- home
- Advanced Search
- Energy Research
- GB
- Energy Research
- GB
description Publicationkeyboard_double_arrow_right Article 2023 United Kingdom, Netherlands, NetherlandsPublisher:Wiley Funded by:EC | ESM2025, UKRI | ADVENT (ADdressing Valuat..., UKRI | Feasibility of Afforestat...EC| ESM2025 ,UKRI| ADVENT (ADdressing Valuation of Energy and Nature Together) ,UKRI| Feasibility of Afforestation and Biomass energy with carbon capture storage for Greenhouse Gas Removal (FAB GGR)Littleton, Emma W.; Shepherd, Anita; Harper, Anna B.; Hastings, Astley F. S.; Vaughan, Naomi E.; Doelman, Jonathan; van Vuuren, Detlef P.; Lenton, Timothy M.;doi: 10.1111/gcbb.12982
handle: 10871/130438 , 2164/19964
AbstractLarge‐scale bioenergy plays a key role in climate change mitigation scenarios, but its efficacy is uncertain. This study aims to quantify that uncertainty by contrasting the results of three different types of models under the same mitigation scenario (RCP2.6‐SSP2), consistent with a 2°C temperature target. This analysis focuses on a single bioenergy feedstock, Miscanthus × giganteus, and contrasts projections for its yields and environmental effects from an integrated assessment model (IMAGE), a land surface and dynamic global vegetation model tailored to Miscanthus bioenergy (JULES) and a bioenergy crop model (MiscanFor). Under the present climate, JULES, IMAGE and MiscanFor capture the observed magnitude and variability in Miscanthus yields across Europe; yet in the tropics JULES and IMAGE predict high yields, whereas MiscanFor predicts widespread drought‐related diebacks. 2040–2049 projections show there is a rapid scale up of over 200 Mha bioenergy cropping area in the tropics. Resulting biomass yield ranges from 12 (MiscanFor) to 39 (JULES) Gt dry matter over that decade. Change in soil carbon ranges from +0.7 Pg C (MiscanFor) to −2.8 Pg C (JULES), depending on preceding land cover and soil carbon.2090–99 projections show large‐scale biomass energy with carbon capture and storage (BECCS) is projected in Europe. The models agree that <2°C global warming will increase yields in the higher latitudes, but drought stress in the Mediterranean region could produce low yields (MiscanFor), and significant losses of soil carbon (JULES and IMAGE). These results highlight the uncertainty in rapidly scaling‐up biomass energy supply, especially in dry tropical climates and in regions where future climate change could result in drier conditions. This has important policy implications—because prominently used scenarios to limit warming to ‘well below 2°C’ (including the one explored here) depend upon its effectiveness.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryOpen Research ExeterArticle . 2022License: CC BYFull-Text: https://doi.org/10.1111/gcbb.12982Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19964Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryOpen Research ExeterArticle . 2022License: CC BYFull-Text: https://doi.org/10.1111/gcbb.12982Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19964Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Funded by:UKRI | The North Wyke Farm Platf..., UKRI | S2N - Soil to Nutrition -...UKRI| The North Wyke Farm Platform- National Capability ,UKRI| S2N - Soil to Nutrition - Work package 2 (WP2) - Adaptive management systems for improved efficiency and nutritional qualityAnita Shepherd; Melannie D. Hartman; Nuala Fitton; Claire A. Horrocks; Robert M. Dunn; Astley Hastings; Laura M. Cardenas;This study argues that several metrics are necessary to build up a picture of yield gain and nitrogen losses for ryegrass sheep pastures. Metrics of resource use efficiency, nitrous oxide emission factor, leached and emitted nitrogen per unit product are used to encompass yield gain and losses relating to nitrogen. These metrics are calculated from field system simulations using the DAYCENT model, validated from field sensor measurements and observations relating to crop yield, fertilizer applied, ammonium in soil and nitrate in soil and water, nitrous oxide and soil moisture. Three ryegrass pastures with traditional management for sheep grazing and silage are studied. As expected, the metrics between long-term ryegrass swards in this study are not very dissimilar. Slight differences between simulations of different field systems likely result from varying soil bulk density, as revealed by a sensitivity analysis applied to DAYCENT. The field with the highest resource use efficiency was also the field with the lowest leached inorganic nitrogen per unit product, and vice versa. Field system simulation using climate projections indicates an increase in nitrogen loss to water and air, with a corresponding increase in biomass. If we simulate both nitrogen loss by leaching and by gaseous emission, we obtain a fuller picture. Under climate projections, the field with the lowest determined nitrous oxide emissions factor, had a relatively high leached nitrogen per product amongst the three fields. When management differences were investigated, the amount of nitrous oxide per unit biomass was found to be significantly higher for an annual management of grazing only, than a silage harvest plus grazing, likely relating to the increased period of livestock on pasture. This work emphasizes how several metrics validated by auto-sampled data provide a measure of nitrogen loss, efficiency and best management practise.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2019License: CC BYFull-Text: http://hdl.handle.net/2164/12389Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefAberdeen University Research Archive (AURA)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.05.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2019License: CC BYFull-Text: http://hdl.handle.net/2164/12389Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefAberdeen University Research Archive (AURA)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.05.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United KingdomPublisher:Wiley Funded by:UKRI | Perennial Biomass Crops f..., UKRI | Supergen Bioenergy Hub 20...UKRI| Perennial Biomass Crops for Greenhouse Gas Removal ,UKRI| Supergen Bioenergy Hub 2018Rebecca von Hellfeld; Astley Hastings; Jason Kam; Rebecca Rowe; John Clifton‐Brown; Iain Donnison; Anita Shepherd;AbstractTo achieve net zero greenhouse gas emission by 2050 as set out by the 2019 amendment to the 2008 UK Climate Change Act, a major shift towards renewable energy is needed. This includes the development of new methods along with improving and upscaling existing technologies. One example of new methods in bioenergy is developing new Miscanthus cultivars for electricity generation via thermal power station furnaces. Miscanthus is still relatively new compared with other agriculture practices, so market assessments and improvements are needed to reduce the barriers to entry for prospective growers. This publication provides a profile of UK Miscanthus growers and their businesses, their experiences of benefits and drawbacks of the crop, and what they see as potential barriers to entry for prospective farmers. A survey of current Miscanthus growers in England and Wales was conducted and indicated that most farmers were content with the crop and that its environmental and economic benefits were noted. However, it was evident that with a geographically limited UK market, growers wanted to see a better distribution of biomass processing stations to reduce the ongoing costs of transport. With growing demand for renewables, including bio‐energy sources, it was determined important to provide information and support for stable farming operations and to incentivise the adoption of Miscanthus. Such incentives include ongoing development of new cultivars, focussing on traits such as production potential and stressor resilience, and growers indicated preference for an annual planting grant. These developments are predicted to further improve the crop's profit margin, making it a more cost‐effective crop for farmers. Sensitively managed Miscanthus also has the potential to contribute to carbon sequestration, soil health, and aspects of farmland biodiversity. Incentivising such management in government land–based environmental schemes would offer additional income streams and help to promote environmental positive crop planting.
NERC Open Research A... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/19313Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/19313Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 United KingdomPublisher:Elsevier BV Shepherd, A.; Yan, X.; Nayak, D.; Newbold, J.; Moran, D.; Dhanoa, M. S.; Goulding, K. W. T.; Smith, P.; Cardenas, L. M.;China accounts for a third of global nitrogen fertilizer consumption. Under an International Panel on Climate Change (IPCC) Tier 2 assessment, emission factors (EFs) are developed for the major crop types using country-specific data. IPCC advises a separate calculation for the direct nitrous oxide (N2O) emissions of rice cultivation from that of cropland and the consideration of the water regime used for irrigation. In this paper we combine these requirements in two independent analyses, using different data quality acceptance thresholds, to determine the influential parameters on emissions with which to disaggregate and create N2O EFs. Across China, the N2O EF for lowland horticulture was slightly higher (between 0.74% and 1.26% of fertilizer applied) than that for upland crops (values ranging between 0.40% and 1.54%), and significantly higher than for rice (values ranging between 0.29% and 0.66% on temporarily drained soils, and between 0.15% and 0.37% on un-drained soils). Higher EFs for rice were associated with longer periods of drained soil and the use of compound fertilizer; lower emissions were associated with the use of urea or acid soils. Higher EFs for upland crops were associated with clay soil, compound fertilizer or maize crops; lower EFs were associated with sandy soil and the use of urea. Variation in emissions for lowland vegetable crops was closely associated with crop type. The two independent analyses in this study produced consistent disaggregated N2O EFs for rice and mixed crops, showing that the use of influential cropping parameters can produce robust EFs for China.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2015License: CC BY NC NDFull-Text: http://hdl.handle.net/2164/5696Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric EnvironmentArticle . 2015License: CC BY NC NDData sources: BASE (Open Access Aggregator)Aberdeen University Research Archive (AURA)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2015.09.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2015License: CC BY NC NDFull-Text: http://hdl.handle.net/2164/5696Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric EnvironmentArticle . 2015License: CC BY NC NDData sources: BASE (Open Access Aggregator)Aberdeen University Research Archive (AURA)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2015.09.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Wiley Funded by:NSERCNSERCAuthors: Laurens J. Philipsen; Karen M. Gill; Anita Shepherd; Stewart B. Rood;doi: 10.1002/hyp.13180
handle: 2164/12599
AbstractThe South Saskatchewan River Basin of southern Alberta drains the transboundary central Rocky Mountains region and provides the focus for irrigation agriculture in Canada. Following extensive development, two tributaries, the Oldman and Bow rivers, were closed for further water allocations, whereas the Red Deer River (RDR) remains open. The RDR basin is at the northern limit of the North American Great Plains and may be suitable for agricultural expansion with a warming climate. To consider irrigation development and ecological impacts, it is important to understand the regional hydrologic consequences of climate change. To analyse historic trends that could extend into the future, we developed century‐long discharge records for the RDR, by coordinating data across hydrometric gauges, estimating annual flows from seasonal records, and undertaking flow naturalization to compensate for river regulation. Analyses indicated some coordination with the Pacific decadal oscillation and slight decline in summer and annual flows from 1912 to 2016 (−0.13%/year, Sen's slope). Another forecasting approach involved regional downscaling from the global circulation models, CGCMI‐A, ECHAM4, HadCM3, and NCAR‐CCM3. These projected slight flow decreases from the mountain headwaters versus increases from the foothills and boreal regions, resulting in a slight increase in overall river flows (+0.1%/year). Prior projections from these and other global circulation models ranged from slight decrease to slight increase, and the average projection of −0.05%/year approached the empirical trend. Assessments of other rivers draining the central and northern Rocky Mountains revealed a geographic transition in flow patterns over the past century. Flows from the rivers in Southern Alberta declined (around −0.15%/year), in contrast to increasing flows in north‐eastern British Columbia and the Yukon. The RDR watershed approaches this transition, and this study thus revealed regional differentiation in the hydrological consequences from climate change.
Hydrological Process... arrow_drop_down Hydrological ProcessesArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAberdeen University Research Archive (AURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/hyp.13180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Hydrological Process... arrow_drop_down Hydrological ProcessesArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAberdeen University Research Archive (AURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/hyp.13180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Wiley Funded by:UKRI | Feasibility of Afforestat..., UKRI | ADVENT (ADdressing Valuat...UKRI| Feasibility of Afforestation and Biomass energy with carbon capture storage for Greenhouse Gas Removal (FAB GGR) ,UKRI| ADVENT (ADdressing Valuation of Energy and Nature Together)Anita Shepherd; John Clifton‐Brown; Jason Kam; Sam Buckby; Astley Hastings;doi: 10.1111/gcbb.12690
handle: 2164/14728
AbstractThis study investigates the condition of commercial miscanthus fields, growers’ concerns and reasons for growing the crop and also the modelling of a realistic commercial yield. Juvenile and mature Miscanthus × giganteus crops of varying age are surveyed in growers’ fields across mid‐England. We record in‐field plant density counts and the morphology of crops of different ages. Mature crops thrive on both clay and sandy soils. Plants surveyed appear robust to drought, weeds and disease, the only vulnerability is rhizome condition when planting. Mature miscanthus planted pre‐2014 continues to develop, spreading into planting gaps and growing more tillers. In stands planted post‐2014, improved planting techniques reduce planting gaps and create a reasonably consistent planting density of 12,500 plants/ha. The main reason for growers' investment in miscanthus is not financial return, but relates to its low requirement for field operations, low maintenance cost and regeneration. This offers practical solutions for difficult field access and social acceptability near public places (related to spray operations and crop vandalism). Wildlife is abundant in these fields, largely undisturbed except for harvest. This contributes to the greening of agriculture; fields are also used for gamebird cover and educational tours. This crop is solving practical problems for growers while improving the environment. Observed yield data indicate gradual yield increase with crop age, a yield plateau but no yield decrease since 2006. In stands with low planting densities, yields plateau after 9 years. Surveyed yield data are used to parameterize the MiscanFor bioenergy model. This produces options to simulate either juvenile yields or a yield for a landscape containing different aged crops. For mature English crop yields of 12 t ha−1 year−1, second‐ and third‐year juvenile harvests average 7 t ha−1 year−1 and a surrounding 10 km by 10 km area of distributed crop age would average 9 t ha−1 year−1.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/14728Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12690&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/14728Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12690&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Wiley Funded by:UKRI | UK Energy Research Centre..., UKRI | ADVENT (ADdressing Valuat...UKRI| UK Energy Research Centre Phase 4 ,UKRI| ADVENT (ADdressing Valuation of Energy and Nature Together)Authors: Anita Shepherd; Mike Martin; Astley Hastings;doi: 10.1111/gcbb.12803
handle: 2164/16001
AbstractUncertainty is inherent in modelled projections of bioenergy with carbon capture and storage (BECCS), yet sometimes treated peripherally. One source of uncertainty comes from different climate and soil inputs. We investigated variations in 70‐year UK projections of Miscanthus × giganteus (M × g), BECCS and environmental impacts with input data. We used cohort datasets of UKCP18 RCP8.5 climate projections and Harmonized World Soil Database (HWSD) soil sequences, as inputs to the MiscanFor bioenergy model. Low annual yield occurred 1 in 10 years as a UK‐average but yield uncertainty varied regionally, especially south and east England. BECCS projections were similar among cohorts, with variation resulting from climate cohorts of the same database ensemble (3.99 ± 0.14 t C ha−1 year−1) larger than uncertainty resulting from soil sequences in each grid block (3.96 ± 0.03 t C ha−1 year−1). This is supported by annual time series, displaying variable annual climate and a close yield–BECCS–climate relationship but partial correspondence of yield and BECCS with maximal soil variability. Each HWSD soil grid square contains up to 10 ranked soil types. Predominant soil commonly has over 50% coverage, indicating why BECCS from combined soil sequences were not significantly different from BECCS using the dominant soil type. Mean BECCS from the full climate ensemble combined with the full soil sequences, over the current area of cropping limits in England and Wales, is 3.98 ± 0.14 t C ha−1 year−1. The bioenergy crop has a mean seasonal soil water deficit of 65.79 ± 4.27 mm and associated soil carbon gain of 0.22 ± 0.03 t C ha−1 year−1, with bioenergy feedstock calculated at 131 GJ t−1 y−1. The uncertainty is specific to the input datasets and model used. The message of this study is to ensure that uncertainty is accounted for when interpreting modelled projections of land use impacts.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/16001Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/16001Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Wiley Funded by:UKRI | ADVENT (ADdressing Valuat..., UKRI | Feasibility of Afforestat...UKRI| ADVENT (ADdressing Valuation of Energy and Nature Together) ,UKRI| Feasibility of Afforestation and Biomass energy with carbon capture storage for Greenhouse Gas Removal (FAB GGR)Anita Shepherd; Emma Littleton; John Clifton‐Brown; Mike Martin; Astley Hastings;doi: 10.1111/gcbb.12671
handle: 2164/14144 , 10871/124852
AbstractIn this article, we modify bioenergy model MiscanFor investigating global and UK potentials for Miscanthus × giganteus as a bioenergy resource for carbon capture in the 21st century under the RCP 2.6 climate scenario using SSP2 land use projections. UK bioenergy land projections begin in the 2040s, 60 year average is 0.47 Mega ha rising to 1.9 Mega ha (2090s). Our projections estimate UK energy generation of 0.09 EJ/year (60 year average) and 0.37 EJ/year (2090s), under stable miscanthus yields of 12 t ha−1 year−1. We estimate aggregated UK soil carbon (C) increases of 0.09 Mt C/year (60 year average) and 0.14 Mt C/year (2090s) with C capture plus sequestration rate of 2.8 Mt C/year (60 year average) and 10.49 Mt C/year (2090s). Global bioenergy land use begins in 2010, 90 year average is 0.13 Gha rising to 0.19 Gha by the 2090s, miscanthus projections give a 90 year average energy generation of 16 EJ/year, rising to 26.7 EJ/year by the 2090s. The largest national capabilities for yield, energy and C increase are projected to be Brazil and China. Ninety year average global miscanthus yield of 1 Gt/year will be 1.7 Gt/year by the 2090s. Global soil C sequestration increases less with time, from a century average of 73.6 Mt C/year to 42.9 Mt C/year by the 2090s with C capture plus sequestration rate of 0.54 Gt C/year (60 year average) and 0.81 Gt C/year (2090s). M. giganteus could provide just over 5% of the bioenergy requirement by the 2090s to satisfy the RCP 2.6 SSP2 climate scenario. The choice of global land use data introduces a potential source of error. In reality, multiple bioenergy sources will be used, best suited to local conditions, but results highlight global requirements for development in bioenergy crops, infrastructure and support.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10871/124852Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/14144Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10871/124852Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/14144Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:Elsevier BV Funded by:UKRI | Supergen Bioenergy Hub 20...UKRI| Supergen Bioenergy Hub 2018Andrew Welfle; Alberto Almena; Muhammad Naveed Arshad; Scott W. Banks; Isabela Butnar; Katie Chong; Seth Cooper; Helen Daly; Samira García Freites; Fatih Güleç; Christopher Hardacre; Robert A. Holland; Lan Lan; Chai Siah Lee; Peter K. J. Robertson; Rebecca Rowe; A. Shepherd; Nathan Skillen; Silvia Tedesco; Patricia Thornley; Pedro Verdía; Ian Watson; Orla Williams; Mirjam Röder;La bioénergie est largement incluse dans les stratégies énergétiques pour son potentiel d'atténuation des GES. Les technologies de la bioénergie devront probablement être déployées à grande échelle pour atteindre les objectifs de décarbonation et, par conséquent, la biomasse devra être de plus en plus cultivée/mobilisée. Les risques de durabilité associés à la bioénergie peuvent s'intensifier avec l'augmentation du déploiement et lorsque les matières premières proviennent du commerce international. Cette recherche applique le modèle d'indicateur de durabilité de la bioéconomie (BSIM) pour cartographier et analyser la performance de la bioénergie sur 126 questions de durabilité, en évaluant 16 études de cas de bioénergie qui reflètent l'étendue des ressources de biomasse, des technologies, des vecteurs énergétiques et des bioproduits. La recherche trouve des tendances communes en matière de performance de durabilité dans tous les projets qui peuvent éclairer la politique et la prise de décision en matière de bioénergie. Les avantages potentiels en matière de durabilité sont identifiés pour les personnes (emplois, compétences, revenus, accès à l'énergie) ; pour le développement (économie, énergie, utilisation des terres) ; pour les systèmes naturels (sol, métaux lourds) ; et pour le changement climatique (émissions, carburants). En outre, des tendances cohérentes des risques de durabilité où une attention particulière est nécessaire pour assurer la viabilité des projets de bioénergie, y compris pour les infrastructures, la mobilisation des matières premières, la techno-économie et les stocks de carbone. L'atténuation des émissions peut être un objectif principal pour la bioénergie, cette recherche révèle que les projets de bioénergie peuvent offrir des avantages potentiels bien au-delà des émissions - il existe un argument en faveur du soutien de projets basés sur les services écosystémiques et/ou la stimulation économique qu'ils peuvent fournir. Compte tenu également de la vaste dynamique et des caractéristiques des projets de bioénergie, une approche rigide de l'évaluation de la durabilité peut être incompatible. L'octroi de « crédits » sur un plus large éventail d'indicateurs de durabilité, en plus d'exiger des performances minimales dans des domaines clés, peut être plus efficace pour assurer la durabilité de la bioénergie. La bioenergía está ampliamente incluida en las estrategias energéticas por su potencial de mitigación de GEI. Es probable que las tecnologías de bioenergía tengan que implementarse a escala para cumplir con los objetivos de descarbonización y, en consecuencia, la biomasa tendrá que crecer/movilizarse cada vez más. Los riesgos de sostenibilidad asociados con la bioenergía pueden intensificarse con el aumento del despliegue y donde las materias primas se obtienen a través del comercio internacional. Esta investigación aplica el Modelo de Indicadores de Sostenibilidad de la Bioeconomía (BSIM) para mapear y analizar el rendimiento de la bioenergía en 126 temas de sostenibilidad, evaluando 16 estudios de casos de bioenergía que reflejan la amplitud de los recursos de biomasa, las tecnologías, los vectores energéticos y los bioproductos. La investigación encuentra tendencias comunes en el desempeño de la sostenibilidad en todos los proyectos que pueden informar la política de bioenergía y la toma de decisiones. Se identifican posibles beneficios de sostenibilidad para las personas (empleos, habilidades, ingresos, acceso a la energía); para el desarrollo (economía, energía, utilización de la tierra); para los sistemas naturales (suelo, metales pesados) y para el cambio climático (emisiones, combustibles). Además, las tendencias consistentes de los riesgos de sostenibilidad donde se requiere un enfoque para garantizar la viabilidad de los proyectos de bioenergía, incluida la infraestructura, la movilización de materias primas, la tecnoeconomía y las reservas de carbono. La mitigación de emisiones puede ser un objetivo principal para la bioenergía, esta investigación encuentra que los proyectos de bioenergía pueden proporcionar beneficios potenciales mucho más allá de las emisiones: existe un argumento para apoyar proyectos basados en los servicios ecosistémicos y/o la estimulación económica que pueden brindar. También dada la amplia dinámica y características de los proyectos de bioenergía, un enfoque rígido de evaluación de la sostenibilidad puede ser incompatible. La concesión de "créditos" a través de una gama más amplia de indicadores de sostenibilidad, además de requerir rendimientos mínimos en áreas clave, puede ser más eficaz para garantizar la sostenibilidad de la bioenergía. Bioenergy is widely included in energy strategies for its GHG mitigation potential. Bioenergy technologies will likely have to be deployed at scale to meet decarbonisation targets, and consequently biomass will have to be increasingly grown/mobilised. Sustainability risks associated with bioenergy may intensify with increasing deployment and where feedstocks are sourced through international trade. This research applies the Bioeconomy Sustainability Indicator Model (BSIM) to map and analyse the performance of bioenergy across 126 sustainability issues, evaluating 16 bioenergy case studies that reflect the breadth of biomass resources, technologies, energy vectors and bio-products. The research finds common trends in sustainability performance across projects that can inform bioenergy policy and decision making. Potential sustainability benefits are identified for People (jobs, skills, income, energy access); for Development (economy, energy, land utilisation); for Natural Systems (soil, heavy metals), and; for Climate Change (emissions, fuels). Also, consistent trends of sustainability risks where focus is required to ensure the viability of bioenergy projects, including for infrastructure, feedstock mobilisation, techno-economics and carbon stocks. Emission mitigation may be a primary objective for bioenergy, this research finds bioenergy projects can provide potential benefits far beyond emissions - there is an argument for supporting projects based on the ecosystem services and/or economic stimulation they may deliver. Also given the broad dynamics and characteristics of bioenergy projects, a rigid approach of assessing sustainability may be incompatible. Awarding 'credit' across a broader range of sustainability indicators in addition to requiring minimum performances in key areas, may be more effective at ensuring bioenergy sustainability. يتم تضمين الطاقة الحيوية على نطاق واسع في استراتيجيات الطاقة لإمكانات التخفيف من غازات الدفيئة. من المرجح أن يتم نشر تقنيات الطاقة الحيوية على نطاق واسع لتحقيق أهداف إزالة الكربون، وبالتالي سيتعين زيادة نمو/تعبئة الكتلة الحيوية. قد تزداد مخاطر الاستدامة المرتبطة بالطاقة الحيوية مع زيادة الانتشار وحيث يتم الحصول على المواد الأولية من خلال التجارة الدولية. يطبق هذا البحث نموذج مؤشر استدامة الاقتصاد الحيوي (BSIM) لرسم وتحليل أداء الطاقة الحيوية عبر 126 قضية استدامة، وتقييم 16 دراسة حالة للطاقة الحيوية تعكس اتساع موارد الكتلة الحيوية والتقنيات وناقلات الطاقة والمنتجات الحيوية. وجد البحث اتجاهات مشتركة في أداء الاستدامة عبر المشاريع التي يمكن أن تسترشد بها سياسة الطاقة الحيوية وصنع القرار. يتم تحديد فوائد الاستدامة المحتملة للناس (الوظائف والمهارات والدخل والوصول إلى الطاقة) ؛ للتنمية (الاقتصاد والطاقة واستخدام الأراضي) ؛ للنظم الطبيعية (التربة والمعادن الثقيلة)، و ؛ لتغير المناخ (الانبعاثات والوقود). أيضًا، الاتجاهات المتسقة لمخاطر الاستدامة حيث يكون التركيز مطلوبًا لضمان استمرارية مشاريع الطاقة الحيوية، بما في ذلك البنية التحتية وتعبئة المواد الوسيطة والاقتصاد التقني ومخزونات الكربون. قد يكون تخفيف الانبعاثات هدفًا أساسيًا للطاقة الحيوية، ويجد هذا البحث أن مشاريع الطاقة الحيوية يمكن أن توفر فوائد محتملة تتجاوز الانبعاثات - هناك حجة لدعم المشاريع القائمة على خدمات النظام الإيكولوجي و/أو التحفيز الاقتصادي الذي قد تقدمه. أيضًا نظرًا للديناميكيات والخصائص الواسعة لمشاريع الطاقة الحيوية، قد يكون النهج الصارم لتقييم الاستدامة غير متوافق. قد يكون منح "الائتمان" عبر مجموعة أوسع من مؤشرات الاستدامة بالإضافة إلى طلب الحد الأدنى من الأداء في المجالات الرئيسية أكثر فعالية في ضمان استدامة الطاقة الحيوية.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/21630Data sources: Bielefeld Academic Search Engine (BASE)University of Bath's research portalArticle . 2023Data sources: University of Bath's research portalThe University of Manchester - Institutional RepositoryArticle . 2023Data sources: The University of Manchester - Institutional Repositorye-space at Manchester Metropolitan UniversityArticle . 2023Data sources: e-space at Manchester Metropolitan UniversityQueen's University Belfast Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2023.106919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/21630Data sources: Bielefeld Academic Search Engine (BASE)University of Bath's research portalArticle . 2023Data sources: University of Bath's research portalThe University of Manchester - Institutional RepositoryArticle . 2023Data sources: The University of Manchester - Institutional Repositorye-space at Manchester Metropolitan UniversityArticle . 2023Data sources: e-space at Manchester Metropolitan UniversityQueen's University Belfast Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2023.106919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United Kingdom, Netherlands, Italy, United Kingdom, Italy, Italy, ItalyPublisher:Wiley Funded by:UKRI | Perennial Biomass Crops f..., UKRI | UK Energy Research Centre..., UKRI | Supergen Bioenergy Hub 20... +3 projectsUKRI| Perennial Biomass Crops for Greenhouse Gas Removal ,UKRI| UK Energy Research Centre Phase 4 ,UKRI| Supergen Bioenergy Hub 2018 ,UKRI| EPSRC Centre for Doctoral Training in Bioenergy ,EC| GRACE ,EC| MAGICAuthors: Clifton‐Brown, John; Hastings, Astley; von Cossel, Moritz; Murphy‐Bokern, Donal; +36 AuthorsClifton‐Brown, John; Hastings, Astley; von Cossel, Moritz; Murphy‐Bokern, Donal; McCalmont, Jon; Whitaker, Jeanette; Alexopoulou, Efi; Amaducci, Stefano; Andronic, Larisa; Ashman, Christopher; Awty‐Carroll, Danny; Bhatia, Rakesh; Breuer, Lutz; Cosentino, Salvatore; Cracroft‐Eley, William; Donnison, Iain; Elbersen, Berien; Ferrarini, Andrea; Ford, Judith; Greef, Jörg; Ingram, Julie; Lewandowski, Iris; Magenau, Elena; Mos, Michal; Petrick, Martin; Pogrzeba, Marta; Robson, Paul; Rowe, Rebecca L.; Sandu, Anatolii; Schwarz, Kai‐Uwe; Scordia, Danilo; Scurlock, Jonathan; Shepherd, Anita; Thornton, Judith; Trindade, Luisa M.; Vetter, Sylvia; Wagner, Moritz; Wu, Pei‐Chen; Yamada, Toshihiko; Kiesel, Andreas;doi: 10.1111/gcbb.13038
pmid: 38505831
pmc: PMC10946487
handle: 10807/238914 , 11570/3294508 , 20.500.11769/558651 , 2164/21472
doi: 10.1111/gcbb.13038
pmid: 38505831
pmc: PMC10946487
handle: 10807/238914 , 11570/3294508 , 20.500.11769/558651 , 2164/21472
AbstractDemand for sustainably produced biomass is expected to increase with the need to provide renewable commodities, improve resource security and reduce greenhouse gas emissions in line with COP26 commitments. Studies have demonstrated additional environmental benefits of using perennial biomass crops (PBCs), when produced appropriately, as a feedstock for the growing bioeconomy, including utilisation for bioenergy (with or without carbon capture and storage). PBCs can potentially contribute to Common Agricultural Policy (CAP) (2023–27) objectives provided they are carefully integrated into farming systems and landscapes. Despite significant research and development (R&D) investment over decades in herbaceous and coppiced woody PBCs, deployment has largely stagnated due to social, economic and policy uncertainties. This paper identifies the challenges in creating policies that are acceptable to all actors. Development will need to be informed by measurement, reporting and verification (MRV) of greenhouse gas emissions reductions and other environmental, economic and social metrics. It discusses interlinked issues that must be considered in the expansion of PBC production: (i) available land; (ii) yield potential; (iii) integration into farming systems; (iv) R&D requirements; (v) utilisation options; and (vi) market systems and the socio‐economic environment. It makes policy recommendations that would enable greater PBC deployment: (1) incentivise farmers and land managers through specific policy measures, including carbon pricing, to allocate their less productive and less profitable land for uses which deliver demonstrable greenhouse gas reductions; (2) enable greenhouse gas mitigation markets to develop and offer secure contracts for commercial developers of verifiable low‐carbon bioenergy and bioproducts; (3) support innovation in biomass utilisation value chains; and (4) continue long‐term, strategic R&D and education for positive environmental, economic and social sustainability impacts.
NERC Open Research A... arrow_drop_down PubliCattArticle . 2023License: CC BYFull-Text: https://publicatt.unicatt.it/bitstream/10807/238914/1/Clifton-Brown%20et%20al.%202023.pdfData sources: PubliCattIRIS - Università degli Studi di CataniaArticle . 2023License: CC BYData sources: IRIS - Università degli Studi di CataniaNatural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsAberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down PubliCattArticle . 2023License: CC BYFull-Text: https://publicatt.unicatt.it/bitstream/10807/238914/1/Clifton-Brown%20et%20al.%202023.pdfData sources: PubliCattIRIS - Università degli Studi di CataniaArticle . 2023License: CC BYData sources: IRIS - Università degli Studi di CataniaNatural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsAberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023 United Kingdom, Netherlands, NetherlandsPublisher:Wiley Funded by:EC | ESM2025, UKRI | ADVENT (ADdressing Valuat..., UKRI | Feasibility of Afforestat...EC| ESM2025 ,UKRI| ADVENT (ADdressing Valuation of Energy and Nature Together) ,UKRI| Feasibility of Afforestation and Biomass energy with carbon capture storage for Greenhouse Gas Removal (FAB GGR)Littleton, Emma W.; Shepherd, Anita; Harper, Anna B.; Hastings, Astley F. S.; Vaughan, Naomi E.; Doelman, Jonathan; van Vuuren, Detlef P.; Lenton, Timothy M.;doi: 10.1111/gcbb.12982
handle: 10871/130438 , 2164/19964
AbstractLarge‐scale bioenergy plays a key role in climate change mitigation scenarios, but its efficacy is uncertain. This study aims to quantify that uncertainty by contrasting the results of three different types of models under the same mitigation scenario (RCP2.6‐SSP2), consistent with a 2°C temperature target. This analysis focuses on a single bioenergy feedstock, Miscanthus × giganteus, and contrasts projections for its yields and environmental effects from an integrated assessment model (IMAGE), a land surface and dynamic global vegetation model tailored to Miscanthus bioenergy (JULES) and a bioenergy crop model (MiscanFor). Under the present climate, JULES, IMAGE and MiscanFor capture the observed magnitude and variability in Miscanthus yields across Europe; yet in the tropics JULES and IMAGE predict high yields, whereas MiscanFor predicts widespread drought‐related diebacks. 2040–2049 projections show there is a rapid scale up of over 200 Mha bioenergy cropping area in the tropics. Resulting biomass yield ranges from 12 (MiscanFor) to 39 (JULES) Gt dry matter over that decade. Change in soil carbon ranges from +0.7 Pg C (MiscanFor) to −2.8 Pg C (JULES), depending on preceding land cover and soil carbon.2090–99 projections show large‐scale biomass energy with carbon capture and storage (BECCS) is projected in Europe. The models agree that <2°C global warming will increase yields in the higher latitudes, but drought stress in the Mediterranean region could produce low yields (MiscanFor), and significant losses of soil carbon (JULES and IMAGE). These results highlight the uncertainty in rapidly scaling‐up biomass energy supply, especially in dry tropical climates and in regions where future climate change could result in drier conditions. This has important policy implications—because prominently used scenarios to limit warming to ‘well below 2°C’ (including the one explored here) depend upon its effectiveness.
University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryOpen Research ExeterArticle . 2022License: CC BYFull-Text: https://doi.org/10.1111/gcbb.12982Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19964Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert University of East A... arrow_drop_down University of East Anglia digital repositoryArticle . 2023 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryOpen Research ExeterArticle . 2022License: CC BYFull-Text: https://doi.org/10.1111/gcbb.12982Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/19964Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12982&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Funded by:UKRI | The North Wyke Farm Platf..., UKRI | S2N - Soil to Nutrition -...UKRI| The North Wyke Farm Platform- National Capability ,UKRI| S2N - Soil to Nutrition - Work package 2 (WP2) - Adaptive management systems for improved efficiency and nutritional qualityAnita Shepherd; Melannie D. Hartman; Nuala Fitton; Claire A. Horrocks; Robert M. Dunn; Astley Hastings; Laura M. Cardenas;This study argues that several metrics are necessary to build up a picture of yield gain and nitrogen losses for ryegrass sheep pastures. Metrics of resource use efficiency, nitrous oxide emission factor, leached and emitted nitrogen per unit product are used to encompass yield gain and losses relating to nitrogen. These metrics are calculated from field system simulations using the DAYCENT model, validated from field sensor measurements and observations relating to crop yield, fertilizer applied, ammonium in soil and nitrate in soil and water, nitrous oxide and soil moisture. Three ryegrass pastures with traditional management for sheep grazing and silage are studied. As expected, the metrics between long-term ryegrass swards in this study are not very dissimilar. Slight differences between simulations of different field systems likely result from varying soil bulk density, as revealed by a sensitivity analysis applied to DAYCENT. The field with the highest resource use efficiency was also the field with the lowest leached inorganic nitrogen per unit product, and vice versa. Field system simulation using climate projections indicates an increase in nitrogen loss to water and air, with a corresponding increase in biomass. If we simulate both nitrogen loss by leaching and by gaseous emission, we obtain a fuller picture. Under climate projections, the field with the lowest determined nitrous oxide emissions factor, had a relatively high leached nitrogen per product amongst the three fields. When management differences were investigated, the amount of nitrous oxide per unit biomass was found to be significantly higher for an annual management of grazing only, than a silage harvest plus grazing, likely relating to the increased period of livestock on pasture. This work emphasizes how several metrics validated by auto-sampled data provide a measure of nitrogen loss, efficiency and best management practise.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2019License: CC BYFull-Text: http://hdl.handle.net/2164/12389Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefAberdeen University Research Archive (AURA)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.05.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2019License: CC BYFull-Text: http://hdl.handle.net/2164/12389Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BYData sources: CrossrefAberdeen University Research Archive (AURA)Article . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.05.038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 United KingdomPublisher:Wiley Funded by:UKRI | Perennial Biomass Crops f..., UKRI | Supergen Bioenergy Hub 20...UKRI| Perennial Biomass Crops for Greenhouse Gas Removal ,UKRI| Supergen Bioenergy Hub 2018Rebecca von Hellfeld; Astley Hastings; Jason Kam; Rebecca Rowe; John Clifton‐Brown; Iain Donnison; Anita Shepherd;AbstractTo achieve net zero greenhouse gas emission by 2050 as set out by the 2019 amendment to the 2008 UK Climate Change Act, a major shift towards renewable energy is needed. This includes the development of new methods along with improving and upscaling existing technologies. One example of new methods in bioenergy is developing new Miscanthus cultivars for electricity generation via thermal power station furnaces. Miscanthus is still relatively new compared with other agriculture practices, so market assessments and improvements are needed to reduce the barriers to entry for prospective growers. This publication provides a profile of UK Miscanthus growers and their businesses, their experiences of benefits and drawbacks of the crop, and what they see as potential barriers to entry for prospective farmers. A survey of current Miscanthus growers in England and Wales was conducted and indicated that most farmers were content with the crop and that its environmental and economic benefits were noted. However, it was evident that with a geographically limited UK market, growers wanted to see a better distribution of biomass processing stations to reduce the ongoing costs of transport. With growing demand for renewables, including bio‐energy sources, it was determined important to provide information and support for stable farming operations and to incentivise the adoption of Miscanthus. Such incentives include ongoing development of new cultivars, focussing on traits such as production potential and stressor resilience, and growers indicated preference for an annual planting grant. These developments are predicted to further improve the crop's profit margin, making it a more cost‐effective crop for farmers. Sensitively managed Miscanthus also has the potential to contribute to carbon sequestration, soil health, and aspects of farmland biodiversity. Incentivising such management in government land–based environmental schemes would offer additional income streams and help to promote environmental positive crop planting.
NERC Open Research A... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/19313Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2022License: CC BYFull-Text: https://hdl.handle.net/2164/19313Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12997&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2015 United KingdomPublisher:Elsevier BV Shepherd, A.; Yan, X.; Nayak, D.; Newbold, J.; Moran, D.; Dhanoa, M. S.; Goulding, K. W. T.; Smith, P.; Cardenas, L. M.;China accounts for a third of global nitrogen fertilizer consumption. Under an International Panel on Climate Change (IPCC) Tier 2 assessment, emission factors (EFs) are developed for the major crop types using country-specific data. IPCC advises a separate calculation for the direct nitrous oxide (N2O) emissions of rice cultivation from that of cropland and the consideration of the water regime used for irrigation. In this paper we combine these requirements in two independent analyses, using different data quality acceptance thresholds, to determine the influential parameters on emissions with which to disaggregate and create N2O EFs. Across China, the N2O EF for lowland horticulture was slightly higher (between 0.74% and 1.26% of fertilizer applied) than that for upland crops (values ranging between 0.40% and 1.54%), and significantly higher than for rice (values ranging between 0.29% and 0.66% on temporarily drained soils, and between 0.15% and 0.37% on un-drained soils). Higher EFs for rice were associated with longer periods of drained soil and the use of compound fertilizer; lower emissions were associated with the use of urea or acid soils. Higher EFs for upland crops were associated with clay soil, compound fertilizer or maize crops; lower EFs were associated with sandy soil and the use of urea. Variation in emissions for lowland vegetable crops was closely associated with crop type. The two independent analyses in this study produced consistent disaggregated N2O EFs for rice and mixed crops, showing that the use of influential cropping parameters can produce robust EFs for China.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2015License: CC BY NC NDFull-Text: http://hdl.handle.net/2164/5696Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric EnvironmentArticle . 2015License: CC BY NC NDData sources: BASE (Open Access Aggregator)Aberdeen University Research Archive (AURA)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2015.09.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2015License: CC BY NC NDFull-Text: http://hdl.handle.net/2164/5696Data sources: Bielefeld Academic Search Engine (BASE)Atmospheric EnvironmentArticle . 2015License: CC BY NC NDData sources: BASE (Open Access Aggregator)Aberdeen University Research Archive (AURA)Article . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2015.09.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Wiley Funded by:NSERCNSERCAuthors: Laurens J. Philipsen; Karen M. Gill; Anita Shepherd; Stewart B. Rood;doi: 10.1002/hyp.13180
handle: 2164/12599
AbstractThe South Saskatchewan River Basin of southern Alberta drains the transboundary central Rocky Mountains region and provides the focus for irrigation agriculture in Canada. Following extensive development, two tributaries, the Oldman and Bow rivers, were closed for further water allocations, whereas the Red Deer River (RDR) remains open. The RDR basin is at the northern limit of the North American Great Plains and may be suitable for agricultural expansion with a warming climate. To consider irrigation development and ecological impacts, it is important to understand the regional hydrologic consequences of climate change. To analyse historic trends that could extend into the future, we developed century‐long discharge records for the RDR, by coordinating data across hydrometric gauges, estimating annual flows from seasonal records, and undertaking flow naturalization to compensate for river regulation. Analyses indicated some coordination with the Pacific decadal oscillation and slight decline in summer and annual flows from 1912 to 2016 (−0.13%/year, Sen's slope). Another forecasting approach involved regional downscaling from the global circulation models, CGCMI‐A, ECHAM4, HadCM3, and NCAR‐CCM3. These projected slight flow decreases from the mountain headwaters versus increases from the foothills and boreal regions, resulting in a slight increase in overall river flows (+0.1%/year). Prior projections from these and other global circulation models ranged from slight decrease to slight increase, and the average projection of −0.05%/year approached the empirical trend. Assessments of other rivers draining the central and northern Rocky Mountains revealed a geographic transition in flow patterns over the past century. Flows from the rivers in Southern Alberta declined (around −0.15%/year), in contrast to increasing flows in north‐eastern British Columbia and the Yukon. The RDR watershed approaches this transition, and this study thus revealed regional differentiation in the hydrological consequences from climate change.
Hydrological Process... arrow_drop_down Hydrological ProcessesArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAberdeen University Research Archive (AURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/hyp.13180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Hydrological Process... arrow_drop_down Hydrological ProcessesArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefAberdeen University Research Archive (AURA)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/hyp.13180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Wiley Funded by:UKRI | Feasibility of Afforestat..., UKRI | ADVENT (ADdressing Valuat...UKRI| Feasibility of Afforestation and Biomass energy with carbon capture storage for Greenhouse Gas Removal (FAB GGR) ,UKRI| ADVENT (ADdressing Valuation of Energy and Nature Together)Anita Shepherd; John Clifton‐Brown; Jason Kam; Sam Buckby; Astley Hastings;doi: 10.1111/gcbb.12690
handle: 2164/14728
AbstractThis study investigates the condition of commercial miscanthus fields, growers’ concerns and reasons for growing the crop and also the modelling of a realistic commercial yield. Juvenile and mature Miscanthus × giganteus crops of varying age are surveyed in growers’ fields across mid‐England. We record in‐field plant density counts and the morphology of crops of different ages. Mature crops thrive on both clay and sandy soils. Plants surveyed appear robust to drought, weeds and disease, the only vulnerability is rhizome condition when planting. Mature miscanthus planted pre‐2014 continues to develop, spreading into planting gaps and growing more tillers. In stands planted post‐2014, improved planting techniques reduce planting gaps and create a reasonably consistent planting density of 12,500 plants/ha. The main reason for growers' investment in miscanthus is not financial return, but relates to its low requirement for field operations, low maintenance cost and regeneration. This offers practical solutions for difficult field access and social acceptability near public places (related to spray operations and crop vandalism). Wildlife is abundant in these fields, largely undisturbed except for harvest. This contributes to the greening of agriculture; fields are also used for gamebird cover and educational tours. This crop is solving practical problems for growers while improving the environment. Observed yield data indicate gradual yield increase with crop age, a yield plateau but no yield decrease since 2006. In stands with low planting densities, yields plateau after 9 years. Surveyed yield data are used to parameterize the MiscanFor bioenergy model. This produces options to simulate either juvenile yields or a yield for a landscape containing different aged crops. For mature English crop yields of 12 t ha−1 year−1, second‐ and third‐year juvenile harvests average 7 t ha−1 year−1 and a surrounding 10 km by 10 km area of distributed crop age would average 9 t ha−1 year−1.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/14728Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12690&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/14728Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12690&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Wiley Funded by:UKRI | UK Energy Research Centre..., UKRI | ADVENT (ADdressing Valuat...UKRI| UK Energy Research Centre Phase 4 ,UKRI| ADVENT (ADdressing Valuation of Energy and Nature Together)Authors: Anita Shepherd; Mike Martin; Astley Hastings;doi: 10.1111/gcbb.12803
handle: 2164/16001
AbstractUncertainty is inherent in modelled projections of bioenergy with carbon capture and storage (BECCS), yet sometimes treated peripherally. One source of uncertainty comes from different climate and soil inputs. We investigated variations in 70‐year UK projections of Miscanthus × giganteus (M × g), BECCS and environmental impacts with input data. We used cohort datasets of UKCP18 RCP8.5 climate projections and Harmonized World Soil Database (HWSD) soil sequences, as inputs to the MiscanFor bioenergy model. Low annual yield occurred 1 in 10 years as a UK‐average but yield uncertainty varied regionally, especially south and east England. BECCS projections were similar among cohorts, with variation resulting from climate cohorts of the same database ensemble (3.99 ± 0.14 t C ha−1 year−1) larger than uncertainty resulting from soil sequences in each grid block (3.96 ± 0.03 t C ha−1 year−1). This is supported by annual time series, displaying variable annual climate and a close yield–BECCS–climate relationship but partial correspondence of yield and BECCS with maximal soil variability. Each HWSD soil grid square contains up to 10 ranked soil types. Predominant soil commonly has over 50% coverage, indicating why BECCS from combined soil sequences were not significantly different from BECCS using the dominant soil type. Mean BECCS from the full climate ensemble combined with the full soil sequences, over the current area of cropping limits in England and Wales, is 3.98 ± 0.14 t C ha−1 year−1. The bioenergy crop has a mean seasonal soil water deficit of 65.79 ± 4.27 mm and associated soil carbon gain of 0.22 ± 0.03 t C ha−1 year−1, with bioenergy feedstock calculated at 131 GJ t−1 y−1. The uncertainty is specific to the input datasets and model used. The message of this study is to ensure that uncertainty is accounted for when interpreting modelled projections of land use impacts.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/16001Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/16001Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12803&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Wiley Funded by:UKRI | ADVENT (ADdressing Valuat..., UKRI | Feasibility of Afforestat...UKRI| ADVENT (ADdressing Valuation of Energy and Nature Together) ,UKRI| Feasibility of Afforestation and Biomass energy with carbon capture storage for Greenhouse Gas Removal (FAB GGR)Anita Shepherd; Emma Littleton; John Clifton‐Brown; Mike Martin; Astley Hastings;doi: 10.1111/gcbb.12671
handle: 2164/14144 , 10871/124852
AbstractIn this article, we modify bioenergy model MiscanFor investigating global and UK potentials for Miscanthus × giganteus as a bioenergy resource for carbon capture in the 21st century under the RCP 2.6 climate scenario using SSP2 land use projections. UK bioenergy land projections begin in the 2040s, 60 year average is 0.47 Mega ha rising to 1.9 Mega ha (2090s). Our projections estimate UK energy generation of 0.09 EJ/year (60 year average) and 0.37 EJ/year (2090s), under stable miscanthus yields of 12 t ha−1 year−1. We estimate aggregated UK soil carbon (C) increases of 0.09 Mt C/year (60 year average) and 0.14 Mt C/year (2090s) with C capture plus sequestration rate of 2.8 Mt C/year (60 year average) and 10.49 Mt C/year (2090s). Global bioenergy land use begins in 2010, 90 year average is 0.13 Gha rising to 0.19 Gha by the 2090s, miscanthus projections give a 90 year average energy generation of 16 EJ/year, rising to 26.7 EJ/year by the 2090s. The largest national capabilities for yield, energy and C increase are projected to be Brazil and China. Ninety year average global miscanthus yield of 1 Gt/year will be 1.7 Gt/year by the 2090s. Global soil C sequestration increases less with time, from a century average of 73.6 Mt C/year to 42.9 Mt C/year by the 2090s with C capture plus sequestration rate of 0.54 Gt C/year (60 year average) and 0.81 Gt C/year (2090s). M. giganteus could provide just over 5% of the bioenergy requirement by the 2090s to satisfy the RCP 2.6 SSP2 climate scenario. The choice of global land use data introduces a potential source of error. In reality, multiple bioenergy sources will be used, best suited to local conditions, but results highlight global requirements for development in bioenergy crops, infrastructure and support.
Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10871/124852Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/14144Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Open Research Exeter arrow_drop_down Open Research ExeterArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10871/124852Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/2164/14144Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12671&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United KingdomPublisher:Elsevier BV Funded by:UKRI | Supergen Bioenergy Hub 20...UKRI| Supergen Bioenergy Hub 2018Andrew Welfle; Alberto Almena; Muhammad Naveed Arshad; Scott W. Banks; Isabela Butnar; Katie Chong; Seth Cooper; Helen Daly; Samira García Freites; Fatih Güleç; Christopher Hardacre; Robert A. Holland; Lan Lan; Chai Siah Lee; Peter K. J. Robertson; Rebecca Rowe; A. Shepherd; Nathan Skillen; Silvia Tedesco; Patricia Thornley; Pedro Verdía; Ian Watson; Orla Williams; Mirjam Röder;La bioénergie est largement incluse dans les stratégies énergétiques pour son potentiel d'atténuation des GES. Les technologies de la bioénergie devront probablement être déployées à grande échelle pour atteindre les objectifs de décarbonation et, par conséquent, la biomasse devra être de plus en plus cultivée/mobilisée. Les risques de durabilité associés à la bioénergie peuvent s'intensifier avec l'augmentation du déploiement et lorsque les matières premières proviennent du commerce international. Cette recherche applique le modèle d'indicateur de durabilité de la bioéconomie (BSIM) pour cartographier et analyser la performance de la bioénergie sur 126 questions de durabilité, en évaluant 16 études de cas de bioénergie qui reflètent l'étendue des ressources de biomasse, des technologies, des vecteurs énergétiques et des bioproduits. La recherche trouve des tendances communes en matière de performance de durabilité dans tous les projets qui peuvent éclairer la politique et la prise de décision en matière de bioénergie. Les avantages potentiels en matière de durabilité sont identifiés pour les personnes (emplois, compétences, revenus, accès à l'énergie) ; pour le développement (économie, énergie, utilisation des terres) ; pour les systèmes naturels (sol, métaux lourds) ; et pour le changement climatique (émissions, carburants). En outre, des tendances cohérentes des risques de durabilité où une attention particulière est nécessaire pour assurer la viabilité des projets de bioénergie, y compris pour les infrastructures, la mobilisation des matières premières, la techno-économie et les stocks de carbone. L'atténuation des émissions peut être un objectif principal pour la bioénergie, cette recherche révèle que les projets de bioénergie peuvent offrir des avantages potentiels bien au-delà des émissions - il existe un argument en faveur du soutien de projets basés sur les services écosystémiques et/ou la stimulation économique qu'ils peuvent fournir. Compte tenu également de la vaste dynamique et des caractéristiques des projets de bioénergie, une approche rigide de l'évaluation de la durabilité peut être incompatible. L'octroi de « crédits » sur un plus large éventail d'indicateurs de durabilité, en plus d'exiger des performances minimales dans des domaines clés, peut être plus efficace pour assurer la durabilité de la bioénergie. La bioenergía está ampliamente incluida en las estrategias energéticas por su potencial de mitigación de GEI. Es probable que las tecnologías de bioenergía tengan que implementarse a escala para cumplir con los objetivos de descarbonización y, en consecuencia, la biomasa tendrá que crecer/movilizarse cada vez más. Los riesgos de sostenibilidad asociados con la bioenergía pueden intensificarse con el aumento del despliegue y donde las materias primas se obtienen a través del comercio internacional. Esta investigación aplica el Modelo de Indicadores de Sostenibilidad de la Bioeconomía (BSIM) para mapear y analizar el rendimiento de la bioenergía en 126 temas de sostenibilidad, evaluando 16 estudios de casos de bioenergía que reflejan la amplitud de los recursos de biomasa, las tecnologías, los vectores energéticos y los bioproductos. La investigación encuentra tendencias comunes en el desempeño de la sostenibilidad en todos los proyectos que pueden informar la política de bioenergía y la toma de decisiones. Se identifican posibles beneficios de sostenibilidad para las personas (empleos, habilidades, ingresos, acceso a la energía); para el desarrollo (economía, energía, utilización de la tierra); para los sistemas naturales (suelo, metales pesados) y para el cambio climático (emisiones, combustibles). Además, las tendencias consistentes de los riesgos de sostenibilidad donde se requiere un enfoque para garantizar la viabilidad de los proyectos de bioenergía, incluida la infraestructura, la movilización de materias primas, la tecnoeconomía y las reservas de carbono. La mitigación de emisiones puede ser un objetivo principal para la bioenergía, esta investigación encuentra que los proyectos de bioenergía pueden proporcionar beneficios potenciales mucho más allá de las emisiones: existe un argumento para apoyar proyectos basados en los servicios ecosistémicos y/o la estimulación económica que pueden brindar. También dada la amplia dinámica y características de los proyectos de bioenergía, un enfoque rígido de evaluación de la sostenibilidad puede ser incompatible. La concesión de "créditos" a través de una gama más amplia de indicadores de sostenibilidad, además de requerir rendimientos mínimos en áreas clave, puede ser más eficaz para garantizar la sostenibilidad de la bioenergía. Bioenergy is widely included in energy strategies for its GHG mitigation potential. Bioenergy technologies will likely have to be deployed at scale to meet decarbonisation targets, and consequently biomass will have to be increasingly grown/mobilised. Sustainability risks associated with bioenergy may intensify with increasing deployment and where feedstocks are sourced through international trade. This research applies the Bioeconomy Sustainability Indicator Model (BSIM) to map and analyse the performance of bioenergy across 126 sustainability issues, evaluating 16 bioenergy case studies that reflect the breadth of biomass resources, technologies, energy vectors and bio-products. The research finds common trends in sustainability performance across projects that can inform bioenergy policy and decision making. Potential sustainability benefits are identified for People (jobs, skills, income, energy access); for Development (economy, energy, land utilisation); for Natural Systems (soil, heavy metals), and; for Climate Change (emissions, fuels). Also, consistent trends of sustainability risks where focus is required to ensure the viability of bioenergy projects, including for infrastructure, feedstock mobilisation, techno-economics and carbon stocks. Emission mitigation may be a primary objective for bioenergy, this research finds bioenergy projects can provide potential benefits far beyond emissions - there is an argument for supporting projects based on the ecosystem services and/or economic stimulation they may deliver. Also given the broad dynamics and characteristics of bioenergy projects, a rigid approach of assessing sustainability may be incompatible. Awarding 'credit' across a broader range of sustainability indicators in addition to requiring minimum performances in key areas, may be more effective at ensuring bioenergy sustainability. يتم تضمين الطاقة الحيوية على نطاق واسع في استراتيجيات الطاقة لإمكانات التخفيف من غازات الدفيئة. من المرجح أن يتم نشر تقنيات الطاقة الحيوية على نطاق واسع لتحقيق أهداف إزالة الكربون، وبالتالي سيتعين زيادة نمو/تعبئة الكتلة الحيوية. قد تزداد مخاطر الاستدامة المرتبطة بالطاقة الحيوية مع زيادة الانتشار وحيث يتم الحصول على المواد الأولية من خلال التجارة الدولية. يطبق هذا البحث نموذج مؤشر استدامة الاقتصاد الحيوي (BSIM) لرسم وتحليل أداء الطاقة الحيوية عبر 126 قضية استدامة، وتقييم 16 دراسة حالة للطاقة الحيوية تعكس اتساع موارد الكتلة الحيوية والتقنيات وناقلات الطاقة والمنتجات الحيوية. وجد البحث اتجاهات مشتركة في أداء الاستدامة عبر المشاريع التي يمكن أن تسترشد بها سياسة الطاقة الحيوية وصنع القرار. يتم تحديد فوائد الاستدامة المحتملة للناس (الوظائف والمهارات والدخل والوصول إلى الطاقة) ؛ للتنمية (الاقتصاد والطاقة واستخدام الأراضي) ؛ للنظم الطبيعية (التربة والمعادن الثقيلة)، و ؛ لتغير المناخ (الانبعاثات والوقود). أيضًا، الاتجاهات المتسقة لمخاطر الاستدامة حيث يكون التركيز مطلوبًا لضمان استمرارية مشاريع الطاقة الحيوية، بما في ذلك البنية التحتية وتعبئة المواد الوسيطة والاقتصاد التقني ومخزونات الكربون. قد يكون تخفيف الانبعاثات هدفًا أساسيًا للطاقة الحيوية، ويجد هذا البحث أن مشاريع الطاقة الحيوية يمكن أن توفر فوائد محتملة تتجاوز الانبعاثات - هناك حجة لدعم المشاريع القائمة على خدمات النظام الإيكولوجي و/أو التحفيز الاقتصادي الذي قد تقدمه. أيضًا نظرًا للديناميكيات والخصائص الواسعة لمشاريع الطاقة الحيوية، قد يكون النهج الصارم لتقييم الاستدامة غير متوافق. قد يكون منح "الائتمان" عبر مجموعة أوسع من مؤشرات الاستدامة بالإضافة إلى طلب الحد الأدنى من الأداء في المجالات الرئيسية أكثر فعالية في ضمان استدامة الطاقة الحيوية.
NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/21630Data sources: Bielefeld Academic Search Engine (BASE)University of Bath's research portalArticle . 2023Data sources: University of Bath's research portalThe University of Manchester - Institutional RepositoryArticle . 2023Data sources: The University of Manchester - Institutional Repositorye-space at Manchester Metropolitan UniversityArticle . 2023Data sources: e-space at Manchester Metropolitan UniversityQueen's University Belfast Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2023.106919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Natural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023License: CC BYFull-Text: https://hdl.handle.net/2164/21630Data sources: Bielefeld Academic Search Engine (BASE)University of Bath's research portalArticle . 2023Data sources: University of Bath's research portalThe University of Manchester - Institutional RepositoryArticle . 2023Data sources: The University of Manchester - Institutional Repositorye-space at Manchester Metropolitan UniversityArticle . 2023Data sources: e-space at Manchester Metropolitan UniversityQueen's University Belfast Research PortalArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Aberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biombioe.2023.106919&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 United Kingdom, Netherlands, Italy, United Kingdom, Italy, Italy, ItalyPublisher:Wiley Funded by:UKRI | Perennial Biomass Crops f..., UKRI | UK Energy Research Centre..., UKRI | Supergen Bioenergy Hub 20... +3 projectsUKRI| Perennial Biomass Crops for Greenhouse Gas Removal ,UKRI| UK Energy Research Centre Phase 4 ,UKRI| Supergen Bioenergy Hub 2018 ,UKRI| EPSRC Centre for Doctoral Training in Bioenergy ,EC| GRACE ,EC| MAGICAuthors: Clifton‐Brown, John; Hastings, Astley; von Cossel, Moritz; Murphy‐Bokern, Donal; +36 AuthorsClifton‐Brown, John; Hastings, Astley; von Cossel, Moritz; Murphy‐Bokern, Donal; McCalmont, Jon; Whitaker, Jeanette; Alexopoulou, Efi; Amaducci, Stefano; Andronic, Larisa; Ashman, Christopher; Awty‐Carroll, Danny; Bhatia, Rakesh; Breuer, Lutz; Cosentino, Salvatore; Cracroft‐Eley, William; Donnison, Iain; Elbersen, Berien; Ferrarini, Andrea; Ford, Judith; Greef, Jörg; Ingram, Julie; Lewandowski, Iris; Magenau, Elena; Mos, Michal; Petrick, Martin; Pogrzeba, Marta; Robson, Paul; Rowe, Rebecca L.; Sandu, Anatolii; Schwarz, Kai‐Uwe; Scordia, Danilo; Scurlock, Jonathan; Shepherd, Anita; Thornton, Judith; Trindade, Luisa M.; Vetter, Sylvia; Wagner, Moritz; Wu, Pei‐Chen; Yamada, Toshihiko; Kiesel, Andreas;doi: 10.1111/gcbb.13038
pmid: 38505831
pmc: PMC10946487
handle: 10807/238914 , 11570/3294508 , 20.500.11769/558651 , 2164/21472
doi: 10.1111/gcbb.13038
pmid: 38505831
pmc: PMC10946487
handle: 10807/238914 , 11570/3294508 , 20.500.11769/558651 , 2164/21472
AbstractDemand for sustainably produced biomass is expected to increase with the need to provide renewable commodities, improve resource security and reduce greenhouse gas emissions in line with COP26 commitments. Studies have demonstrated additional environmental benefits of using perennial biomass crops (PBCs), when produced appropriately, as a feedstock for the growing bioeconomy, including utilisation for bioenergy (with or without carbon capture and storage). PBCs can potentially contribute to Common Agricultural Policy (CAP) (2023–27) objectives provided they are carefully integrated into farming systems and landscapes. Despite significant research and development (R&D) investment over decades in herbaceous and coppiced woody PBCs, deployment has largely stagnated due to social, economic and policy uncertainties. This paper identifies the challenges in creating policies that are acceptable to all actors. Development will need to be informed by measurement, reporting and verification (MRV) of greenhouse gas emissions reductions and other environmental, economic and social metrics. It discusses interlinked issues that must be considered in the expansion of PBC production: (i) available land; (ii) yield potential; (iii) integration into farming systems; (iv) R&D requirements; (v) utilisation options; and (vi) market systems and the socio‐economic environment. It makes policy recommendations that would enable greater PBC deployment: (1) incentivise farmers and land managers through specific policy measures, including carbon pricing, to allocate their less productive and less profitable land for uses which deliver demonstrable greenhouse gas reductions; (2) enable greenhouse gas mitigation markets to develop and offer secure contracts for commercial developers of verifiable low‐carbon bioenergy and bioproducts; (3) support innovation in biomass utilisation value chains; and (4) continue long‐term, strategic R&D and education for positive environmental, economic and social sustainability impacts.
NERC Open Research A... arrow_drop_down PubliCattArticle . 2023License: CC BYFull-Text: https://publicatt.unicatt.it/bitstream/10807/238914/1/Clifton-Brown%20et%20al.%202023.pdfData sources: PubliCattIRIS - Università degli Studi di CataniaArticle . 2023License: CC BYData sources: IRIS - Università degli Studi di CataniaNatural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsAberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down PubliCattArticle . 2023License: CC BYFull-Text: https://publicatt.unicatt.it/bitstream/10807/238914/1/Clifton-Brown%20et%20al.%202023.pdfData sources: PubliCattIRIS - Università degli Studi di CataniaArticle . 2023License: CC BYData sources: IRIS - Università degli Studi di CataniaNatural Environment Research Council: NERC Open Research ArchiveArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsAberdeen University Research Archive (AURA)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.13038&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu