- home
- Advanced Search
- Energy Research
- CH
- GB
- AU
- ETH Zurich
- Energy Research
- CH
- GB
- AU
- ETH Zurich
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors:Alessandro Orchini;
Camilo F. Silva; Georg A. Mensah; Jonas P. Moeck;Alessandro Orchini
Alessandro Orchini in OpenAIREAbstract We propose a general classification of all the modes of a given thermoacoustic system into two sets: one of acoustic origin and one of intrinsic thermoacoustic (ITA) origin. To do this, the definition of intrinsic modes, traditionally based on anechoic boundary conditions, is reformulated in terms of the gain n of the Flame Transfer Function (FTF). As a consequence of this classification, we show how theoretical results for the estimation of all thermoacoustic modes can be derived in the limit n → 0, for both axial and annular combustors, independent of the acoustic boundary conditions. Starting from this limit and using standard continuation methods while increasing n, all the eigenvalues of interest in a given domain in the frequency space can be identified. We also discuss how thermoacoustic modes of acoustic and ITA origin can interact, and in some cases coalesce generating exceptional points (EPs). Although all EPs found have negative growth rates, in their vicinity thermoacoustic eigenmodes have very large sensitivities and exhibit strong mode veering. We demonstrate how, in some cases, mode veering is responsible for the occurrence of thermoacoustic instabilities, and propose a numerical method to identify EPs. All the theoretical results are numerically verified using two generic thermoacoustic configurations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2019.09.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.combustflame.2019.09.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2019 Germany, United KingdomPublisher:Copernicus GmbH Authors:Matthew Gidden;
Matthew Gidden
Matthew Gidden in OpenAIREMalte Meinshausen;
Malte Meinshausen;Malte Meinshausen
Malte Meinshausen in OpenAIREKeywan Riahi;
+9 AuthorsKeywan Riahi
Keywan Riahi in OpenAIREMatthew Gidden;
Matthew Gidden
Matthew Gidden in OpenAIREMalte Meinshausen;
Malte Meinshausen;Malte Meinshausen
Malte Meinshausen in OpenAIREKeywan Riahi;
Keywan Riahi; Daniel Huppmann; Leon Clarke;Keywan Riahi
Keywan Riahi in OpenAIREJoeri Rogelj;
Joeri Rogelj; Joeri Rogelj;Joeri Rogelj
Joeri Rogelj in OpenAIREZebedee Nicholls;
Zebedee Nicholls
Zebedee Nicholls in OpenAIREVolker Krey;
Volker Krey;Volker Krey
Volker Krey in OpenAIREpmid: 31534246
handle: 10044/1/73971
<p>To understand how global warming can be kept well-below 2&#176;C and even 1.5&#176;C, climate policy uses scenarios that describe how society could transform in order to reduce its greenhouse gas emissions. Such scenario are typically created with integrated assessment models that include a representation of the economy, and the energy, land-use, and industrial system. However, current climate change scenarios have a key weakness in that they typically focus on reaching specific climate goals in 2100 only. <br><br>This choice results in risky pathways that delay action and seemingly inevitably rely on large quantities of carbon-dioxide removal after mid-century. Here we propose a framework that more closely reflects the intentions of the UN Paris Agreement. It focusses on reaching a peak in global warming with either stabilisation or reversal thereafter. This approach provides a critical extension of the widely used Shared Socioecononomic Pathways (SSP) framework and reveals a more diverse picture: an inevitable transition period of aggressive near-term climate action to reach carbon neutrality can be followed by a variety of long-term states. It allows policymakers to explicitly consider near-term climate strategies in the context of intergenerational equity and long-term sustainability.</p>
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu2020-10262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 347 citations 347 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 108visibility views 108 download downloads 133 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu2020-10262&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal , Other literature type 2018Embargo end date: 01 Jan 2018 SwitzerlandPublisher:The Electrochemical Society It has been shown recently that the overpotential originating from ionic conduction of alkali-ions through the inner dense solid-electrolyte interphase (SEI) is strongly non-linear. An empirical equation was proposed to merge the measured resistances from both galvanostatic cycling (GS) and electrochemical impedance spectroscopy (EIS) at 25$^{\circ}$C. Here, this analysis is extended to the full temperature range of batteries from -40$^{\circ}$C to +80$^{\circ}$C for Li, Na, K and Rb-metal electrodes in carbonate electrolytes. Two different transport mechanisms are found. The first one conducts alkali-ions at all measured temperatures. The second transport mechanism conducts ions for all seven measured Li-ion electrolytes and one out of four Na-ion electrolytes, however, only above a certain critical temperature $T_C$. At $T_C$ a phase transition is observed switching-off the more efficient transport mechanism and leaving only the general ion conduction mechanism. The associated overpotentials increase rapidly below $T_C$ depending on alkali-ion, salt and solvent and become a limiting factor during galvanostatic operation of all Li-ion electrolytes at low temperature. In general, the current analysis merges the SEI resistances measured by EIS ranging from 26 $��$cm$^2$ for the best Li up to 292 M$��$cm$^2$ for Rb electrodes to its galvanostatic response over seven orders of magnitude. The determined critical temperatures are between 0-25$^{\circ}$C for the tested Li and above 50$^{\circ}$C for Na electrolytes. 10 pages, 7 figures, file includes Suppl Info, http://jes.ecsdl.org/content/165/2/A323
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/2.0701802jes&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/2.0701802jes&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019Embargo end date: 04 Dec 2019 Denmark, SwitzerlandPublisher:Norwegian Polar Institute Authors:Moseley, Gina E.;
Rosvold, Jorgen; Gotfredsen, Anne Birgitte; Hajdas, Irka; +4 AuthorsMoseley, Gina E.
Moseley, Gina E. in OpenAIREMoseley, Gina E.;
Rosvold, Jorgen; Gotfredsen, Anne Birgitte; Hajdas, Irka;Moseley, Gina E.
Moseley, Gina E. in OpenAIREGilg, Olivier;
Gilg, Olivier
Gilg, Olivier in OpenAIREGregersen, Kristian M.;
Spoetl, Christoph; Edwards, R. Lawrence;Gregersen, Kristian M.
Gregersen, Kristian M. in OpenAIREGyrfalcon (Falco rusticolus) is the largest falcon in the world. It inhabits a wide range of climate zones in the Northern Hemisphere, from boreal forests in the south of its range to the arid polar deserts of the High Arctic. In Greenland, because of the harsh, remote environments in which gyrfalcons live, research related to the contemporary and pre-modern periods has been limited to the north-west, central west and central east coasts, with no specific investigations being conducted for the north-east. Here, we report the first pre-modern record of a gyrfalcon in north-east Greenland, located at 80.4°N in Kronprins Christian Land. Skin tissue from a decaying gyrfalcon’s body was radiocarbon dated to 769–944 CE (common era) using a terrestrial-only calibration curve, and 1182–1456 CE using a marine-only calibration curve. Since the gyrfalcon has a mixed terrestrial/marine diet, the actual age can be said to belong between these two groups. This limited data, therefore places the presence of the gyrfalcon in north-east Greenland during a period of prolonged elevated temperatures and climate stress associated with the Medieval Climate Anomaly. Whether the gyrfalcon was part of a larger population or a straggler, and whether the species survived the whole of the Medieval Climate Anomaly in north-east Greenland, is unknown. Polar Research, 38 ISSN:0800-0395 ISSN:1751-8369
Polar Research arrow_drop_down University of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.33265/polar.v38.3539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Polar Research arrow_drop_down University of Copenhagen: ResearchArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.33265/polar.v38.3539&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:American Society for Microbiology Authors: Olga Revelles; Uwe Sauer; Alexander Schicker; Annik Nanchen;ABSTRACT Although a whole arsenal of mechanisms are potentially involved in metabolic regulation, it is largely uncertain when, under which conditions, and to which extent a particular mechanism actually controls network fluxes and thus cellular physiology. Based on 13 C flux analysis of Escherichia coli mutants, we elucidated the relevance of global transcriptional regulation by ArcA, ArcB, Cra, CreB, CreC, Crp, Cya, Fnr, Hns, Mlc, OmpR, and UspA on aerobic glucose catabolism in glucose-limited chemostat cultures at a growth rate of 0.1 h −1 . The by far most relevant control mechanism was cyclic AMP (cAMP)-dependent catabolite repression as the inducer of the phosphoenolpyruvate (PEP)-glyoxylate cycle and thus low tricarboxylic acid cycle fluxes. While all other mutants and the reference E. coli strain exhibited high glyoxylate shunt and PEP carboxykinase fluxes, and thus high PEP-glyoxylate cycle flux, this cycle was essentially abolished in both the Crp and Cya mutants, which lack the cAMP-cAMP receptor protein complex. Most other mutations were phenotypically silent, and only the Cra and Hns mutants exhibited slightly altered flux distributions through PEP carboxykinase and the tricarboxylic acid cycle, respectively. The Cra effect on PEP carboxykinase was probably the consequence of a specific control mechanism, while the Hns effect appears to be unspecific. For central metabolism, the available data thus suggest that a single transcriptional regulation process exerts the dominant control under a given condition and this control is highly specific for a single pathway or cycle within the network.
Journal of Bacteriol... arrow_drop_down Journal of BacteriologyArticle . 2008 . Peer-reviewedLicense: ASM Journals Non-Commercial TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1128/jb.01353-07&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 69 citations 69 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Bacteriol... arrow_drop_down Journal of BacteriologyArticle . 2008 . Peer-reviewedLicense: ASM Journals Non-Commercial TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1128/jb.01353-07&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Embargo end date: 01 Aug 2011 SwitzerlandPublisher:International Mountain Society (IMS) and United Nations University Authors:Rixen, Christian;
Rixen, Christian
Rixen, Christian in OpenAIRETeich, Michaela;
Lardelli, Corina; Gallati, David; +3 AuthorsTeich, Michaela
Teich, Michaela in OpenAIRERixen, Christian;
Rixen, Christian
Rixen, Christian in OpenAIRETeich, Michaela;
Lardelli, Corina; Gallati, David; Pohl, Mandy;Teich, Michaela
Teich, Michaela in OpenAIREPütz, Marco;
Pütz, Marco
Pütz, Marco in OpenAIREBebi, Peter;
Bebi, Peter
Bebi, Peter in OpenAIREThe winter tourism industry is facing considerable challenges with climate change; it is increasingly responding with investments in snowmaking facilities. We present a study on 3 tourism destinations in the Swiss Alps that addressed resource consumption of snowmaking, snow reliability, and future snowmaking potential in a warmer climate. The energy consumption of snowmaking in the ski resorts was in the lower range of what could be expected from literature values. It comprised ∼0.5% of the respective municipality's energy consumption and was moderate compared with other tourism-related activities. Water consumption, however, was in the higher range with regard to what was expected from literature values and was also high compared with other water uses (eg 36% compared with drinking water consumption in one community). Natural snow cover was partly critical for winter sports at low elevations at ∼1200 masl, but uncritical at higher elevations above 2000 masl. Snow cover will become even more critical in a warmer climate but will probably still be sufficient above 2000 masl until 2050. Snowmaking may become critical at lower elevations in the early months of the season (November and December) due to warmer temperatures that can be expected in the coming decades. But, at higher elevations, the potential for snowmaking will probably remain sufficient. Our study provides straightforward and feasible approaches to assess resource consumption and snow cover. Careful consideration of resource consumption and snow cover can foster technical and economical advances as well as more sustainable development in mountains regions. Snow production can represent a valuable adaptation strategy at high-altitude destinations. However, given the increasing economic competition and the changing climate, it will be crucial to use specific regional strengths to provide high-quality winter and summer tourism activities. Mountain Research and Development, 31 (3) ISSN:0276-4741 ISSN:1994-7151
Mountain Research an... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1659/mrd-journal-d-10-00112.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 97 citations 97 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Mountain Research an... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1659/mrd-journal-d-10-00112.1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2017Embargo end date: 01 Jan 2017 SwitzerlandPublisher:MDPI AG This paper discusses the role normative aspects play in different approaches of science–practice collaboration, in particular as action research, (Mode 2) Transdisciplinarity (Td), Transition Management (TM), and Transformative Science (TSc). We elaborate on the different roles that scientists in these processes play. They work as facilitators (or contribute to a facilitated Td process), as activists (i.e., activist researchers) in TM projects, and as catalysts in TSc. Td processes develop socially robust solutions for sustainable transitioning and impacts on the science system through mutual learning and by integrating epistemics (i.e., ways of knowing) from science and practice and focusing on the empowerment of stakeholders. Science is viewed as a public good aiming to serve all key stakeholders. Researchers involved in TM projects strive to influence ongoing transition processes by actively engaging and participating in them, including lobbying for and empowering transformative changes toward sustainability based upon the researchers’ own analyses and world views. The TSc approach takes a catalyst perspective of the scientist’s role in inducing processes of strategic (societal) transition when including certain stakeholder groups. The paper focuses on what roles normative aspects play in the different approaches and new societal demands imposed on science and universities. Based on this, we conclude that a new order of universities, public knowledge institutions, and boundary institutions is forthcoming.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9060991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 76 citations 76 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9060991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 16 Jul 2024 SwitzerlandPublisher:Copernicus GmbH Funded by:RCN | MASSIVE - MAchine learnin..., SNSF | Process-based modelling o..., +1 projectsRCN| MASSIVE - MAchine learning, Surface mass balance of glaciers, Snow cover, In-situ data, Volume change, Earth observation ,SNSF| Process-based modelling of global glacier changes (PROGGRES) ,[no funder available] ,RCN| SNOWDEPTH - Global snow depths from spaceborne remote sensing for permafrost, high-elevation precipitation, and climate reanalysesAuthors:Livia Piermattei;
Livia Piermattei
Livia Piermattei in OpenAIREMichael Zemp;
Michael Zemp
Michael Zemp in OpenAIREChristian Sommer;
Christian Sommer
Christian Sommer in OpenAIREFanny Brun;
+31 AuthorsFanny Brun
Fanny Brun in OpenAIRELivia Piermattei;
Livia Piermattei
Livia Piermattei in OpenAIREMichael Zemp;
Michael Zemp
Michael Zemp in OpenAIREChristian Sommer;
Christian Sommer
Christian Sommer in OpenAIREFanny Brun;
Fanny Brun
Fanny Brun in OpenAIREMatthias Braun;
Matthias Braun
Matthias Braun in OpenAIRELiss M. Andreassen;
Liss M. Andreassen
Liss M. Andreassen in OpenAIREJoaquín M. C. Belart;
Joaquín M. C. Belart
Joaquín M. C. Belart in OpenAIREÉtienne Berthier;
Étienne Berthier
Étienne Berthier in OpenAIREAtanu Bhattacharya;
Atanu Bhattacharya
Atanu Bhattacharya in OpenAIRELaura Boehm;
Laura Boehm
Laura Boehm in OpenAIRETobias Bolch;
Tobias Bolch
Tobias Bolch in OpenAIREAmaury Dehecq;
Amaury Dehecq
Amaury Dehecq in OpenAIREInès Dussaillant;
Inès Dussaillant
Inès Dussaillant in OpenAIREDaniel Falaschi;
Daniel Falaschi
Daniel Falaschi in OpenAIRECaitlyn Florentine;
Caitlyn Florentine
Caitlyn Florentine in OpenAIREDana Floricioiu;
Dana Floricioiu
Dana Floricioiu in OpenAIREChristian Ginzler;
Christian Ginzler
Christian Ginzler in OpenAIREGrégoire Guillet;
Grégoire Guillet
Grégoire Guillet in OpenAIRERomain Hugonnet;
Romain Hugonnet
Romain Hugonnet in OpenAIREMatthias Huss;
Matthias Huss
Matthias Huss in OpenAIREAndreas Kääb;
Andreas Kääb
Andreas Kääb in OpenAIREOwen King;
Owen King
Owen King in OpenAIREChristoph Klug;
Christoph Klug
Christoph Klug in OpenAIREFriedrich Knuth;
Friedrich Knuth
Friedrich Knuth in OpenAIRELukas Krieger;
Jeff La Frenierre;Lukas Krieger
Lukas Krieger in OpenAIRERobert McNabb;
Robert McNabb
Robert McNabb in OpenAIREChristopher McNeil;
Christopher McNeil
Christopher McNeil in OpenAIRERainer Prinz;
Rainer Prinz
Rainer Prinz in OpenAIRELouis Sass;
Louis Sass
Louis Sass in OpenAIREThorsten Seehaus;
Thorsten Seehaus
Thorsten Seehaus in OpenAIREDavid Shean;
David Shean
David Shean in OpenAIREDésirée Treichler;
Anja Wendt;Désirée Treichler
Désirée Treichler in OpenAIRERuitang Yang;
Ruitang Yang
Ruitang Yang in OpenAIREAbstract. Observations of glacier mass changes are key to understanding the response of glaciers to climate change and related impacts, such as regional runoff, ecosystem changes, and global sea level rise. Spaceborne optical and radar sensors make it possible to quantify glacier elevation changes, and thus multi-annual mass changes, on a regional and global scale. However, estimates from a growing number of studies show a wide range of results with differences often beyond uncertainty bounds. Here, we present the outcome of a community-based inter-comparison experiment using spaceborne optical stereo (ASTER) and synthetic aperture radar interferometry (TanDEM-X) data to estimate elevation changes for defined glaciers and target periods that pose different assessment challenges. Using provided or self-processed digital elevation models (DEMs) for five test sites, 12 research groups provided a total of 97 spaceborne elevation-change datasets using various processing approaches. Validation with airborne data showed that using an ensemble estimate is promising to reduce random errors from different instruments and processing methods but still requires a more comprehensive investigation and correction of systematic errors. We found that scene selection, DEM processing, and co-registration have the biggest impact on the results. Other processing steps, such as treating spatial data voids, differences in survey periods, or radar penetration, can still be important for individual cases. Future research should focus on testing different implementations of individual processing steps (e.g. co-registration) and addressing issues related to temporal corrections, radar penetration, glacier area changes, and density conversion. Finally, there is a clear need for our community to develop best practices, use open, reproducible software, and assess overall uncertainty to enhance inter-comparison and empower physical process insights across glacier elevation-change studies.
The Cryosphere arrow_drop_down https://doi.org/10.5194/egusph...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/tc-18-3195-2024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 1 citations 1 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert The Cryosphere arrow_drop_down https://doi.org/10.5194/egusph...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/tc-18-3195-2024&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Wiley Authors:Dominique Mazzi;
Loïc Pellissier; Loïc Pellissier;Dominique Mazzi
Dominique Mazzi in OpenAIREMarc Grünig;
+1 AuthorsMarc Grünig
Marc Grünig in OpenAIREDominique Mazzi;
Loïc Pellissier; Loïc Pellissier;Dominique Mazzi
Dominique Mazzi in OpenAIREMarc Grünig;
Marc Grünig
Marc Grünig in OpenAIREPierluigi Calanca;
Pierluigi Calanca
Pierluigi Calanca in OpenAIREdoi: 10.1111/gcb.15313
pmid: 33245599
AbstractClimate change and globalization affect the suitable conditions for agricultural crops and insect pests, threatening future food security. It remains unknown whether shifts in species’ climatic suitability will be linear or rather non‐linear, with crop exposure to pests suddenly increasing when a critical temperature threshold is crossed. Moreover, uncertainty of forecasts can arise because of the modelling approach based either on species distribution data or on physiological measurements. Here, we compared the predictions of two modelling approaches (physiological models and species distribution models) for forecasting the potential distribution of agricultural insect pests in Europe. Despite conceptual differences, we found good agreement overall between the two approaches. We further identified a potential regime change in pest pressure along a temperature gradient. With both modelling approaches, we found an inflection point in the number of pest species with suitable climatic conditions around a minimum temperature of the coldest month of −3°C. Our results could help decision‐makers anticipate the onset of rising pest pressure and provide support for intensifying surveillance measures, particularly in regions where temperatures are already beyond the inflection point.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15313&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United KingdomPublisher:Wiley Authors: Leimu, R;Muola, A;
Laukkanen, L;Muola, A
Muola, A in OpenAIREKalske, A;
+2 AuthorsKalske, A
Kalske, A in OpenAIRELeimu, R;Muola, A;
Laukkanen, L;Muola, A
Muola, A in OpenAIREKalske, A;
Prill, N; Mutikainen, P;Kalske, A
Kalske, A in OpenAIREAbstractCurrent anthropogenic environmental change causes rapid loss of biodiversity. Although the effects of the main causes of this loss (habitat fragmentation, climate change, and invasive species) on single species have been widely studied, the effects on species interactions are poorly understood. In particular, we do not yet understand how these phenomena affect the evolutionary processes that impact species interactions. Coevolution is a dominant process that organizes the web of life: most species are involved in at least one coevolved interaction. Due to rapid human modification of landscapes it is important to understand how subsequent changes in biotic and abiotic environment and in the level and distribution of genetic variation, as well as changes in population structures, influence the elements of the coevolutionary process. In this review, we synthesize recent development of theoretical work on the coevolution of interacting species with conservation genetics and the impact of anthropogenic environmental changes on single species to address the potential effects of habitat fragmentation, climate change, and invasive species on plant‐herbivore coevolution.
Entomologia Experime... arrow_drop_down Entomologia Experimentalis et ApplicataArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefEntomologia Experimentalis et ApplicataArticle . 2012Data sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1570-7458.2012.01267.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert Entomologia Experime... arrow_drop_down Entomologia Experimentalis et ApplicataArticle . 2012 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefEntomologia Experimentalis et ApplicataArticle . 2012Data sources: Oxford University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1570-7458.2012.01267.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu