emily V. Moran; Nathan L. Stephenson; Adrian J. Das; Jennifer J. Swenson; Cathryn H. Greenberg; Roman Zlotin; James S. Clark; James S. Clark; Walter D. Koenig; Robert A. Andrus; Amy V. Whipple; Jill F. Johnstone; Eliot J. B. McIntire; Kyle C. Rodman; Timothy J. Fahey; Erin Shanahan; Jonathan Myers; Johannes M. H. Knops; Catherine A. Gehring; Diana Macias; Qinfeng Guo; Christopher M. Moore; Michael Dietze; Mélaine Aubry-Kientz; Dale G. Brockway; Michał Bogdziewicz; Kai Zhu; Yves Bergeron; Robert Daley; Margaret Swift; Kristin Legg;pmc: PMC7902660
AbstractIndirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.
Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20836-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20836-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Qatar, Norway, United Kingdom, Denmark, Qatar, United Kingdom, United KingdomPublisher:Springer Science and Business Media LLC Funded by:NSERC, UKRI | The role of Arctic sea ic..., AKA | RESILIENCE IN SOCIAL-ECOL... +6 projectsNSERC ,UKRI| The role of Arctic sea ice in climatic and ecological processes ,AKA| RESILIENCE IN SOCIAL-ECOLOGICAL SYSTEMS IN IN NORTHWEST EURASIA (RISES) ,RCN| Understanding ecosystem functionality, expansion and retreat of species in the Scandinavian mountain tundra under multiple drivers of change ,UKRI| Permafrost catchments in transition: hydrological controls on carbon cycling and greenhouse gas budgets ,AKA| Consequences of climate-driven changes in background below- and aboveground herbivory for tree growth, forest productivity, and ecosystem functions ,[no funder available] ,EC| INTERACT ,NWO| Feedbacks of vegetation change to permafrost thawing, soil nutrient availability and carbon storage in tundra ecosystemsSigne Normand; Maite Gartzia; Philip A. Wookey; Maja K. Sundqvist; Maja K. Sundqvist; Martin Wilmking; Juha M. Alatalo; Alexander Sokolov; James D. M. Speed; Anna Skoracka; Dagmar Egelkraut; Lee Ann Fishback; Ashley L. Asmus; C. Guillermo Bueno; Timo Kumpula; Dorothee Ehrich; Agata Buchwal; Agata Buchwal; Elina Kaarlejärvi; Elina Kaarlejärvi; Toke T. Høye; Martin Hallinger; Vitali Zverev; Milena Holmgren; Mariska te Beest; Eeva M. Soininen; Jean-Pierre Tremblay; Kari Anne Bråthen; Sergey A. Uvarov; Natalya A. Sokolova; Elin Lindén; Judith Sitters; Judith Sitters; Isla H. Myers-Smith; Johan Olofsson; Katherine S. Christie; Eric Post; Cynthia Y.M.J.G. Lange; Esther Lévesque; Ingibjörg S. Jónsdóttir; Ingibjörg S. Jónsdóttir; Juul Limpens; Paul Grogan; Yulia V. Denisova; Tommi Andersson; Marc Macias-Fauria; David A. Watts; Heike Zimmermann; Adrian V. Rocha; Diane C. Huebner; Julia Boike; David S. Hik; Otso Suominen; Christine Urbanowicz; Isabel C. Barrio; Nikita Tananaev; Annika Hofgaard; Jelena Lange; Bruce C. Forbes; John P. Bryant; Lorna E. Street; Monique M. P. D. Heijmans; Mikhail V. Kozlov; Erik J. van Nieukerken; Niels Martin Schmidt;Chronic, low intensity herbivory by invertebrates, termed background herbivory, has been understudied in tundra, yet its impacts are likely to increase in a warmer Arctic. The magnitude of these changes is however hard to predict as we know little about the drivers of current levels of invertebrate herbivory in tundra. We assessed the intensity of invertebrate herbivory on a common tundra plant, the dwarf birch (Betula glandulosa-nana complex), and investigated its relationship to latitude and climate across the tundra biome. Leaf damage by defoliating, mining and gall-forming invertebrates was measured in samples collected from 192 sites at 56 locations. Our results indicate that invertebrate herbivory is nearly ubiquitous across the tundra biome but occurs at low intensity. On average, invertebrates damaged 11.2% of the leaves and removed 1.4% of total leaf area. The damage was mainly caused by external leaf feeders, and most damaged leaves were only slightly affected (12% leaf area lost). Foliar damage was consistently positively correlated with mid-summer (July) temperature and, to a lesser extent, precipitation in the year of data collection, irrespective of latitude. Our models predict that, on average, foliar losses to invertebrates on dwarf birch are likely to increase by 6--7% over the current levels with a 1 textdegreeC increase in summer temperatures. Our results show that invertebrate herbivory on dwarf birch is small in magnitude but given its prevalence and dependence on climatic variables, background invertebrate herbivory should be included in predictions of climate change impacts on tundra ecosystems.
CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-017-2139-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
download 63download downloads 63 Powered bymore_vert CORE arrow_drop_down University of Copenhagen: ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Stirling: Stirling Digital Research RepositoryArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Qatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00300-017-2139-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 New Zealand, Denmark, Spain, United States, New ZealandPublisher:American Association for the Advancement of Science (AAAS) Wu-Bing Xu; Wen-Yong Guo; Josep M. Serra-Diaz; Franziska Schrodt; Wolf L. Eiserhardt; Brian J. Enquist; Brian S. Maitner; Cory Merow; Cyrille Violle; Madhur Anand; Michaël Belluau; Hans Henrik Bruun; Chaeho Byun; Jane A. Catford; Bruno E. L. Cerabolini; Eduardo Chacón-Madrigal; Daniela Ciccarelli; J. Hans C. Cornelissen; Anh Tuan Dang-Le; Angel de Frutos; Arildo S. Dias; Aelton B. Giroldo; Alvaro G. Gutiérrez; Wesley Hattingh; Tianhua He; Peter Hietz; Nate Hough-Snee; Steven Jansen; Jens Kattge; Benjamin Komac; Nathan J. B. Kraft; Koen Kramer; Sandra Lavorel; Christopher H. Lusk; Adam R. Martin; Ke-Ping Ma; Maurizio Mencuccini; Sean T. Michaletz; Vanessa Minden; Akira S. Mori; Ülo Niinemets; Yusuke Onoda; Renske E. Onstein; Josep Peñuelas; Valério D. Pillar; Jan Pisek; Matthew J. Pound; Bjorn J. M. Robroek; Brandon Schamp; Martijn Slot; Miao Sun; Ênio E. Sosinski; Nadejda A. Soudzilovskaia; Nelson Thiffault; Peter M. van Bodegom; Fons van der Plas; Jingming Zheng; Jens-Christian Svenning; Alejandro Ordonez;As Earth’s climate has varied strongly through geological time, studying the impacts of past climate change on biodiversity helps to understand the risks from future climate change. However, it remains unclear how paleoclimate shapes spatial variation in biodiversity. Here, we assessed the influence of Quaternary climate change on spatial dissimilarity in taxonomic, phylogenetic, and functional composition among neighboring 200-kilometer cells (beta-diversity) for angiosperm trees worldwide. We found that larger glacial-interglacial temperature change was strongly associated with lower spatial turnover (species replacements) and higher nestedness (richness changes) components of beta-diversity across all three biodiversity facets. Moreover, phylogenetic and functional turnover was lower and nestedness higher than random expectations based on taxonomic beta-diversity in regions that experienced large temperature change, reflecting phylogenetically and functionally selective processes in species replacement, extinction, and colonization during glacial-interglacial oscillations. Our results suggest that future human-driven climate change could cause local homogenization and reduction in taxonomic, phylogenetic, and functional diversity of angiosperm trees worldwide.
The University of Wa... arrow_drop_down The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/15686Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.add8553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert The University of Wa... arrow_drop_down The University of Waikato: Research CommonsArticle . 2023License: CC BYFull-Text: https://hdl.handle.net/10289/15686Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2023License: CC BYData sources: Diposit Digital de Documents de la UABUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.add8553&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United StatesPublisher:Elsevier BV Zhenyuan Yin; Zhenyuan Yin; George J. Moridis; George J. Moridis; George J. Moridis; Zheng Rong Chong; Praveen Linga;Laboratory-created samples of methane hydrate (MH)-bearing media are a necessity because of the rarity and difficulty of obtaining naturally-occurring samples. The hypothesis that the inevitable heterogeneity in the phase saturations of the laboratory samples may lead to unreliable and non-repeatable results provided the impetus for this study, which aimed to determine the conditions under which maximum uniformity can be achieved. To that end, we designed four experiments involving different multi-stage cooling regimes (in terms of their duration and number of stages) to induce MH formation under excess-water conditions. In the absence of direct visualization capabilities, we analysed the experimental results by means of numerical simulation, which provided high-resolution predictions of the spatial distributions of the phase saturations in the cores and enabled the estimation of the parameters controlling the kinetic MH-formation behaviour through history-matching. Analysis of the numerical results indicated that, under the conditions of the experiments and with the design of the reactor, significant heterogeneities in phase saturation distributions were observed in all cases, leading to the conclusion that it is not possible to obtain cores with uniform phase saturation. Additionally, contrary to expectations, heterogeneities increased with the number of cooling stages and the duration of cooling, and this was attributed to imperfect insulation of the upper part of the reactor. A set of simulations involving perfect insulation of the reactor top confirmed the validity of this assumption: (a) predicting the formation of high-uniformity MH-bearing cores that became more homogeneous as the number of cooling stages and the length of the cooling period increased; and (b) providing important information for the improvement of the standard design of the experimental apparatus for the laboratory creation of MH-bearing cores using the excess water method.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.05.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 53 citations 53 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.05.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 Germany, France, Spain, United Kingdom, France, Spain, United States, Australia, AustraliaPublisher:Proceedings of the National Academy of Sciences Funded by:EC | BIGSEA, NSERC, EC | MERCES +1 projectsEC| BIGSEA ,NSERC ,EC| MERCES ,EC| CERESDavid A. Carozza; Steve Mackinson; Jeroen Steenbeek; Villy Christensen; Philippe Verley; Susa Niiranen; Andrea Bryndum-Buchholz; Matthias Büchner; Derek P. Tittensor; Derek P. Tittensor; Jan Volkholz; John P. Dunne; Elizabeth A. Fulton; Julia L. Blanchard; Ricardo Oliveros-Ramos; Jacob Schewe; Simon Jennings; Simon Jennings; Manuel Barange; Charles A. Stock; Boris Worm; Miranda C. Jones; Nicola D. Walker; Laurent Bopp; Olivier Maury; Olivier Maury; William W. L. Cheung; Tiago H. Silva; Daniele Bianchi; Heike K. Lotze; Tilla Roy; Catherine M. Bulman; Tyler D. Eddy; Tyler D. Eddy; Nicolas Barrier; Marta Coll; Eric D. Galbraith; Eric D. Galbraith; Jose A. Fernandes; Yunne-Jai Shin; Yunne-Jai Shin;While the physical dimensions of climate change are now routinely assessed through multimodel intercomparisons, projected impacts on the global ocean ecosystem generally rely on individual models with a specific set of assumptions. To address these single-model limitations, we present standardized ensemble projections from six global marine ecosystem models forced with two Earth system models and four emission scenarios with and without fishing. We derive average biomass trends and associated uncertainties across the marine food web. Without fishing, mean global animal biomass decreased by 5% (±4% SD) under low emissions and 17% (±11% SD) under high emissions by 2100, with an average 5% decline for every 1 °C of warming. Projected biomass declines were primarily driven by increasing temperature and decreasing primary production, and were more pronounced at higher trophic levels, a process known as trophic amplification. Fishing did not substantially alter the effects of climate change. Considerable regional variation featured strong biomass increases at high latitudes and decreases at middle to low latitudes, with good model agreement on the direction of change but variable magnitude. Uncertainties due to variations in marine ecosystem and Earth system models were similar. Ensemble projections performed well compared with empirical data, emphasizing the benefits of multimodel inference to project future outcomes. Our results indicate that global ocean animal biomass consistently declines with climate change, and that these impacts are amplified at higher trophic levels. Next steps for model development include dynamic scenarios of fishing, cumulative human impacts, and the effects of management measures on future ocean biomass trends.
CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BY NC NDData sources: Diposit Digital de Documents de la UABProceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1900194116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 397 citations 397 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 30visibility views 30 download downloads 97 Powered bymore_vert CIRAD: HAL (Agricult... arrow_drop_down CIRAD: HAL (Agricultural Research for Development)Article . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)Université de Bretagne Occidentale: HALArticle . 2019License: CC BY NC NDFull-Text: https://hal.umontpellier.fr/hal-02272161Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2019Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTADiposit Digital de Documents de la UABArticle . 2019License: CC BY NC NDData sources: Diposit Digital de Documents de la UABProceedings of the National Academy of SciencesArticle . 2019 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.1900194116&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United Kingdom, United StatesPublisher:Wiley Camrin D. Braun; Martin C. Arostegui; Nima Farchadi; Michael Alexander; Pedro Afonso; Andrew Allyn; Steven J. Bograd; Stephanie Brodie; Daniel P. Crear; Emmett F. Culhane; Tobey H. Curtis; Elliott L. Hazen; Alex Kerney; Nerea Lezama‐Ochoa; Katherine E. Mills; Dylan Pugh; Nuno Queiroz; James D. Scott; Gregory B. Skomal; David W. Sims; Simon R. Thorrold; Heather Welch; Riley Young‐Morse; Rebecca L. Lewison;pmid: 37285072
AbstractSpecies distribution models (SDMs) are becoming an important tool for marine conservation and management. Yet while there is an increasing diversity and volume of marine biodiversity data for training SDMs, little practical guidance is available on how to leverage distinct data types to build robust models. We explored the effect of different data types on the fit, performance and predictive ability of SDMs by comparing models trained with four data types for a heavily exploited pelagic fish, the blue shark (Prionace glauca), in the Northwest Atlantic: two fishery dependent (conventional mark‐recapture tags, fisheries observer records) and two fishery independent (satellite‐linked electronic tags, pop‐up archival tags). We found that all four data types can result in robust models, but differences among spatial predictions highlighted the need to consider ecological realism in model selection and interpretation regardless of data type. Differences among models were primarily attributed to biases in how each data type, and the associated representation of absences, sampled the environment and summarized the resulting species distributions. Outputs from model ensembles and a model trained on all pooled data both proved effective for combining inferences across data types and provided more ecologically realistic predictions than individual models. Our results provide valuable guidance for practitioners developing SDMs. With increasing access to diverse data sources, future work should further develop truly integrative modeling approaches that can explicitly leverage the strengths of individual data types while statistically accounting for limitations, such as sampling biases.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEcological ApplicationsArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2893&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.21203/rs.3....Article . 2023 . Peer-reviewedLicense: CC BYData sources: CrossrefEcological ApplicationsArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/eap.2893&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United StatesPublisher:American Geophysical Union (AGU) E. D. Crook; Jennifer Walker; K. M. Walter Anthony; B. Lam; Claudia I. Czimczik; Xiaomei Xu; M. Schweiger; C. Elder; C. Elder;doi: 10.1029/2018jg004735
AbstractThe lakes that form via ice‐rich permafrost thaw emit CH4 and CO2 to the atmosphere from previously frozen ancient permafrost sources. Despite this potential to positively feedback to climate change, lake carbon emission sources are not well understood on whole‐lake scales, complicating upscaling. In this study, we used observations of radiocarbon (14C) and stable carbon (13C) isotopes in the summer and winter dissolved CH4 and CO2 pools, ebullition‐CH4, and multiple independent mass balance approaches to characterize whole‐lake emission sources and apportion annual emission pathways. Observations focused on five lakes with variable thermokarst in interior Alaska. The 14C age of discrete ebullition‐CH4 seeps ranged from 395 ± 15 to 28,240 ± 150 YBP across all study lakes; however, dissolved 14CH4 was younger than 4,730 YBP. In the primary study lake, Goldstream L., the integrated whole‐lake 14C age of ebullition‐CH4, as determined by three different approaches, ranged from 3,290 to 6,740 YBP. A new dissolved‐14C‐CH4‐based approach to estimating ebullition 14C age and flux showed close agreement to previous ice‐bubble surveys and bubble‐trap flux estimates. Differences in open water versus ice‐covered dissolved gas concentrations and their 14C and 13C isotopes revealed the influence of winter ice trapping and forcing ebullition‐CH4 into the underlying water column, where it comprised 50% of the total dissolved CH4 pool by the end of winter. Across the study lakes, we found a relationship between the whole‐lake 14C age of dissolved CH4 and CO2 and the extent of active thermokarst, representing a positive feedback system that is sensitive to climate warming.
Journal of Geophysic... arrow_drop_down Journal of Geophysical Research BiogeosciencesArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018jg004735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Geophysic... arrow_drop_down Journal of Geophysical Research BiogeosciencesArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1029/2018jg004735&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United StatesPublisher:Wiley Jared Williams; John C. Stella; Steven L. Voelker; Adam M. Lambert; Lissa M. Pelletier; John E. Drake; Jonathan M. Friedman; Dar A. Roberts; Michael Bliss Singer;AbstractDryland riparian woodlands are considered to be locally buffered from droughts by shallow and stable groundwater levels. However, climate change is causing more frequent and severe drought events, accompanied by warmer temperatures, collectively threatening the persistence of these groundwater dependent ecosystems through a combination of increasing evaporative demand and decreasing groundwater supply. We conducted a dendro‐isotopic analysis of radial growth and seasonal (semi‐annual) carbon isotope discrimination (Δ13C) to investigate the response of riparian cottonwood stands to the unprecedented California‐wide drought from 2012 to 2019, along the largest remaining free‐flowing river in Southern California. Our goals were to identify principal drivers and indicators of drought stress for dryland riparian woodlands, determine their thresholds of tolerance to hydroclimatic stressors, and ultimately assess their vulnerability to climate change. Riparian trees were highly responsive to drought conditions along the river, exhibiting suppressed growth and strong stomatal closure (inferred from reduced Δ13C) during peak drought years. However, patterns of radial growth and Δ13C were quite variable among sites that differed in climatic conditions and rate of groundwater decline. We show that the rate of groundwater decline, as opposed to climate factors, was the primary driver of site differences in drought stress, and trees showed greater sensitivity to temperature at sites subjected to faster groundwater decline. Across sites, higher correlation between radial growth and Δ13C for individual trees, and higher inter‐correlation of Δ13C among trees were indicative of greater drought stress. Trees showed a threshold of tolerance to groundwater decline at 0.5 m year−1 beyond which drought stress became increasingly evident and severe. For sites that exceeded this threshold, peak physiological stress occurred when total groundwater recession exceeded ~3 m. These findings indicate that drought‐induced groundwater decline associated with more extreme droughts is a primary threat to dryland riparian woodlands and increases their susceptibility to projected warmer temperatures.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
download 71download downloads 71 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16376&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Authors: Erin Coughlan de Perez; Erin Coughlan de Perez; Ignacio Fuentes; Ignacio Fuentes; +9 AuthorsErin Coughlan de Perez; Erin Coughlan de Perez; Ignacio Fuentes; Ignacio Fuentes; Christopher Jack; Christopher Jack; Andrew Kruczkiewicz; Andrew Kruczkiewicz; Andrew Kruczkiewicz; Izidine Pinto; Izidine Pinto; Elisabeth Stephens; Elisabeth Stephens;Climate change and solar geoengineering have different implications for drought. Climate change can “speed up” the hydrological cycle, but it causesgreater evapotranspiration than the historical climate because of higher temperatures. Solar geoengineering (stratospheric aerosol injection), on the other hand, tends to “slow down” the hydrological cycle while reducing potential evapotranspiration. There are two common definitions of drought that take this into account; rainfall-only (SPI) and potential-evapotranspiration (SPEI). In different regions of Africa, this can result in different versions of droughts for each scenario, with drier rainfall (SPI) droughts under geoengineering and drier potential-evapotranspiration (SPEI) droughts under climate change. However, the societal implications of these different types of drought are not clear. We present a systematic review of all papers comparing the relationship between real-world outcomes (streamflow, vegetation, and agricultural yields) with these two definitions of drought in Africa. We also correlate the two drought definitions (SPI and SPEI) with historical vegetation conditions across the continent. We find that potential-evapotranspiration-droughts (SPEI) tend to be more closely related with vegetation conditions, while rainfall-droughts (SPI) tend to be more closely related with streamflows across Africa. In many regions, adaptation plans are likely to be affected differently by these two drought types. In parts of East Africa and coastal West Africa, geoengineering could exacerbate both types of drought, which has implications for current investments in water infrastructure. The reverse is true in parts of Southern Africa. In the Sahel, sectors more sensitive to rainfall-drought (SPI), such as reservoir management, could see reduced water availability under solar geoengineering, while sectors more sensitive to potential-evapotranspiration-drought (SPEI), such as rainfed agriculture, could see increased water availability under solar geoengineering. Given that the implications of climate change and solar geoengineering futures are different in different regions and also for different sectors, we recommend that deliberations on solar geoengineering include the widest possible representation of stakeholders.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.959519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fclim.2022.959519&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Report , Research , Preprint , Journal 2018Embargo end date: 10 Jul 2018 Italy, Hungary, Portugal, Germany, Spain, Switzerland, Belgium, United States, Italy, United Kingdom, United States, Germany, United States, United States, Portugal, France, United Kingdom, Italy, Italy, Hungary, Greece, United Kingdom, Brazil, France, United Kingdom, Germany, FrancePublisher:Elsevier BV Publicly fundedFunded by:EC | AMVA4NewPhysics, , GSRIEC| AMVA4NewPhysics ,[no funder available] ,GSRINathan Mirman; Riccardo Paramatti; Annika Vanhoefer; Thomas Ferguson; Thierry Maerschalk; Gregor Mittag; Faridah Mohamad Idris; Cesare Calabria; Sanjay Padhi; Daniele Trocino; Carlos Florez; Michal Olszewski; David Cussans; Luca Pacher; Grant Riley; Marco Alexander Harrendorf; Giacomo Ortona; Georgios Daskalakis; Shuichi Kunori; William John Womersley; Sandra S. Padula; Apichart Hortiangtham; James Rohlf; Heiner Tholen; Konrad Deiters; Vincenzo Daponte; Yacine Haddad; Carlo Battilana; Prakash Thapa; Weimin Wu; Gino Bolla; Alessia Tricomi; Dhanush Anil Hangal; Kirika Uchida; Pierre Piroué; Davide Cieri; Peter Wittich; Federica Primavera; Samuel Bein; Andrey Popov; Andrew Hart; Salvatore Costa; Martino Margoni; Martino Margoni; Markus Spanring; Alice Cocoros; Andreas Kornmayer; Marco Paganoni; Marco Paganoni; Suman Chatterjee; Robert Fischer; Michael Reichmann; Marina Chadeeva; Fábio Lúcio Alves; Jared Turkewitz; Houmani El Mamouni; Johan Borg; Ta-Yung Ling; Thi Hien Doan; Andris Skuja; Amina Zghiche; Shervin Nourbakhsh; Damir Lelas; Fabrizio Margaroli; Kai Yi; Fred-Markus Helmut Stober; Yi-ting Duh; Nathan Kellams; Russell Richard Betts; Johannes Grossmann; Zoltan Laszlo Trocsanyi; Andre Sznajder; Alessio Magitteri; Oliver Buchmuller; Ferdinando Giordano; David Colling; Daniel Robert Marlow; J William Gary; Jan Krolikowski; Souvik Das; Yongbin Feng; Wit Busza; Rachael Bucci; Jack Wright; Georgios Mavromanolakis; Luiz Mundim; Konstantinos Theofilatos; Richard Loveless; Elizabeth Locci; Olga Kodolova; Ferenc Sikler; Cristina Oropeza Barrera; Giancarlo Mantovani; Ada Solano; Nikolay Terentyev; Paul Sheldon; Robert Klanner; Zhoudunming Tu; Paul David Luckey; Mia Tosi; Roumyana Hadjiiska; Mauro Verzetti; Ravi Janjam; Daniele Vadruccio; Aobo Zhang; Pietro Faccioli; Helio Nogima; Peter Thomassen; Ian R Tomalin; Thomas James; Stephan Linn; Martti Raidal; Iurii Antropov; Rino Castaldi; Douglas Berry; Susan Dittmer; Thomas Weiler; Simranjit Singh Chhibra; James Alexander; Andrew Mehta; Yang Yang; Ksenia Shchelina; Igor Bayshev; Alberto Sánchez Hernández; Helena Malbouisson; Rafael Teixeira De Lima; Christian Veelken; Alfredo Castaneda Hernandez; Yuta Takahashi; Steven R. Simon; Simon Kudella; Quan Wang; Armen Tumasyan; Diego Beghin; Diego Ciangottini; Yagya Raj Joshi; Martina Vit; Engin Eren; Livio Fanò; Ajeeta Khatiwada; Frank Hartmann; Tao Huang; David Mark Raymond; Shubham Pandey; Aditee Rane; Frédéric Drouhin; Andreas Hinzmann; C. A. Carrillo Montoya; Joseph Heideman; Ignacio Redondo; Marc M Baarmand; Alexander Zhokin; Clemens Wöhrmann; Adolf Bornheim; Maxwell Chertok; Luca Perrozzi; Gigi Rolandi; Valentin Sulimov; Basil Schneider; Alexander Ershov; Kunal Kothekar; Alessandro Montanari; Thomas Esch; Kelly Beernaert; Emanuele Di Marco; Georgios Anagnostou; Jacopo Pazzini; Sudhir Malik; Yong Ban; Kyungwook Nam; Bruno Galinhas; James D. Olsen; Jamal Rorie; Dominik Nowatschin; Candan Dozen; Marc Osherson; Salvatore My; Harry Cheung; Ioannis Papadopoulos; Salvatore Nuzzo; Hannsjoerg Artur Weber; Christian Barth; Abhigyan Dasgupta; Hui Li; Juan Pablo Fernández Ramos; Andrew Whitbeck; Cédric Prieels; Deborah Pinna; Antonio María Pérez-Calero Yzquierdo; Ivan Marchesini; Gregory R Snow; Mariana Shopova; Dmitry Elumakhov; John N. Wood; Andreas Künsken; Vadim Oreshkin; Manuel Giffels; Andrew Melo; Raman Khurana; Joosep Pata;doi: 10.1016/j.physletb.2018.05.062 , 10.3929/ethz-b-000269943 , 10.5167/uzh-160181 , 10.48550/arxiv.1801.01846 , 10.3204/pubdb-2019-00404 , 10.3204/pubdb-2018-00232 , 10.18154/rwth-2018-227120
arXiv: 1801.01846
A search is presented for new physics in events with two low-momentum, oppositely charged leptons (electrons or muons) and missing transverse momentum in proton-proton collisions at a centre-of-mass energy of 13 TeV. The data collected using the CMS detector at the LHC correspond to an integrated luminosity of 35.9. The observed event yields are consistent with the expectations from the standard model. The results are interpreted in terms of pair production of charginos and neutralinos (X1 and X2) with nearly degenerate masses, as expected in natural supersymmetry models with light higgsinos, as well as in terms of the pair production of top squarks (t), when the lightest neutralino and the top squark have similar masses. At 95% confidence level, wino-like X1/X2 masses are excluded up to 230 GeV for a mass difference of 20 GeV relative to the lightest neutralino. In the higgsino-like model, masses are excluded up to 168 GeV for the same mass difference. For pair production, top squark masses up to 450 GeV are excluded for a mass difference of 40 GeV relative to the lightest neutralino. Physics Letters B, 782 ISSN:0370-2693 ISSN:0031-9163 ISSN:1873-2445
e-Prints Soton arrow_drop_down DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/62301Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2018Full-Text: https://arxiv.org/abs/1801.01846Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Rice Research RepositoryArticle . 2018License: CC BYFull-Text: https://hdl.handle.net/1911/103464Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de OviedoArticle . 2018License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoZurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and ArchiveArchivio Istituzionale Università di BergamoArticle . 2018Data sources: Archivio Istituzionale Università di BergamoÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physletb.2018.05.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 79 citations 79 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert e-Prints Soton arrow_drop_down DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Imperial College London: SpiralArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10044/1/62301Data sources: Bielefeld Academic Search Engine (BASE)Caltech Authors (California Institute of Technology)Article . 2018Full-Text: https://arxiv.org/abs/1801.01846Data sources: Bielefeld Academic Search Engine (BASE)Universidade Estadual Paulista São Paulo: Repositório Institucional UNESPArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Rice Research RepositoryArticle . 2018License: CC BYFull-Text: https://hdl.handle.net/1911/103464Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Institucional de la Universidad de OviedoArticle . 2018License: CC BYData sources: Repositorio Institucional de la Universidad de OviedoZurich Open Repository and ArchiveArticle . 2018 . Peer-reviewedLicense: CC BYData sources: Zurich Open Repository and ArchiveArchivio Istituzionale Università di BergamoArticle . 2018Data sources: Archivio Istituzionale Università di BergamoÉcole Polytechnique, Université Paris-Saclay: HALArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Brunel University London: Brunel University Research Archive (BURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.physletb.2018.05.062&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu