Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
Filters temporarily unavailable. Please try again later.
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1,424 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 2016-2025
  • IN
  • GB
  • Solar Energy

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: S. Supraja; Reshma Dileep. K; Narendra Chundi; Easwaramoorthi Ramasamy; +2 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: D.S. Aniesrani Delfiya; null Lincy Mathai; S. Murali; K.C. Neethu; +2 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    8
    citations8
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: S. N. Singh; Akhilesh Soni;

    Abstract An experimental investigation has been carried out to study flow and heat transfer in solar air heater for inline holes inserted between absorber and back plate. The analysis has been carried out for cross flow conditions. The effect of flow and geometrical parameters, especially jet diameter and hydraulic diameter has been studied. Mass flow rate for the study is varied corresponding to the Reynolds number range of 4600–12,000. The jet diameter, streamwise pitch, and spanwise pitch, each normalized by hydraulic diameter, i.e. Dj/Dh, X/Dh, and Y/Dh, are in the range: 0.053–0.084, 0.53–0.63, and 0.53–0.63 respectively. Performance is studied in terms of Temperature Rise Parameter (TRP), collector efficiency, and Nusselt number. Hourly variations of solar intensity have also been shown. Collector efficiency increases and Temperature Rise Parameter decreases with increase in mass flow rate for all geometrical configurations. All the above-listed performance parameters are found to be maximum at jet diameter to hydraulic diameter ratio of 0.07. A correlation for Nusselt number in terms of Reynolds number, jet diameter, and hydraulic diameter has also been developed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    42
    citations42
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Arul Varman Kesavan; Varun Adiga; G K Chandrasekar; Kumar M Panidhara; +1 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Kun-Mu Lee; Chia-Hsin Lai; Wei-Cheng Chu; Shun-Hsiang Chan; +1 Authors

    Abstract Atmospheric thermal assisted blade coating (TABC) method, which is quick film crystallization and easier fabrication than the commonly used spin-coating process, to prepare a high quality CH3NH3PbI3 perovskite film is investigated in this work. Selection of the perovskite precursor solvents and controlling the ratio of the mixed solvent as well as substrate temperature for perovskite film formation are important factors in this TABC process. Based on the results obtained in this work, substrate temperature is the key factor for managing the perovskite film phase transition which influences the film roughness and crystallinity. Furthermore, the high-quality perovskite films are prepared by perovskite precursors with mixture of solvents containing GBL/DMSO at the ratio from 1/9 to 5/5. By using the optimum substrate temperature of 130 °C and the GBL/DMSO solvent ratio of 1/9 (G01D09) for the preparation of small area n-i-p and p-i-n PSCs as well as the p-i-n type perovskite sub-module, the power conversion efficiencies of 17.55%, 16.90% and 13.03%, respectively, are acquired under the illumination of 100 mW/cm2 (AM 1.5G).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    18
    citations18
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Rahul Grewal; Mahesh Kumar;
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    18
    citations18
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: R.A. Lomas-Zapata; A.W. Prior; B.G. Mendis;
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Solar Energyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Solar Energy
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Solar Energyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Solar Energy
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Guanying Chu; Huiqing Wen; Lin Jiang; Yihua Hu; +1 Authors

    Abstract Partial shading brings many serious problems in the solar photovoltaic system (SPV) such as the significant reduction in power harvest, hot spots, and the emergence of the multiple maximum power points (MPPs). This paper presents a bidirectional flyback converter (BFC) based isolated-port differential power processing (DPP) architecture at the submodule level. Bidirectional flyback converters (BFCs) are designed for submodules with both discontinuous condition mode (DCM) and continuous condition model (CCM) modes for light-load and heavy-load conditions to improve the efficiency. The voltage equalization with open-loop control is adopted for each BFC, this control method keeps the voltage in primary and secondary of the BFCs equal and it does not require additional voltage or current sensors. It’s simple, easy-to-implement and well suited for low-cost integrated hardware scheme. Both simulation and experimental results for an isolated-port DPP regulated 72-cells photovoltaic (PV) module under various partial shading scenarios were provided. It shows that this structure can distinctly mitigate the energy loss in a PV system, increase output power harvest, and achieve high efficiency under partial shading condition. The measured efficiency with the isolated-port DPP structure was 90.23% under severe shading condition. The measured output power improvement under severe mismatch condition was high up to 43.1%.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    90
    citations90
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Nabil A.S. Elminshawy; Amr Osama; D.G. El-Damhogi; Erkan Oterkus; +1 Authors

    Le système solaire photovoltaïque flottant (FPVT) est un nouveau concept de récupération d'énergie solaire qui contribue à la demande croissante d'énergie, mais avec des performances plus élevées par rapport au système terrestre (LBPV). La température de fonctionnement d'un système FPVT est inférieure et l'efficacité est meilleure que celle d'un système LBPV. L'étude expérimentale actuelle vise à améliorer encore la supériorité de la technologie photovoltaïque flottante grâce à un système innovant partiellement flottant (FPVWS) pour plus de récupération d'énergie. La partie sous-marine permet une gestion fiable de la température du système photovoltaïque via un transfert de chaleur mutuel avec l'eau ambiante et améliore par conséquent la production d'électricité. Ensuite, une installation flottante expérimentale a été construite pour examiner les performances du nouveau système FPVWS dans des conditions de vent réel et la raison de cette domination a été expliquée. Les données acquises ont démontré que la température de fonctionnement du FPVWS a diminué de 11,60 %, que la puissance de sortie a augmenté d'environ 20,28 % et que l'efficacité électrique a augmenté de 32,82 % avec une augmentation de 49 % de la vitesse du vent. Les performances du module FPVT sont améliorées grâce à la technique d'immersion et à la direction favorable du flux de vent nordouest, qui a fourni le plus de gain à ses performances. Le coût nivelé de l'énergie a diminué de 17 % ainsi qu'une réduction des émissions mondiales moyennes de CO2 de 69,51 kg de CO2/saison estivale avec une augmentation de 49 % de la vitesse du vent. El sistema solar fotovoltaico flotante (FPVT) es un nuevo concepto para la captación de energía solar que contribuye a la creciente demanda de energía pero con un mayor rendimiento en comparación con el sistema terrestre (LBPV). La temperatura de trabajo de un sistema FPVT es menor y la eficiencia es mejor que la de un sistema LBPV. El estudio experimental actual tiene como objetivo mejorar aún más la superioridad de la tecnología fotovoltaica flotante a través de un innovador sistema parcialmente flotante (FPVWS) para una mayor cosecha de energía. La parte subacuática permite una gestión fiable de la temperatura del sistema fotovoltaico a través de la transferencia mutua de calor con el agua ambiente y, en consecuencia, mejora la producción de electricidad. Luego, se construyó una configuración flotante experimental para examinar el rendimiento del nuevo sistema FPVWS en condiciones de viento real y se explicó la razón de tal dominancia. Los datos adquiridos demostraron que la temperatura de trabajo del FPVWS se redujo en un 11,60%, la potencia de salida aumentó en aproximadamente un 20,28% y la eficiencia eléctrica aumentó en un 32,82% con un incremento del 49% en la velocidad del viento. El rendimiento del módulo FPVT se mejora con la técnica de inmersión y la dirección favorable del flujo de viento hacia el noroeste, que proporcionó la mayor ganancia a su rendimiento. El coste nivelado de la energía disminuyó un 17% junto con una reducción de las emisiones medias mundiales de CO2 de 69,51 kg CO2/temporada de verano a un incremento del 49% en la velocidad del viento. The floating solar photovoltaic system (FPVT) is a new concept for solar energy harvesting that contributes to growing energy demand but with higher performance compared to the land-based system (LBPV). The working temperature of an FPVT system is lower and the efficiency is better than that of an LBPV system. The current experimental study aims to further enhance the superiority of floating PV technology through an innovative partially floating (FPVWS) system for more energy harvest. The underwater portion allows reliable temperature management for the PV system via mutual heat transfer with the ambient water and consequently enhances the electricity production. Then an experimental floating set up has been constructed to examine the performance of the new FPVWS system under real windy conditions and the reason for such dominance was explained. The acquired data demonstrated that the working temperature of the FPVWS reduced by11.60%, the output power rose by about 20.28%, and the electrical efficiency rose by 32.82% at a 49% increment in wind speed. The performance of the FPVT module is improved with the submerging technique and the favorable northerly-westerly wind flow direction, which provided the most gain to its performance. The levelized cost of energy decreased by 17% along with a reduction in global average CO2 emissions of 69.51 kg CO2/summer season at a 49% increment in wind speed. النظام الكهروضوئي الشمسي العائم (FPVT) هو مفهوم جديد لحصاد الطاقة الشمسية يساهم في زيادة الطلب على الطاقة ولكن مع أداء أعلى مقارنة بالنظام الأرضي (LBPV). درجة حرارة العمل لنظام FPVT أقل والكفاءة أفضل من نظام LBPV. تهدف الدراسة التجريبية الحالية إلى زيادة تعزيز تفوق التكنولوجيا الكهروضوئية العائمة من خلال نظام مبتكر عائم جزئيًا (FPVWS) لمزيد من حصاد الطاقة. يسمح الجزء تحت الماء بإدارة موثوقة لدرجة الحرارة للنظام الكهروضوئي عن طريق نقل الحرارة المتبادل مع المياه المحيطة وبالتالي يعزز إنتاج الكهرباء. ثم تم إنشاء مجموعة عائمة تجريبية لفحص أداء نظام FPVWS الجديد في ظل ظروف عاصفة حقيقية وتم شرح سبب هذه الهيمنة. أظهرت البيانات التي تم الحصول عليها أن درجة حرارة العمل لـ FPVWS انخفضت بنسبة 11.60 ٪، وارتفعت طاقة الخرج بنحو 20.28 ٪، وارتفعت الكفاءة الكهربائية بنسبة 32.82 ٪ بزيادة 49 ٪ في سرعة الرياح. يتم تحسين أداء وحدة FPVT باستخدام تقنية الغمر واتجاه تدفق الرياح الشمالية الغربية المواتي، مما يوفر أكبر مكسب لأدائها. انخفضت التكلفة المستوية للطاقة بنسبة 17 ٪ إلى جانب انخفاض المتوسط العالمي لانبعاثات ثاني أكسيد الكربون بمقدار 69.51 كجم من ثاني أكسيد الكربون/موسم الصيف بزيادة قدرها 49 ٪ في سرعة الرياح.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    https://dx.doi.org/10.60692/bc...
    Other literature type . 2021
    Data sources: Datacite
    https://dx.doi.org/10.60692/9w...
    Other literature type . 2021
    Data sources: Datacite
    46
    citations46
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nisha Singh; Vignesh Murugadoss; Sivasankar Nemala; Sudhanshu Mallick; +1 Authors

    Abstract An earth-abundant and relatively less toxic, quaternary Cu2ZnSnSe4 (CZTSe) quantum dots (QDs) were prepared by hot injection method at low temperature to use as a sensitizer for QDSC. The formation of tetragonal phase and stoichiometry were confirmed by X-ray diffraction (XRD), Raman spectroscopy and energy dispersive X-ray (EDX) analysis, respectively. The UV–Vis-NIR and photoluminescence spectroscopy was used to determine the bandgap (1.66 eV) and narrow emission (1050–1130 nm) range. Moreover, transmission electron microscopy (TEM) was used to find out the average size of CZTSe QDs and it was found to be ∼5 nm. It can highly adsorb on the porous TiO2 nanofibers (NFs) and enhance the absorbance due to its smaller size. The photoconversion efficiency was investigated using the prepared CZTSe QDs sensitized porous TiO2 NFs based QDSC and its photoconversion efficiency (PCE) was found to be 3.61% which is higher than that of the conventional TiO2 NFs based QDSC (η ≈ 2.84%).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    38
    citations38
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1,424 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: S. Supraja; Reshma Dileep. K; Narendra Chundi; Easwaramoorthi Ramasamy; +2 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: D.S. Aniesrani Delfiya; null Lincy Mathai; S. Murali; K.C. Neethu; +2 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2024 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    8
    citations8
    popularityAverage
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2024 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: S. N. Singh; Akhilesh Soni;

    Abstract An experimental investigation has been carried out to study flow and heat transfer in solar air heater for inline holes inserted between absorber and back plate. The analysis has been carried out for cross flow conditions. The effect of flow and geometrical parameters, especially jet diameter and hydraulic diameter has been studied. Mass flow rate for the study is varied corresponding to the Reynolds number range of 4600–12,000. The jet diameter, streamwise pitch, and spanwise pitch, each normalized by hydraulic diameter, i.e. Dj/Dh, X/Dh, and Y/Dh, are in the range: 0.053–0.084, 0.53–0.63, and 0.53–0.63 respectively. Performance is studied in terms of Temperature Rise Parameter (TRP), collector efficiency, and Nusselt number. Hourly variations of solar intensity have also been shown. Collector efficiency increases and Temperature Rise Parameter decreases with increase in mass flow rate for all geometrical configurations. All the above-listed performance parameters are found to be maximum at jet diameter to hydraulic diameter ratio of 0.07. A correlation for Nusselt number in terms of Reynolds number, jet diameter, and hydraulic diameter has also been developed.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    42
    citations42
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Arul Varman Kesavan; Varun Adiga; G K Chandrasekar; Kumar M Panidhara; +1 Authors
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    8
    citations8
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Kun-Mu Lee; Chia-Hsin Lai; Wei-Cheng Chu; Shun-Hsiang Chan; +1 Authors

    Abstract Atmospheric thermal assisted blade coating (TABC) method, which is quick film crystallization and easier fabrication than the commonly used spin-coating process, to prepare a high quality CH3NH3PbI3 perovskite film is investigated in this work. Selection of the perovskite precursor solvents and controlling the ratio of the mixed solvent as well as substrate temperature for perovskite film formation are important factors in this TABC process. Based on the results obtained in this work, substrate temperature is the key factor for managing the perovskite film phase transition which influences the film roughness and crystallinity. Furthermore, the high-quality perovskite films are prepared by perovskite precursors with mixture of solvents containing GBL/DMSO at the ratio from 1/9 to 5/5. By using the optimum substrate temperature of 130 °C and the GBL/DMSO solvent ratio of 1/9 (G01D09) for the preparation of small area n-i-p and p-i-n PSCs as well as the p-i-n type perovskite sub-module, the power conversion efficiencies of 17.55%, 16.90% and 13.03%, respectively, are acquired under the illumination of 100 mW/cm2 (AM 1.5G).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    18
    citations18
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Rahul Grewal; Mahesh Kumar;
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    18
    citations18
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: R.A. Lomas-Zapata; A.W. Prior; B.G. Mendis;
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Solar Energyarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Solar Energy
    Article . 2023 . Peer-reviewed
    License: CC BY
    Data sources: Crossref
    4
    citations4
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Solar Energyarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Solar Energy
      Article . 2023 . Peer-reviewed
      License: CC BY
      Data sources: Crossref
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Guanying Chu; Huiqing Wen; Lin Jiang; Yihua Hu; +1 Authors

    Abstract Partial shading brings many serious problems in the solar photovoltaic system (SPV) such as the significant reduction in power harvest, hot spots, and the emergence of the multiple maximum power points (MPPs). This paper presents a bidirectional flyback converter (BFC) based isolated-port differential power processing (DPP) architecture at the submodule level. Bidirectional flyback converters (BFCs) are designed for submodules with both discontinuous condition mode (DCM) and continuous condition model (CCM) modes for light-load and heavy-load conditions to improve the efficiency. The voltage equalization with open-loop control is adopted for each BFC, this control method keeps the voltage in primary and secondary of the BFCs equal and it does not require additional voltage or current sensors. It’s simple, easy-to-implement and well suited for low-cost integrated hardware scheme. Both simulation and experimental results for an isolated-port DPP regulated 72-cells photovoltaic (PV) module under various partial shading scenarios were provided. It shows that this structure can distinctly mitigate the energy loss in a PV system, increase output power harvest, and achieve high efficiency under partial shading condition. The measured efficiency with the isolated-port DPP structure was 90.23% under severe shading condition. The measured output power improvement under severe mismatch condition was high up to 43.1%.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    90
    citations90
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Nabil A.S. Elminshawy; Amr Osama; D.G. El-Damhogi; Erkan Oterkus; +1 Authors

    Le système solaire photovoltaïque flottant (FPVT) est un nouveau concept de récupération d'énergie solaire qui contribue à la demande croissante d'énergie, mais avec des performances plus élevées par rapport au système terrestre (LBPV). La température de fonctionnement d'un système FPVT est inférieure et l'efficacité est meilleure que celle d'un système LBPV. L'étude expérimentale actuelle vise à améliorer encore la supériorité de la technologie photovoltaïque flottante grâce à un système innovant partiellement flottant (FPVWS) pour plus de récupération d'énergie. La partie sous-marine permet une gestion fiable de la température du système photovoltaïque via un transfert de chaleur mutuel avec l'eau ambiante et améliore par conséquent la production d'électricité. Ensuite, une installation flottante expérimentale a été construite pour examiner les performances du nouveau système FPVWS dans des conditions de vent réel et la raison de cette domination a été expliquée. Les données acquises ont démontré que la température de fonctionnement du FPVWS a diminué de 11,60 %, que la puissance de sortie a augmenté d'environ 20,28 % et que l'efficacité électrique a augmenté de 32,82 % avec une augmentation de 49 % de la vitesse du vent. Les performances du module FPVT sont améliorées grâce à la technique d'immersion et à la direction favorable du flux de vent nordouest, qui a fourni le plus de gain à ses performances. Le coût nivelé de l'énergie a diminué de 17 % ainsi qu'une réduction des émissions mondiales moyennes de CO2 de 69,51 kg de CO2/saison estivale avec une augmentation de 49 % de la vitesse du vent. El sistema solar fotovoltaico flotante (FPVT) es un nuevo concepto para la captación de energía solar que contribuye a la creciente demanda de energía pero con un mayor rendimiento en comparación con el sistema terrestre (LBPV). La temperatura de trabajo de un sistema FPVT es menor y la eficiencia es mejor que la de un sistema LBPV. El estudio experimental actual tiene como objetivo mejorar aún más la superioridad de la tecnología fotovoltaica flotante a través de un innovador sistema parcialmente flotante (FPVWS) para una mayor cosecha de energía. La parte subacuática permite una gestión fiable de la temperatura del sistema fotovoltaico a través de la transferencia mutua de calor con el agua ambiente y, en consecuencia, mejora la producción de electricidad. Luego, se construyó una configuración flotante experimental para examinar el rendimiento del nuevo sistema FPVWS en condiciones de viento real y se explicó la razón de tal dominancia. Los datos adquiridos demostraron que la temperatura de trabajo del FPVWS se redujo en un 11,60%, la potencia de salida aumentó en aproximadamente un 20,28% y la eficiencia eléctrica aumentó en un 32,82% con un incremento del 49% en la velocidad del viento. El rendimiento del módulo FPVT se mejora con la técnica de inmersión y la dirección favorable del flujo de viento hacia el noroeste, que proporcionó la mayor ganancia a su rendimiento. El coste nivelado de la energía disminuyó un 17% junto con una reducción de las emisiones medias mundiales de CO2 de 69,51 kg CO2/temporada de verano a un incremento del 49% en la velocidad del viento. The floating solar photovoltaic system (FPVT) is a new concept for solar energy harvesting that contributes to growing energy demand but with higher performance compared to the land-based system (LBPV). The working temperature of an FPVT system is lower and the efficiency is better than that of an LBPV system. The current experimental study aims to further enhance the superiority of floating PV technology through an innovative partially floating (FPVWS) system for more energy harvest. The underwater portion allows reliable temperature management for the PV system via mutual heat transfer with the ambient water and consequently enhances the electricity production. Then an experimental floating set up has been constructed to examine the performance of the new FPVWS system under real windy conditions and the reason for such dominance was explained. The acquired data demonstrated that the working temperature of the FPVWS reduced by11.60%, the output power rose by about 20.28%, and the electrical efficiency rose by 32.82% at a 49% increment in wind speed. The performance of the FPVT module is improved with the submerging technique and the favorable northerly-westerly wind flow direction, which provided the most gain to its performance. The levelized cost of energy decreased by 17% along with a reduction in global average CO2 emissions of 69.51 kg CO2/summer season at a 49% increment in wind speed. النظام الكهروضوئي الشمسي العائم (FPVT) هو مفهوم جديد لحصاد الطاقة الشمسية يساهم في زيادة الطلب على الطاقة ولكن مع أداء أعلى مقارنة بالنظام الأرضي (LBPV). درجة حرارة العمل لنظام FPVT أقل والكفاءة أفضل من نظام LBPV. تهدف الدراسة التجريبية الحالية إلى زيادة تعزيز تفوق التكنولوجيا الكهروضوئية العائمة من خلال نظام مبتكر عائم جزئيًا (FPVWS) لمزيد من حصاد الطاقة. يسمح الجزء تحت الماء بإدارة موثوقة لدرجة الحرارة للنظام الكهروضوئي عن طريق نقل الحرارة المتبادل مع المياه المحيطة وبالتالي يعزز إنتاج الكهرباء. ثم تم إنشاء مجموعة عائمة تجريبية لفحص أداء نظام FPVWS الجديد في ظل ظروف عاصفة حقيقية وتم شرح سبب هذه الهيمنة. أظهرت البيانات التي تم الحصول عليها أن درجة حرارة العمل لـ FPVWS انخفضت بنسبة 11.60 ٪، وارتفعت طاقة الخرج بنحو 20.28 ٪، وارتفعت الكفاءة الكهربائية بنسبة 32.82 ٪ بزيادة 49 ٪ في سرعة الرياح. يتم تحسين أداء وحدة FPVT باستخدام تقنية الغمر واتجاه تدفق الرياح الشمالية الغربية المواتي، مما يوفر أكبر مكسب لأدائها. انخفضت التكلفة المستوية للطاقة بنسبة 17 ٪ إلى جانب انخفاض المتوسط العالمي لانبعاثات ثاني أكسيد الكربون بمقدار 69.51 كجم من ثاني أكسيد الكربون/موسم الصيف بزيادة قدرها 49 ٪ في سرعة الرياح.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ COREarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    https://dx.doi.org/10.60692/bc...
    Other literature type . 2021
    Data sources: Datacite
    https://dx.doi.org/10.60692/9w...
    Other literature type . 2021
    Data sources: Datacite
    46
    citations46
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nisha Singh; Vignesh Murugadoss; Sivasankar Nemala; Sudhanshu Mallick; +1 Authors

    Abstract An earth-abundant and relatively less toxic, quaternary Cu2ZnSnSe4 (CZTSe) quantum dots (QDs) were prepared by hot injection method at low temperature to use as a sensitizer for QDSC. The formation of tetragonal phase and stoichiometry were confirmed by X-ray diffraction (XRD), Raman spectroscopy and energy dispersive X-ray (EDX) analysis, respectively. The UV–Vis-NIR and photoluminescence spectroscopy was used to determine the bandgap (1.66 eV) and narrow emission (1050–1130 nm) range. Moreover, transmission electron microscopy (TEM) was used to find out the average size of CZTSe QDs and it was found to be ∼5 nm. It can highly adsorb on the porous TiO2 nanofibers (NFs) and enhance the absorbance due to its smaller size. The photoconversion efficiency was investigated using the prepared CZTSe QDs sensitized porous TiO2 NFs based QDSC and its photoconversion efficiency (PCE) was found to be 3.61% which is higher than that of the conventional TiO2 NFs based QDSC (η ≈ 2.84%).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Solar Energy
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    38
    citations38
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Solar Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Solar Energy
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph