- home
- Advanced Search
- Energy Research
- Closed Access
- Restricted
- natural sciences
- IN
- RU
- Energy Research
- Closed Access
- Restricted
- natural sciences
- IN
- RU
description Publicationkeyboard_double_arrow_right Article 2021Publisher:Elsevier BV Authors: Sangeeta Singh; Mustafa K. A. Mohammed;
Anjan Kumar; Anjan Kumar; +1 AuthorsAnjan Kumar
Anjan Kumar in OpenAIRESangeeta Singh; Mustafa K. A. Mohammed;
Anjan Kumar; Anjan Kumar; Ahmed Esmail Shalan;Anjan Kumar
Anjan Kumar in OpenAIREAbstract Three-dimensional (3D) metal halide perovskite solar cells (PSCs) have a power conversion efficiency that is now comparable with conventional silicon solar cells. For PSC applications to succeed in the market, long-term reliability under open-air conditions is essential. Recent experiments have shown that two-dimensional (2D) perovskites seem to exhibit good stability due to the presence of hydrophobic organic spacers, but 2D PSCs are incapable of generating and transporting a large amount of charge due to their extended optical bandgaps. Mixed dimensional perovskites with dimension lies between 2D and 3D recently became a promising candidate to sustain long-term stability and high performances concurrently to address this obstacle. The current research article presents the finding of simulation-based studies performed on novel device architecture consisting of ITO/Nb-Ti2O3/3D Perovskite/2D Perovskite/Spiro-OMeTAD/Au. Using optical simulation features of SCAPS, absorption of light is computed in the proposed device. The computational results show that the thickness of the 2D perovskite layer badly affects the solar cell parameters. A thin 2D perovskite behaves as a capped coating that avoids the deterioration of 3D perovskite in open-air environments. The effect of a multivalent defect in the 3D perovskite layer is mathematically modelled, and their impact on overall performance parameters are analyzed. The findings are compared to the same configuration results, except where the absorber layer’s multivalent defect has been substituted by a neutral defect of the same defect density of about (1011 cm−3). Results show that the multivalent defect leads to an underestimation of the efficiency by 4.2%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Elsevier BV Authors: S. Venkata Mohan; S. Venkata Mohan;
Sulogna Chatterjee; Sulogna Chatterjee;Sulogna Chatterjee
Sulogna Chatterjee in OpenAIREpmid: 34426236
The study evaluates the potential of different vegetable wastes namely, composite vegetable waste (CVW), potato waste (PW), sweet potato waste (SPW) and yam waste (YW) as an alternative feedstock for the production of renewable sugars. Thermal assisted chemical pretreatment followed by enzymatic saccharification yielded maximum sugars (0.515 g/g CVW, 0.56 g/g PW, 0.57 g/g SPW and 0.56 g/g YW) with total carbohydrate depolymerization of 95.01%, 88.30%, 90.32% and 88.59% respectively. Obtained sugars were valorized into bioethanol through fermentation using S. cerevisiae by optimizing the pH and temperature. The highest ethanol yield of 251.85 mg/g was obtained from SPW at 35°C followed by YW (240.98 mg/g), PW (235.4 mg/g) and CVW (125.6 mg/g) at pH 5.0. Utilizing the abundantly available vegetable wastes as a renewable feedstock for reducing sugars and subsequent bioethanol production will influence the economics and sustainability of the process positively in circular biorefinery format.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.28 citations 28 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Panneerselvam, Ranganathan; Ashutosh Kumar, Pandey; Ranjna, Sirohi;
Anh, Tuan Hoang; +1 AuthorsAnh, Tuan Hoang
Anh, Tuan Hoang in OpenAIREPanneerselvam, Ranganathan; Ashutosh Kumar, Pandey; Ranjna, Sirohi;
Anh, Tuan Hoang; Anh, Tuan Hoang
Anh, Tuan Hoang in OpenAIRE
Sang-Hyoun, Kim; Sang-Hyoun, Kim
Sang-Hyoun, Kim in OpenAIREpmid: 35240273
The development of photobioreactor is important for sustainable production of renewable fuels, wastewater treatment and CO2 fixation. For the design and scale-up of a photobioreactor, CFD can be used as an indispensable tool. The present study reviews the recent status of computational flow modelling of various types of photobioreactors, involving fluid dynamics, light transport, and algal growth kinetics. An integrated modelling approach of hydrodynamics, light intensity, mass transfer, and biokinetics in photobioreactor is discussed further. Also, this reviews intensified system to improve the mixing, and light intensity of photobioreactors. Finally, the prospects and challenges of CFD modelling in photobioreactors are discussed. Multi-scale modelling approach and development of low-cost efficient computational framework are the areas to be considered for modelling of photobioreactor in near future. In addition, it is necessary to use process intensification techniques for photobioreactors for improving their hydrodynamics, mixing and mass transfer performances, and algal growth productivity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2011Publisher:Elsevier BV pmid: 21907576
Bioethanol is one of the alternatives of the conventional fossil fuel. In present study, effect of different carbon sources on the production of cellulolytic enzyme (CMCase) from Trichoderma reesei at different temperatures, duration and pH were investigated and conditions were optimized. Acid treated Kans grass (Saccharum sponteneum) was subjected to enzymatic hydrolysis to produce fermentable sugars which was then fermented to bioethanol using Saccharomyces cerevisiae. The maximum CMCase production was found to be 1.46 U mL(-1) at optimum condition (28°C, pH 5 and cellulose as carbon source). The cellulases and xylanase activity were found to be 1.12 FPU g(-1) and 6.63 U mL(-1), respectively. Maximum total sugar was found to be 69.08 mg/g dry biomass with 20 FPU g(-1) dry biomass of enzyme dosage under optimum condition. Similar results were obtained when it was treated with pure enzyme. Upon fermentation of enzymatic hydrolysate, the yield of ethanol was calculated to be 0.46 g g(-1).
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2024Publisher:Royal Society of Chemistry (RSC) Authors: Victoria V. Ozerova;
Nikita A. Emelianov; Nikita A. Emelianov
Nikita A. Emelianov in OpenAIRE
Lyubov A. Frolova; Yuri S. Fedotov; +3 AuthorsLyubov A. Frolova
Lyubov A. Frolova in OpenAIREVictoria V. Ozerova;
Nikita A. Emelianov; Nikita A. Emelianov
Nikita A. Emelianov in OpenAIRE
Lyubov A. Frolova; Yuri S. Fedotov; Sergey I. Bredikhin;Lyubov A. Frolova
Lyubov A. Frolova in OpenAIRE
Sergey M. Aldoshin; Sergey M. Aldoshin
Sergey M. Aldoshin in OpenAIRE
Pavel A. Troshin; Pavel A. Troshin
Pavel A. Troshin in OpenAIREdoi: 10.1039/d3se01458d
The choice of hole-transport materials (HTMs) has a strong impact on electric field-induced degradation of perovskite solar cells (PSCs). Rational design of HTMs is necessary to make PSCs sufficiently stable for the targeted practical applications.
Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2024 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy &... arrow_drop_down Sustainable Energy & FuelsArticle . 2024 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2018Publisher:Springer Science and Business Media LLC Authors:
Ashok Pandey; Galliano Eulogio Castro; Parameswaran Binod; Raveendran Sindhu; +3 AuthorsAshok Pandey
Ashok Pandey in OpenAIRE
Ashok Pandey; Galliano Eulogio Castro; Parameswaran Binod; Raveendran Sindhu; Edgard Gnansounou;Ashok Pandey
Ashok Pandey in OpenAIRE
Amith Abraham; Amith Abraham
Amith Abraham in OpenAIRE
Anil Kuruvilla Mathew; Anil Kuruvilla Mathew
Anil Kuruvilla Mathew in OpenAIREpmid: 29349548
Surfactants play major role in the delignification of lignocellulosic biomass. Surfactant-assisted hydrothermal pretreatment was evaluated for chili post-harvest residue. Maximum reducing sugar yield of 0.445 g per g of dry biomass (g/g) was obtained when surfactant PEG 6000 was used. Compositional analysis revealed an efficient removal of lignin and hemicelluloses from the pretreated biomass. Fermentation inhibitors such as furfural, 5-hydroxymethylfurfural and organic acids were absent in the hydrolyzate. After pretreatment, the biomass can be directly hydrolyzed without any neutralization, washing and drying, and the hydrolyzate is devoid of major fermentation inhibitors. Fermentation with Saccharomyces cerevisiae yielded 1.84% of ethanol with a fermentation efficiency of 63.88%.
Bioprocess and Biosy... arrow_drop_down Bioprocess and Biosystems EngineeringArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Bioprocess and Biosy... arrow_drop_down Bioprocess and Biosystems EngineeringArticle . 2018 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:Elsevier BV Authors:
Swati Das; Swati Das
Swati Das in OpenAIRE
Sovik Das; Sovik Das
Sovik Das in OpenAIRE
M.M. Ghangrekar; M.M. Ghangrekar
M.M. Ghangrekar in OpenAIREpmid: 31542496
Quorum-sensing molecules (QSMs) extracted from anaerobic sludge can help to enhance the overall productivity of algal culture, thus diminishing the per unit production cost of algae based-biofuel. In this investigation, QSMs extracted from anaerobic bacterial sludge of microbial fuel cell (MFC) was used to enhance the overall productivity of Chlorella sorokiniana cultivated in a separate bubble column photobioreactor. With the dosage of QSMs, algal biomass productivity and lipid content were increased by 2.25 times and 1.28 times, respectively. Further, lipid extracted biomass of quorum-sensing induced algae (LEB-QSA) was applied in anodic chamber of MFC to function as substrate and mediator, which enhanced the coulombic efficiency of this MFC by 74% as compared to the control MFC operated without LEB-QSA. Thus, this exploration demonstrated successful improvement in the macromolecular properties of algal culture dosed with QSMs and improved performance of MFC with the application of LEB-QSA as mediator and substrate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.100 citations 100 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2006Publisher:Elsevier BV Authors:
Sivakumar, R.; Manisankar, P.; Jayachandran, M.; Sanjeeviraja, C.;Sivakumar, R.
Sivakumar, R. in OpenAIREAbstract Now-a-days a large number of extensive research has been focused on electrochromic oxide thin films, owing to their potential applications in smart windows, low cost materials in filters, low cost electrochemical devices and also in solar cell windows. Among the varieties of electrochromic transition metal oxides, the molybdenum oxide (MoO 3 ) and tungsten oxide (WO 3 ), form a group of predominant ionic solids that exhibit electrochromic effect. The electrochromic response of these materials are aesthetically superior to many other electrochromic materials, because WO 3 and MoO 3 absorb light more intensely and uniformly. In the present case, we have discussed about the electrochromic behaviour of electron beam evaporated MoO 3 films. Moreover, the MoO 3 film can also be used as a potential electro-active material for high energy density secondary lithium ion batteries; because it exhibits two-dimensional van der Waals bonded layered structure in orthorhombic phase. The films were prepared by evaporating the palletized MoO 3 powder under the vacuum of the order of 1 × 10 −5 mbar. The electrochemical behaviour of the films was studied by intercalating/deintercalating the K + ions from KCl electrolyte solutions using three electrode electrochemical cell by the cyclic-voltammetry technique. The studies were carried out for different scanning rates. The films have changed their colour as dark blue in the colouration process and returns to the original colour while the bleaching process. The diffusion coefficient values ( D ) of the intercalated/deintercalated films were calculated by Randle's Servcik equation. The optical transparency of the coloured and bleached films was studied by the UV–Vis–NIR spectrophotometer. The change in bonding assignment of the intercalated MoO 3 films was studied by FTIR spectroscopic analysis. A feasible study on the effect of substrate temperatures and annealing temperatures on optical density (OD) and colouration efficiency of the films were discussed and explored their performance for the low cost electrochemical devices.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2006 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: , Shiva;
Fernando, Climent Barba; Rosa M, Rodríguez-Jasso; Rajeev K, Sukumaran; +1 AuthorsFernando, Climent Barba
Fernando, Climent Barba in OpenAIRE, Shiva;
Fernando, Climent Barba; Rosa M, Rodríguez-Jasso; Rajeev K, Sukumaran; Héctor A, Ruiz;Fernando, Climent Barba
Fernando, Climent Barba in OpenAIREpmid: 35337992
This review aims to present an analysis and discussion on the processing of lignocellulosic biomass in terms of biorefinery concept and circular bioeconomy operating at high solids lignocellulosic (above 15% [w/w]) at the pretreatment, enzymatic hydrolysis stage, and fermentation strategy for an integrated lignocellulosic bioprocessing. Studies suggest high solids concentration enzymatic hydrolysis for improved sugars yields and methods to overcome mass transport constraints. Rheological and computational fluid dynamics models of high solids operation through evaluation of mass and momentum transfer limitations are presented. Also, the review paper explores operational feeding strategies to obtain high ethanol concentration and conversion yield, from the hydrothermal pretreatment and investigates the impact of mass load over the operational techniques. Finally, this review contains a brief overview of some of the operations that have successfully scaled up and implemented high-solids enzymatic hydrolysis in terms of the biorefinery concept.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.54 citations 54 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2015Publisher:Elsevier BV Authors: S. Joseph Vedhagiri; E. Gladis Anitha; K. Parimala;pmid: 25645233
The Fourier transform infrared (FT-IR) and Fourier transform Raman (FT-Raman) spectra of 2-amino-5-bromo-6-methyl-4-pyrimidinol (ABrMP) were recorded in the region 4000-400 and 3500-100 cm(-1), respectively. The conformational stability, geometrical structure, vibrational frequencies, infrared intensities and Raman activities were carried out by DFT (B3LYP and LSDA) methods with 6-311++G(d,p) basis set. The calculated results show good agreement with observed spectra. The charge delocalization have been analyzed using NBO analysis by LSDA/6-311++G(d,p) level of theory. The NLO properties (μ, α0, Δα, β0 and βvec) have been computed quantum mechanically. The calculated HOMO and LUMO energies show that, the charge transfer occurs within the molecule. The solvent effects have been calculated using TD-DFT and the results are in good agreement with experimental measurements. The other molecular properties like Mulliken population analysis, electrostatic potential (ESP) and thermodynamic properties of the title compound at the different temperatures have been calculated.
Spectrochimica Acta ... arrow_drop_down Spectrochimica Acta Part A Molecular and Biomolecular SpectroscopyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.13 citations 13 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Spectrochimica Acta ... arrow_drop_down Spectrochimica Acta Part A Molecular and Biomolecular SpectroscopyArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
