- home
- Advanced Search
- Energy Research
- 2025-2025
- 11. Sustainability
- 15. Life on land
- EU
- CN
- DE
- GB
- Energy Research
- 2025-2025
- 11. Sustainability
- 15. Life on land
- EU
- CN
- DE
- GB
description Publicationkeyboard_double_arrow_right Part of book or chapter of book , Conference object , Article 2025 GermanyPublisher:Springer Nature Switzerland Authors: Heinz, Daniel; Hu, Mingli; Benz, Carina; Satzger, Gerhard;Creating and delivering products and services that promote sustainability is increasingly important in today’s economy. Novel services based on digital technologies and infrastructure can significantly contribute to sustainable development, as demonstrated by digitally enabled car-sharing services where increased asset utilization reduces production-related greenhouse gas emissions. However, there is still limited knowledge on how digital service innovation can purposefully be applied to promote sustainability. To address this gap, we conduct a systematic literature review and perform a qualitative inductive analysis of 50 articles on the impact of digital service innovation on social, environmental, and economic sustainability. We provide a comprehensive overview of real-world applications and identify five underlying mechanisms through which innovation with digital services can drive sustainable development. In doing so, we aim to pave the way to purposefully conceive, design, and implement digital services for sustainability.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-80125-9_10&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-80125-9_10&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Copernicus GmbH Funded by:EC | ALFAwetlandsEC| ALFAwetlandsLarmola, Tuula; Aalto, Tuula; Andersson, Erik; Balkovic, Juraj; Barthelmes, Alexandra; Decleer, Kris; Emmi Haltia; Soosaar, Kaido; Ladzins, Andis; Peñuelas,Josep; Peters, Jan; Raman, Maud; Rossberg, Max; Sabater, Francesc; Sánchez Pérez, José Miguel; Shchoka, Iryna; Tournebize, Julien; Vitali, Elise; Ukonmaanaho, Liisa;The global goal to mitigate climate change (CC) is to achieve net zero greenhouse gas emissions (GHGE) by 2050; the European Union (EU) aim is to cut GHGE at least by 55% already by 2030. These ambition targets require new GHGE mitigation measures across all land use sectors (LULUCF), where wetlands, as carbon (C) rich ecosystem, can effectively contribute to climate targets, biodiversity, and water-related ecosystem services. Natural peatlands accumulate C effectively due to water-logged conditions. However, they can turn into high GHG sources if they are drained, therefore there is still need to enhance knowledge regarding how and/or how much C is sequestered or released by peatlands after their restoration, as well as the socioeconomic effects.“ALFAwetlands - Restoration for the future” (www.alfawetlands.eu) is a Horizon Europe funded project (2022-2026), which is coordinated by Luke and carried out at local to EU levels with 15 partners across Europe. It’s main goal, in short, is to mitigate CC while supporting biodiversity and ecosystem services (BES) and being socially just and rewarding. This includes, e.g., increasing the knowledge about C storage and release in peatlands, specifically after restoration. While, in terms of C fluxes, focussing on peatlands, the project scope is larger and includes additionally floodplains, coastal wetlands and few artificial wetlands. ALFAwetlands will develop and indicate management alternatives for wetlands including such that have been or will be restored during this project. Measures under this project are not restricted to ecological restoration but include rehabilitation and re-vegetation action to improve ecosystem conditions (e.g., peatland forest: continuous-cover-forestry, cultivated peatlands: paludiculture). Studies are conducted in 9 Living Labs (LL’s) including 30 sites, which are located in wetlands in different parts of Europe (north-south gradient). At the local level, LL’s support and integrate interdisciplinary and multi-actor research on ecological, environmental, economic, and social issues. Experimental data from local sites are scaled-up and will be utilized e.g., by models to gain and understanding the potential impacts of upscaled wetland restoration measures. To achieve ALFAwetlands goals, 5 research workpackages are being implemented, namely: 1)improve geospatial knowledge base of wetlands, 2)co-create socially fair and rewarding pathways for wetland restoration, 3)estimate effects of restoration on GHGE and BES, with the data achieved from field experiments, 4)develop policy relevant scenarios for CC and BES, and 5)study societal impacts of wetland restoration. The project will also encourage stakeholders to utilise outputs and support their active participation in wetland management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu24-3244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu24-3244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 United KingdomPublisher:Elsevier BV Publicly fundedCuartas, J; Bhatia, A; Carter, D; Cluver, L; Coll, C; Donger, E; Draper, CE; Gardner, F; Herbert, B; Kelly, O; Lachman, J; M'jid, NM; Seidel, F;pmid: 37648573
The climate crisis is the biggest threat to the health, development, and wellbeing of the current and future generations. While there is extensive evidence on the direct impacts of climate change on human livelihood, there is little evidence on how children and young people are affected, and even less discussion and evidence on how the climate crisis could affect violence against children.In this commentary, we review selected research to assess the links between the climate crisis and violence against children.We employ a social-ecological perspective as an overarching framework to organize findings from the literature and call attention to increased violence against children as a specific, yet under-examined, direct and indirect consequence of the climate crisis.Using such a perspective, we examine how the climate crisis exacerbates the risk of violence against children at the continually intersecting and interacting levels of society, community, family, and the individual levels. We propose increased risk of armed conflict, forced displacement, poverty, income inequality, disruptions in critical health and social services, and mental health problems as key mechanisms linking the climate crisis and heightened risk of violence against children. Furthermore, we posit that the climate crisis serves as a threat multiplier, compounding existing vulnerabilities and inequities within populations and having harsher consequences in settings, communities, households, and for children already experiencing adversities.We conclude with a call for urgent efforts from researchers, practitioners, and policymakers to further investigate the specific empirical links between the climate crisis and violence against children and to design, test, implement, fund, and scale evidence-based, rights-based, and child friendly prevention, support, and response strategies to address violence against children.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chiabu.2023.106430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chiabu.2023.106430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2023 China (People's Republic of)Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Xuan He; Danny H.K. Tsang; Yize Chen;Global climate challenge is demanding urgent actions for decarbonization, while electric power systems take the major roles in clean energy transition. Due to the existence of spatially and temporally dispersed renewable energy resources and the uneven distribution of carbon emission intensity throughout the grid, it is worth investigating future load planning and demand management to offset those generations with higher carbon emission rates. Such techniques include inter-region utilization of geographically shiftable resources and stochastic renewable energy. For instance, data center is considered to be a major carbon emission producer in the future due to increasing information load, while it holds the capability of geographical load balancing. In this paper, we propose a novel planning and operation model minimizing the system-level carbon emissions via sitting and operating geographically shiftable resources. This model decides the optimal locations for shiftable resources expansion along with power dispatch schedule. To accommodate future system operation patterns and a wide range of operating conditions, we incorporate 20-year fine-grained load and renewables scenarios for grid simulations of realistic sizes (e.g., up to 1888 buses). To tackle the computational challenges coming from the combinatorial nature of such large-scale planning problem, we develop a customized Monte Carlo Tree Search (MCTS) method, which can find reasonable solutions satisfying solution time limits. Besides, MCTS enables flexible time window settings and offline solution adjustments. Extensive simulations validate that our planning model can reduce more than 10\% carbon emission across all setups. Compared to off-the-shelf optimization solvers such as Gurobi, our method achieves up to 8.1X acceleration while the solution gaps are less than 1.5\% in large-scale cases. Accepted at IEEE Transactions on Power Systems
https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3424409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3424409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Emerald Authors: Jiming Hu; Xiaoyan Han;In order to solve the problem of excessive burden of electricity and energy consumption in urban landscape buildings clusters, the study combined data mining algorithms to establish a prediction model for energy-saving renovation of urban landscape building clusters. Firstly, the energy demand and energy consumption of theurban landscape buildings complex were analysed, a mathematical model was established to predict the energy consumption of the building complex. Then, the prediction model of energy-saving retrofitting of building clusters was constructed by combining data mining techniques. The experimental results show that the change trend of total energy consumption is different under different single influencing factors of energy consumption. Among them, the lighting power density factor has the greatest influence on energy consumption, and its annual energy consumption change rate can reach about 0.35. Applying the prediction model to the energy consumption prediction of 15 urban single buildings, it was found that the total energy consumption of the buildings before the retrofit was much higher than that after the retrofit, and the energy-saving rate of the whole observed sample building group was as high as 18.5%, meanwhile, the highest energy-saving rate of the single buildings reached 30.1%.
Proceedings of the I... arrow_drop_down Proceedings of the Institution of Civil Engineers - Smart Infrastructure and ConstructionArticle . 2025 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1680/jsmic.22.00030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Proceedings of the I... arrow_drop_down Proceedings of the Institution of Civil Engineers - Smart Infrastructure and ConstructionArticle . 2025 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1680/jsmic.22.00030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Other literature type 2025Embargo end date: 22 Sep 2023 NorwayPublisher:Springer Nature Switzerland Funded by:EC | CoDe-SEC| CoDe-SAuthors: Ramon Hingorani; Jochen Köhler;AbstractAs the bones and muscles of our built environment, engineering structures support all kind of societal activities. However, they consume huge amounts of resources and significantly contribute to impact on our environment. Structural design codes play an important matter in this regard since they regulate the use of materials by use of prescribed decision rules. These relatively simple and generalized rules offer significant potential for improvement. Grounded on risk-based optimization approaches, this paper explores this potential in connection with the design of reinforced concrete floor systems. Assuming a large variety of realistic design situations, representative sets of such members are defined and designed according to the semi-probabilistic safety concept in the Eurocodes. The benefits of a risk-informed structural design compared to the use of these standardized decision rules are demonstrated in terms of material consumption and CO2 emissions.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-69626-8_124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 18visibility views 18 download downloads 10 Powered bymore_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-69626-8_124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Conference object 2025 Germany, BelgiumPublisher:Elsevier BV Funded by:EC | PERCISTANDEC| PERCISTANDAlessandro Martulli; Fabrizio Gota; Neethi Rajagopalan; Toby Meyer; Cesar Omar Ramirez Quiroz; Daniele Costa; Ulrich W. Paetzold; Robert Malina; Bart Vermang; Sebastien Lizin;handle: 1942/45196 , 1942/41965
In the last decade, the manufacturing capacity of silicon, the dominant PV technology, has increasingly been concentrated in China. This has led to PV cost reduction of approximately 80%, while, at the same time, posing risks to PV supply chain security. Recent advancements of novel perovskite tandem PV technologies as an alternative to traditional silicon-based PV provide opportunities for diversification of the PV manufacturing capacity and for increasing the GHG emission benefit of solar PV. Against this background, we estimate the current and future cost-competitiveness and GHG emissions of a set of already commercialized as well as emerging PV technologies for different production locations (China, USA, EU), both at residential and utility-scale. We find EU and USA-manufactured thin-film tandems to have 2 to 4% and 0.5 to 2% higher costs per kWh and 37 to 40%and 32 to 35% less GHG emissions per kWh at residential and utility-scale, respectively. Our projections indicate that they will also retain competitive costs (up to 2% higher)and a 20% GHG emissions advantage per kWh in 2050.
ZENODO arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2024.113212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ZENODO arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2024.113212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Part of book or chapter of book , Conference object , Article 2025 GermanyPublisher:Springer Nature Switzerland Authors: Heinz, Daniel; Hu, Mingli; Benz, Carina; Satzger, Gerhard;Creating and delivering products and services that promote sustainability is increasingly important in today’s economy. Novel services based on digital technologies and infrastructure can significantly contribute to sustainable development, as demonstrated by digitally enabled car-sharing services where increased asset utilization reduces production-related greenhouse gas emissions. However, there is still limited knowledge on how digital service innovation can purposefully be applied to promote sustainability. To address this gap, we conduct a systematic literature review and perform a qualitative inductive analysis of 50 articles on the impact of digital service innovation on social, environmental, and economic sustainability. We provide a comprehensive overview of real-world applications and identify five underlying mechanisms through which innovation with digital services can drive sustainable development. In doing so, we aim to pave the way to purposefully conceive, design, and implement digital services for sustainability.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-80125-9_10&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-80125-9_10&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2025Publisher:Copernicus GmbH Funded by:EC | ALFAwetlandsEC| ALFAwetlandsLarmola, Tuula; Aalto, Tuula; Andersson, Erik; Balkovic, Juraj; Barthelmes, Alexandra; Decleer, Kris; Emmi Haltia; Soosaar, Kaido; Ladzins, Andis; Peñuelas,Josep; Peters, Jan; Raman, Maud; Rossberg, Max; Sabater, Francesc; Sánchez Pérez, José Miguel; Shchoka, Iryna; Tournebize, Julien; Vitali, Elise; Ukonmaanaho, Liisa;The global goal to mitigate climate change (CC) is to achieve net zero greenhouse gas emissions (GHGE) by 2050; the European Union (EU) aim is to cut GHGE at least by 55% already by 2030. These ambition targets require new GHGE mitigation measures across all land use sectors (LULUCF), where wetlands, as carbon (C) rich ecosystem, can effectively contribute to climate targets, biodiversity, and water-related ecosystem services. Natural peatlands accumulate C effectively due to water-logged conditions. However, they can turn into high GHG sources if they are drained, therefore there is still need to enhance knowledge regarding how and/or how much C is sequestered or released by peatlands after their restoration, as well as the socioeconomic effects.“ALFAwetlands - Restoration for the future” (www.alfawetlands.eu) is a Horizon Europe funded project (2022-2026), which is coordinated by Luke and carried out at local to EU levels with 15 partners across Europe. It’s main goal, in short, is to mitigate CC while supporting biodiversity and ecosystem services (BES) and being socially just and rewarding. This includes, e.g., increasing the knowledge about C storage and release in peatlands, specifically after restoration. While, in terms of C fluxes, focussing on peatlands, the project scope is larger and includes additionally floodplains, coastal wetlands and few artificial wetlands. ALFAwetlands will develop and indicate management alternatives for wetlands including such that have been or will be restored during this project. Measures under this project are not restricted to ecological restoration but include rehabilitation and re-vegetation action to improve ecosystem conditions (e.g., peatland forest: continuous-cover-forestry, cultivated peatlands: paludiculture). Studies are conducted in 9 Living Labs (LL’s) including 30 sites, which are located in wetlands in different parts of Europe (north-south gradient). At the local level, LL’s support and integrate interdisciplinary and multi-actor research on ecological, environmental, economic, and social issues. Experimental data from local sites are scaled-up and will be utilized e.g., by models to gain and understanding the potential impacts of upscaled wetland restoration measures. To achieve ALFAwetlands goals, 5 research workpackages are being implemented, namely: 1)improve geospatial knowledge base of wetlands, 2)co-create socially fair and rewarding pathways for wetland restoration, 3)estimate effects of restoration on GHGE and BES, with the data achieved from field experiments, 4)develop policy relevant scenarios for CC and BES, and 5)study societal impacts of wetland restoration. The project will also encourage stakeholders to utilise outputs and support their active participation in wetland management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu24-3244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 download downloads 2 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/egusphere-egu24-3244&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 United KingdomPublisher:Elsevier BV Publicly fundedCuartas, J; Bhatia, A; Carter, D; Cluver, L; Coll, C; Donger, E; Draper, CE; Gardner, F; Herbert, B; Kelly, O; Lachman, J; M'jid, NM; Seidel, F;pmid: 37648573
The climate crisis is the biggest threat to the health, development, and wellbeing of the current and future generations. While there is extensive evidence on the direct impacts of climate change on human livelihood, there is little evidence on how children and young people are affected, and even less discussion and evidence on how the climate crisis could affect violence against children.In this commentary, we review selected research to assess the links between the climate crisis and violence against children.We employ a social-ecological perspective as an overarching framework to organize findings from the literature and call attention to increased violence against children as a specific, yet under-examined, direct and indirect consequence of the climate crisis.Using such a perspective, we examine how the climate crisis exacerbates the risk of violence against children at the continually intersecting and interacting levels of society, community, family, and the individual levels. We propose increased risk of armed conflict, forced displacement, poverty, income inequality, disruptions in critical health and social services, and mental health problems as key mechanisms linking the climate crisis and heightened risk of violence against children. Furthermore, we posit that the climate crisis serves as a threat multiplier, compounding existing vulnerabilities and inequities within populations and having harsher consequences in settings, communities, households, and for children already experiencing adversities.We conclude with a call for urgent efforts from researchers, practitioners, and policymakers to further investigate the specific empirical links between the climate crisis and violence against children and to design, test, implement, fund, and scale evidence-based, rights-based, and child friendly prevention, support, and response strategies to address violence against children.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chiabu.2023.106430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.chiabu.2023.106430&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2025Embargo end date: 01 Jan 2023 China (People's Republic of)Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Xuan He; Danny H.K. Tsang; Yize Chen;Global climate challenge is demanding urgent actions for decarbonization, while electric power systems take the major roles in clean energy transition. Due to the existence of spatially and temporally dispersed renewable energy resources and the uneven distribution of carbon emission intensity throughout the grid, it is worth investigating future load planning and demand management to offset those generations with higher carbon emission rates. Such techniques include inter-region utilization of geographically shiftable resources and stochastic renewable energy. For instance, data center is considered to be a major carbon emission producer in the future due to increasing information load, while it holds the capability of geographical load balancing. In this paper, we propose a novel planning and operation model minimizing the system-level carbon emissions via sitting and operating geographically shiftable resources. This model decides the optimal locations for shiftable resources expansion along with power dispatch schedule. To accommodate future system operation patterns and a wide range of operating conditions, we incorporate 20-year fine-grained load and renewables scenarios for grid simulations of realistic sizes (e.g., up to 1888 buses). To tackle the computational challenges coming from the combinatorial nature of such large-scale planning problem, we develop a customized Monte Carlo Tree Search (MCTS) method, which can find reasonable solutions satisfying solution time limits. Besides, MCTS enables flexible time window settings and offline solution adjustments. Extensive simulations validate that our planning model can reduce more than 10\% carbon emission across all setups. Compared to off-the-shelf optimization solvers such as Gurobi, our method achieves up to 8.1X acceleration while the solution gaps are less than 1.5\% in large-scale cases. Accepted at IEEE Transactions on Power Systems
https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3424409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down IEEE Transactions on Power SystemsArticle . 2025 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2024.3424409&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Emerald Authors: Jiming Hu; Xiaoyan Han;In order to solve the problem of excessive burden of electricity and energy consumption in urban landscape buildings clusters, the study combined data mining algorithms to establish a prediction model for energy-saving renovation of urban landscape building clusters. Firstly, the energy demand and energy consumption of theurban landscape buildings complex were analysed, a mathematical model was established to predict the energy consumption of the building complex. Then, the prediction model of energy-saving retrofitting of building clusters was constructed by combining data mining techniques. The experimental results show that the change trend of total energy consumption is different under different single influencing factors of energy consumption. Among them, the lighting power density factor has the greatest influence on energy consumption, and its annual energy consumption change rate can reach about 0.35. Applying the prediction model to the energy consumption prediction of 15 urban single buildings, it was found that the total energy consumption of the buildings before the retrofit was much higher than that after the retrofit, and the energy-saving rate of the whole observed sample building group was as high as 18.5%, meanwhile, the highest energy-saving rate of the single buildings reached 30.1%.
Proceedings of the I... arrow_drop_down Proceedings of the Institution of Civil Engineers - Smart Infrastructure and ConstructionArticle . 2025 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1680/jsmic.22.00030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Proceedings of the I... arrow_drop_down Proceedings of the Institution of Civil Engineers - Smart Infrastructure and ConstructionArticle . 2025 . Peer-reviewedData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1680/jsmic.22.00030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Other literature type 2025Embargo end date: 22 Sep 2023 NorwayPublisher:Springer Nature Switzerland Funded by:EC | CoDe-SEC| CoDe-SAuthors: Ramon Hingorani; Jochen Köhler;AbstractAs the bones and muscles of our built environment, engineering structures support all kind of societal activities. However, they consume huge amounts of resources and significantly contribute to impact on our environment. Structural design codes play an important matter in this regard since they regulate the use of materials by use of prescribed decision rules. These relatively simple and generalized rules offer significant potential for improvement. Grounded on risk-based optimization approaches, this paper explores this potential in connection with the design of reinforced concrete floor systems. Assuming a large variety of realistic design situations, representative sets of such members are defined and designed according to the semi-probabilistic safety concept in the Eurocodes. The benefits of a risk-informed structural design compared to the use of these standardized decision rules are demonstrated in terms of material consumption and CO2 emissions.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-69626-8_124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 18visibility views 18 download downloads 10 Powered bymore_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2025 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-69626-8_124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Conference object 2025 Germany, BelgiumPublisher:Elsevier BV Funded by:EC | PERCISTANDEC| PERCISTANDAlessandro Martulli; Fabrizio Gota; Neethi Rajagopalan; Toby Meyer; Cesar Omar Ramirez Quiroz; Daniele Costa; Ulrich W. Paetzold; Robert Malina; Bart Vermang; Sebastien Lizin;handle: 1942/45196 , 1942/41965
In the last decade, the manufacturing capacity of silicon, the dominant PV technology, has increasingly been concentrated in China. This has led to PV cost reduction of approximately 80%, while, at the same time, posing risks to PV supply chain security. Recent advancements of novel perovskite tandem PV technologies as an alternative to traditional silicon-based PV provide opportunities for diversification of the PV manufacturing capacity and for increasing the GHG emission benefit of solar PV. Against this background, we estimate the current and future cost-competitiveness and GHG emissions of a set of already commercialized as well as emerging PV technologies for different production locations (China, USA, EU), both at residential and utility-scale. We find EU and USA-manufactured thin-film tandems to have 2 to 4% and 0.5 to 2% higher costs per kWh and 37 to 40%and 32 to 35% less GHG emissions per kWh at residential and utility-scale, respectively. Our projections indicate that they will also retain competitive costs (up to 2% higher)and a 20% GHG emissions advantage per kWh in 2050.
ZENODO arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2024.113212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ZENODO arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2024.113212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu