- home
- Advanced Search
- Energy Research
- 2025-2025
- Embargo
- IT
- CN
- Energy Research
- 2025-2025
- Embargo
- IT
- CN
description Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article 2025Embargo end date: 27 May 2025 ItalyPublisher:Springer Nature Switzerland Authors: Granato, Alberto;The interplay between excitatory pyramidal neurons and GABAergic interneurons is the basic building block of neocortical microcircuits and plays a critical role in carrying out higher cognitive functions. Cortical circuits are deeply and permanently disrupted by exposure to alcohol during brain development, the main non-genetic cause of intellectual disability. Here, I review experimental studies of fetal alcohol spectrum disorders, dealing with permanent cellular and molecular alterations of neocortical neurons and their connections.
Archivio Istituziona... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-81908-7_1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Archivio Istituziona... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-81908-7_1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article 2025Embargo end date: 27 May 2025 ItalyPublisher:Springer Nature Switzerland Authors: Granato, Alberto;The interplay between excitatory pyramidal neurons and GABAergic interneurons is the basic building block of neocortical microcircuits and plays a critical role in carrying out higher cognitive functions. Cortical circuits are deeply and permanently disrupted by exposure to alcohol during brain development, the main non-genetic cause of intellectual disability. Here, I review experimental studies of fetal alcohol spectrum disorders, dealing with permanent cellular and molecular alterations of neocortical neurons and their connections.
Archivio Istituziona... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-81908-7_1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Archivio Istituziona... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-81908-7_1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Embargo end date: 27 Feb 2025 ItalyPublisher:Elsevier BV Authors: Benito Mignacca; Tristano Sainati; Giorgio Locatelli;handle: 11580/113503
Policymakers and academics are increasingly discussing the need for innovation in the energy sector to support the societal transition toward net-zero. To this end, mobilizing finance for novel energy technologies is a significant challenge. Remarkably, the scientific literature about the financing mechanisms for novel energy technologies often neglects the difference between invention, radical innovation, and incremental innovation. Recognizing the difference is essential to defining ad hoc financing mechanisms, increasing the likelihood of developing and implementing such technologies, which can contribute to Sustainable Development Goal (SDG) 7, SDG 9, and SDG 13. This paper highlights the need for a critical rethinking of the approach and the vocabulary related to the financing mechanisms for novel energy technologies. Leveraging a multiple longitudinal case study, the paper provides empirical evidence of the different financing mechanisms for the transition from invention to innovation in the energy sector. By bringing together the findings and existing literature, this paper provides a novel analytical framework to link financing mechanisms and the different phases of the innovation process in the energy sector. The framework is also a starting point for future research on the different phases of the innovation process and related financing mechanisms.
Archivio Istituziona... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.115288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.115288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Embargo end date: 27 Feb 2025 ItalyPublisher:Elsevier BV Authors: Benito Mignacca; Tristano Sainati; Giorgio Locatelli;handle: 11580/113503
Policymakers and academics are increasingly discussing the need for innovation in the energy sector to support the societal transition toward net-zero. To this end, mobilizing finance for novel energy technologies is a significant challenge. Remarkably, the scientific literature about the financing mechanisms for novel energy technologies often neglects the difference between invention, radical innovation, and incremental innovation. Recognizing the difference is essential to defining ad hoc financing mechanisms, increasing the likelihood of developing and implementing such technologies, which can contribute to Sustainable Development Goal (SDG) 7, SDG 9, and SDG 13. This paper highlights the need for a critical rethinking of the approach and the vocabulary related to the financing mechanisms for novel energy technologies. Leveraging a multiple longitudinal case study, the paper provides empirical evidence of the different financing mechanisms for the transition from invention to innovation in the energy sector. By bringing together the findings and existing literature, this paper provides a novel analytical framework to link financing mechanisms and the different phases of the innovation process in the energy sector. The framework is also a starting point for future research on the different phases of the innovation process and related financing mechanisms.
Archivio Istituziona... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.115288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.115288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Embargo end date: 28 Jan 2025 ItalyPublisher:Elsevier BV Marzi D.; Valente F.; Luche S.; Caissutti C.; Sabia A.; Capitani I.; Capobianco G.; Serranti S.; Masi A.; Panozzo A.; Ricci A.; Bolla P. K.; Vamerali T.; Brunetti P.; Visioli G.;The unique properties of per- and polyfluoroalkyl substances (PFAS) have driven their pervasive use in different industrial applications, leading to substantial environmental pollution and raising critical concerns about the long-term impacts on ecosystem and human health. To tackle the global challenge of PFAS contamination, there is an urgent need for sustainable and efficient remediation strategies. Phytoremediation has emerged as a promising eco-friendly approach with the potential to mitigate the spread of these persistent contaminants. However, addressing this complex issue requires interdisciplinary cutting-edge research to develop comprehensive and scalable solutions for effective PFAS management. This review highlights recent advancements in the detection, quantification, and monitoring of PFAS uptake by plants, providing a detailed description of PFAS accumulation in several plant species. Besides, the physiological and molecular responses elicited by these pollutants are described. Leveraging omic technologies, including genomics, transcriptomics, and proteomics, provides unprecedented insights into the plant-PFAS interaction. Novel approaches based on artificial intelligence to predict this interaction and up to date disposal and valorization methods for PFAS-contaminated plant biomass, are discussed here. This review offers an interdisciplinary approach to explore what has been discovered so far about PFAS phytoremediation, covering the entire process from contaminant uptake to sustainable disposal, providing a roadmap for future research.
IRIS Cnr arrow_drop_down The Science of The Total EnvironmentArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.178323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down The Science of The Total EnvironmentArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.178323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Embargo end date: 28 Jan 2025 ItalyPublisher:Elsevier BV Marzi D.; Valente F.; Luche S.; Caissutti C.; Sabia A.; Capitani I.; Capobianco G.; Serranti S.; Masi A.; Panozzo A.; Ricci A.; Bolla P. K.; Vamerali T.; Brunetti P.; Visioli G.;The unique properties of per- and polyfluoroalkyl substances (PFAS) have driven their pervasive use in different industrial applications, leading to substantial environmental pollution and raising critical concerns about the long-term impacts on ecosystem and human health. To tackle the global challenge of PFAS contamination, there is an urgent need for sustainable and efficient remediation strategies. Phytoremediation has emerged as a promising eco-friendly approach with the potential to mitigate the spread of these persistent contaminants. However, addressing this complex issue requires interdisciplinary cutting-edge research to develop comprehensive and scalable solutions for effective PFAS management. This review highlights recent advancements in the detection, quantification, and monitoring of PFAS uptake by plants, providing a detailed description of PFAS accumulation in several plant species. Besides, the physiological and molecular responses elicited by these pollutants are described. Leveraging omic technologies, including genomics, transcriptomics, and proteomics, provides unprecedented insights into the plant-PFAS interaction. Novel approaches based on artificial intelligence to predict this interaction and up to date disposal and valorization methods for PFAS-contaminated plant biomass, are discussed here. This review offers an interdisciplinary approach to explore what has been discovered so far about PFAS phytoremediation, covering the entire process from contaminant uptake to sustainable disposal, providing a roadmap for future research.
IRIS Cnr arrow_drop_down The Science of The Total EnvironmentArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.178323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down The Science of The Total EnvironmentArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.178323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 DenmarkPublisher:Royal Society of Chemistry (RSC) Funded by:EC | TOUGHEC| TOUGHJunwei Ding; Miao Du; Shiwen Wang; Linsen Zhang; Yuanzheng Yue; Morten M. Smedskjaer;doi: 10.1039/d4ee04566a
The recent developments of amorphous material based heterostructures with disordered heterointerfaces for advanced rechargeable batteries are reviewed, focusing on the relation between material structure and electrochemical performance.
Aalborg University R... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee04566a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Aalborg University R... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee04566a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 DenmarkPublisher:Royal Society of Chemistry (RSC) Funded by:EC | TOUGHEC| TOUGHJunwei Ding; Miao Du; Shiwen Wang; Linsen Zhang; Yuanzheng Yue; Morten M. Smedskjaer;doi: 10.1039/d4ee04566a
The recent developments of amorphous material based heterostructures with disordered heterointerfaces for advanced rechargeable batteries are reviewed, focusing on the relation between material structure and electrochemical performance.
Aalborg University R... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee04566a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Aalborg University R... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee04566a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Bachelor thesis 2025Embargo end date: 28 Apr 2025 ItalyAuthors: Federico Bianchi;handle: 11562/1160847
The economic system has traditionally operated according to the linear model, which predicts that a product will reach its end of life, moving towards production, consumption, and finally, disposal. However, this model has proven unsustainable in the agri-food sector, leading to enormous food losses and waste and a cascade of adverse environmental, economic, and social effects. However, agri-food by-products are deemed as possible sources of bioactive molecules with beneficial health properties like phenolic compounds or dietary fiber. Indeed, polyphenols are crucial in preventing non-communicable diseases, whereas dietary fiber helps prevent obesity, reduce blood cholesterol levels, and improve intestinal stool transit. For this reason, an optimal and reasonable scope for the food by-products could be their incorporation in different food matrices, thus becoming functional food ingredients to improve economic systems sustainability and foodstuff's nutritional profile. Therefore, the main goal of the current PhD project was to upcycle different agrofood byproducts (AFBYs) (namely, grape, red chicory, and apple by-products) from the agro-industry and study their incorporation into bakery or pasta formulations and study how those AFBYs impact the final product's nutritional, physicalchemical, textural, rheological, and sensory properties. In addition, I characterized phenolic compounds by HPLC-MS/MS method of some of the AFBYs and studied their fate by performing an in vitro digestion. In particular, I focused on different agrifood-derived by-products added to various food matrices as reported below: - Grape pomace from vinification processes and Breadsticks; - Grape pomace from the distillery process and Muffins; - Amarone wine lees as a fat substitute in Muffins; - Red chicory by-product in durum wheat semolina Pasta; - Red chicory by-product in Bread; - Apple cider by-product (apple pomace) in Cracker
IRIS - Università de... arrow_drop_down IRIS - Università degli Studi di VeronaBachelor thesis . 2025License: CC 0Data sources: IRIS - Università degli Studi di Veronaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11562/1160847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IRIS - Università de... arrow_drop_down IRIS - Università degli Studi di VeronaBachelor thesis . 2025License: CC 0Data sources: IRIS - Università degli Studi di Veronaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11562/1160847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Bachelor thesis 2025Embargo end date: 28 Apr 2025 ItalyAuthors: Federico Bianchi;handle: 11562/1160847
The economic system has traditionally operated according to the linear model, which predicts that a product will reach its end of life, moving towards production, consumption, and finally, disposal. However, this model has proven unsustainable in the agri-food sector, leading to enormous food losses and waste and a cascade of adverse environmental, economic, and social effects. However, agri-food by-products are deemed as possible sources of bioactive molecules with beneficial health properties like phenolic compounds or dietary fiber. Indeed, polyphenols are crucial in preventing non-communicable diseases, whereas dietary fiber helps prevent obesity, reduce blood cholesterol levels, and improve intestinal stool transit. For this reason, an optimal and reasonable scope for the food by-products could be their incorporation in different food matrices, thus becoming functional food ingredients to improve economic systems sustainability and foodstuff's nutritional profile. Therefore, the main goal of the current PhD project was to upcycle different agrofood byproducts (AFBYs) (namely, grape, red chicory, and apple by-products) from the agro-industry and study their incorporation into bakery or pasta formulations and study how those AFBYs impact the final product's nutritional, physicalchemical, textural, rheological, and sensory properties. In addition, I characterized phenolic compounds by HPLC-MS/MS method of some of the AFBYs and studied their fate by performing an in vitro digestion. In particular, I focused on different agrifood-derived by-products added to various food matrices as reported below: - Grape pomace from vinification processes and Breadsticks; - Grape pomace from the distillery process and Muffins; - Amarone wine lees as a fat substitute in Muffins; - Red chicory by-product in durum wheat semolina Pasta; - Red chicory by-product in Bread; - Apple cider by-product (apple pomace) in Cracker
IRIS - Università de... arrow_drop_down IRIS - Università degli Studi di VeronaBachelor thesis . 2025License: CC 0Data sources: IRIS - Università degli Studi di Veronaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11562/1160847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IRIS - Università de... arrow_drop_down IRIS - Università degli Studi di VeronaBachelor thesis . 2025License: CC 0Data sources: IRIS - Università degli Studi di Veronaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11562/1160847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 NetherlandsPublisher:Wiley Xiaoxiao Li; Wei Yang; Mark Novak; Lei Zhao; Peter C. de Ruiter; Zhifeng Yang; Christian Guill;doi: 10.1111/ele.70086
pmid: 39964095
ABSTRACTIdentifying species with disproportionate effects on other species under press perturbations is essential, yet how species traits and community context drive their ‘keystone‐ness’ remain unclear. We quantified keystone‐ness as linearly approximated per capita net effect derived from normalised inverse community matrices and as non‐linear per capita community biomass change from simulated perturbations in food webs with varying biomass structure. In bottom‐heavy webs (negative relationship between species' body mass and their biomass within the web), larger species at higher trophic levels tended to be keystone species, whereas in top‐heavy webs (positive body mass to biomass relationship), the opposite was true and the relationships between species' energetic traits and keystone‐ness were weakened or reversed compared to bottom‐heavy webs. Linear approximations aligned well with non‐linear responses in bottom‐heavy webs, but were less consistent in top‐heavy webs. These findings highlight the importance of community context in shaping species' keystone‐ness and informing effective conservation actions.
Research@WUR arrow_drop_down Ecology LettersArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.70086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research@WUR arrow_drop_down Ecology LettersArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.70086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 NetherlandsPublisher:Wiley Xiaoxiao Li; Wei Yang; Mark Novak; Lei Zhao; Peter C. de Ruiter; Zhifeng Yang; Christian Guill;doi: 10.1111/ele.70086
pmid: 39964095
ABSTRACTIdentifying species with disproportionate effects on other species under press perturbations is essential, yet how species traits and community context drive their ‘keystone‐ness’ remain unclear. We quantified keystone‐ness as linearly approximated per capita net effect derived from normalised inverse community matrices and as non‐linear per capita community biomass change from simulated perturbations in food webs with varying biomass structure. In bottom‐heavy webs (negative relationship between species' body mass and their biomass within the web), larger species at higher trophic levels tended to be keystone species, whereas in top‐heavy webs (positive body mass to biomass relationship), the opposite was true and the relationships between species' energetic traits and keystone‐ness were weakened or reversed compared to bottom‐heavy webs. Linear approximations aligned well with non‐linear responses in bottom‐heavy webs, but were less consistent in top‐heavy webs. These findings highlight the importance of community context in shaping species' keystone‐ness and informing effective conservation actions.
Research@WUR arrow_drop_down Ecology LettersArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.70086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research@WUR arrow_drop_down Ecology LettersArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.70086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article 2025Embargo end date: 27 May 2025 ItalyPublisher:Springer Nature Switzerland Authors: Granato, Alberto;The interplay between excitatory pyramidal neurons and GABAergic interneurons is the basic building block of neocortical microcircuits and plays a critical role in carrying out higher cognitive functions. Cortical circuits are deeply and permanently disrupted by exposure to alcohol during brain development, the main non-genetic cause of intellectual disability. Here, I review experimental studies of fetal alcohol spectrum disorders, dealing with permanent cellular and molecular alterations of neocortical neurons and their connections.
Archivio Istituziona... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-81908-7_1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Archivio Istituziona... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-81908-7_1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article 2025Embargo end date: 27 May 2025 ItalyPublisher:Springer Nature Switzerland Authors: Granato, Alberto;The interplay between excitatory pyramidal neurons and GABAergic interneurons is the basic building block of neocortical microcircuits and plays a critical role in carrying out higher cognitive functions. Cortical circuits are deeply and permanently disrupted by exposure to alcohol during brain development, the main non-genetic cause of intellectual disability. Here, I review experimental studies of fetal alcohol spectrum disorders, dealing with permanent cellular and molecular alterations of neocortical neurons and their connections.
Archivio Istituziona... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-81908-7_1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Archivio Istituziona... arrow_drop_down https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2025 . Peer-reviewedLicense: Springer Nature TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-031-81908-7_1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Embargo end date: 27 Feb 2025 ItalyPublisher:Elsevier BV Authors: Benito Mignacca; Tristano Sainati; Giorgio Locatelli;handle: 11580/113503
Policymakers and academics are increasingly discussing the need for innovation in the energy sector to support the societal transition toward net-zero. To this end, mobilizing finance for novel energy technologies is a significant challenge. Remarkably, the scientific literature about the financing mechanisms for novel energy technologies often neglects the difference between invention, radical innovation, and incremental innovation. Recognizing the difference is essential to defining ad hoc financing mechanisms, increasing the likelihood of developing and implementing such technologies, which can contribute to Sustainable Development Goal (SDG) 7, SDG 9, and SDG 13. This paper highlights the need for a critical rethinking of the approach and the vocabulary related to the financing mechanisms for novel energy technologies. Leveraging a multiple longitudinal case study, the paper provides empirical evidence of the different financing mechanisms for the transition from invention to innovation in the energy sector. By bringing together the findings and existing literature, this paper provides a novel analytical framework to link financing mechanisms and the different phases of the innovation process in the energy sector. The framework is also a starting point for future research on the different phases of the innovation process and related financing mechanisms.
Archivio Istituziona... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.115288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.115288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Embargo end date: 27 Feb 2025 ItalyPublisher:Elsevier BV Authors: Benito Mignacca; Tristano Sainati; Giorgio Locatelli;handle: 11580/113503
Policymakers and academics are increasingly discussing the need for innovation in the energy sector to support the societal transition toward net-zero. To this end, mobilizing finance for novel energy technologies is a significant challenge. Remarkably, the scientific literature about the financing mechanisms for novel energy technologies often neglects the difference between invention, radical innovation, and incremental innovation. Recognizing the difference is essential to defining ad hoc financing mechanisms, increasing the likelihood of developing and implementing such technologies, which can contribute to Sustainable Development Goal (SDG) 7, SDG 9, and SDG 13. This paper highlights the need for a critical rethinking of the approach and the vocabulary related to the financing mechanisms for novel energy technologies. Leveraging a multiple longitudinal case study, the paper provides empirical evidence of the different financing mechanisms for the transition from invention to innovation in the energy sector. By bringing together the findings and existing literature, this paper provides a novel analytical framework to link financing mechanisms and the different phases of the innovation process in the energy sector. The framework is also a starting point for future research on the different phases of the innovation process and related financing mechanisms.
Archivio Istituziona... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.115288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Archivio Istituziona... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2024.115288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Embargo end date: 28 Jan 2025 ItalyPublisher:Elsevier BV Marzi D.; Valente F.; Luche S.; Caissutti C.; Sabia A.; Capitani I.; Capobianco G.; Serranti S.; Masi A.; Panozzo A.; Ricci A.; Bolla P. K.; Vamerali T.; Brunetti P.; Visioli G.;The unique properties of per- and polyfluoroalkyl substances (PFAS) have driven their pervasive use in different industrial applications, leading to substantial environmental pollution and raising critical concerns about the long-term impacts on ecosystem and human health. To tackle the global challenge of PFAS contamination, there is an urgent need for sustainable and efficient remediation strategies. Phytoremediation has emerged as a promising eco-friendly approach with the potential to mitigate the spread of these persistent contaminants. However, addressing this complex issue requires interdisciplinary cutting-edge research to develop comprehensive and scalable solutions for effective PFAS management. This review highlights recent advancements in the detection, quantification, and monitoring of PFAS uptake by plants, providing a detailed description of PFAS accumulation in several plant species. Besides, the physiological and molecular responses elicited by these pollutants are described. Leveraging omic technologies, including genomics, transcriptomics, and proteomics, provides unprecedented insights into the plant-PFAS interaction. Novel approaches based on artificial intelligence to predict this interaction and up to date disposal and valorization methods for PFAS-contaminated plant biomass, are discussed here. This review offers an interdisciplinary approach to explore what has been discovered so far about PFAS phytoremediation, covering the entire process from contaminant uptake to sustainable disposal, providing a roadmap for future research.
IRIS Cnr arrow_drop_down The Science of The Total EnvironmentArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.178323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down The Science of The Total EnvironmentArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.178323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Embargo end date: 28 Jan 2025 ItalyPublisher:Elsevier BV Marzi D.; Valente F.; Luche S.; Caissutti C.; Sabia A.; Capitani I.; Capobianco G.; Serranti S.; Masi A.; Panozzo A.; Ricci A.; Bolla P. K.; Vamerali T.; Brunetti P.; Visioli G.;The unique properties of per- and polyfluoroalkyl substances (PFAS) have driven their pervasive use in different industrial applications, leading to substantial environmental pollution and raising critical concerns about the long-term impacts on ecosystem and human health. To tackle the global challenge of PFAS contamination, there is an urgent need for sustainable and efficient remediation strategies. Phytoremediation has emerged as a promising eco-friendly approach with the potential to mitigate the spread of these persistent contaminants. However, addressing this complex issue requires interdisciplinary cutting-edge research to develop comprehensive and scalable solutions for effective PFAS management. This review highlights recent advancements in the detection, quantification, and monitoring of PFAS uptake by plants, providing a detailed description of PFAS accumulation in several plant species. Besides, the physiological and molecular responses elicited by these pollutants are described. Leveraging omic technologies, including genomics, transcriptomics, and proteomics, provides unprecedented insights into the plant-PFAS interaction. Novel approaches based on artificial intelligence to predict this interaction and up to date disposal and valorization methods for PFAS-contaminated plant biomass, are discussed here. This review offers an interdisciplinary approach to explore what has been discovered so far about PFAS phytoremediation, covering the entire process from contaminant uptake to sustainable disposal, providing a roadmap for future research.
IRIS Cnr arrow_drop_down The Science of The Total EnvironmentArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.178323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down The Science of The Total EnvironmentArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefArchivio della ricerca dell'Università di Parma (CINECA IRIS)Article . 2025Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.178323&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 DenmarkPublisher:Royal Society of Chemistry (RSC) Funded by:EC | TOUGHEC| TOUGHJunwei Ding; Miao Du; Shiwen Wang; Linsen Zhang; Yuanzheng Yue; Morten M. Smedskjaer;doi: 10.1039/d4ee04566a
The recent developments of amorphous material based heterostructures with disordered heterointerfaces for advanced rechargeable batteries are reviewed, focusing on the relation between material structure and electrochemical performance.
Aalborg University R... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee04566a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Aalborg University R... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee04566a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 DenmarkPublisher:Royal Society of Chemistry (RSC) Funded by:EC | TOUGHEC| TOUGHJunwei Ding; Miao Du; Shiwen Wang; Linsen Zhang; Yuanzheng Yue; Morten M. Smedskjaer;doi: 10.1039/d4ee04566a
The recent developments of amorphous material based heterostructures with disordered heterointerfaces for advanced rechargeable batteries are reviewed, focusing on the relation between material structure and electrochemical performance.
Aalborg University R... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee04566a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Aalborg University R... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee04566a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Bachelor thesis 2025Embargo end date: 28 Apr 2025 ItalyAuthors: Federico Bianchi;handle: 11562/1160847
The economic system has traditionally operated according to the linear model, which predicts that a product will reach its end of life, moving towards production, consumption, and finally, disposal. However, this model has proven unsustainable in the agri-food sector, leading to enormous food losses and waste and a cascade of adverse environmental, economic, and social effects. However, agri-food by-products are deemed as possible sources of bioactive molecules with beneficial health properties like phenolic compounds or dietary fiber. Indeed, polyphenols are crucial in preventing non-communicable diseases, whereas dietary fiber helps prevent obesity, reduce blood cholesterol levels, and improve intestinal stool transit. For this reason, an optimal and reasonable scope for the food by-products could be their incorporation in different food matrices, thus becoming functional food ingredients to improve economic systems sustainability and foodstuff's nutritional profile. Therefore, the main goal of the current PhD project was to upcycle different agrofood byproducts (AFBYs) (namely, grape, red chicory, and apple by-products) from the agro-industry and study their incorporation into bakery or pasta formulations and study how those AFBYs impact the final product's nutritional, physicalchemical, textural, rheological, and sensory properties. In addition, I characterized phenolic compounds by HPLC-MS/MS method of some of the AFBYs and studied their fate by performing an in vitro digestion. In particular, I focused on different agrifood-derived by-products added to various food matrices as reported below: - Grape pomace from vinification processes and Breadsticks; - Grape pomace from the distillery process and Muffins; - Amarone wine lees as a fat substitute in Muffins; - Red chicory by-product in durum wheat semolina Pasta; - Red chicory by-product in Bread; - Apple cider by-product (apple pomace) in Cracker
IRIS - Università de... arrow_drop_down IRIS - Università degli Studi di VeronaBachelor thesis . 2025License: CC 0Data sources: IRIS - Università degli Studi di Veronaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11562/1160847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IRIS - Università de... arrow_drop_down IRIS - Università degli Studi di VeronaBachelor thesis . 2025License: CC 0Data sources: IRIS - Università degli Studi di Veronaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11562/1160847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Bachelor thesis 2025Embargo end date: 28 Apr 2025 ItalyAuthors: Federico Bianchi;handle: 11562/1160847
The economic system has traditionally operated according to the linear model, which predicts that a product will reach its end of life, moving towards production, consumption, and finally, disposal. However, this model has proven unsustainable in the agri-food sector, leading to enormous food losses and waste and a cascade of adverse environmental, economic, and social effects. However, agri-food by-products are deemed as possible sources of bioactive molecules with beneficial health properties like phenolic compounds or dietary fiber. Indeed, polyphenols are crucial in preventing non-communicable diseases, whereas dietary fiber helps prevent obesity, reduce blood cholesterol levels, and improve intestinal stool transit. For this reason, an optimal and reasonable scope for the food by-products could be their incorporation in different food matrices, thus becoming functional food ingredients to improve economic systems sustainability and foodstuff's nutritional profile. Therefore, the main goal of the current PhD project was to upcycle different agrofood byproducts (AFBYs) (namely, grape, red chicory, and apple by-products) from the agro-industry and study their incorporation into bakery or pasta formulations and study how those AFBYs impact the final product's nutritional, physicalchemical, textural, rheological, and sensory properties. In addition, I characterized phenolic compounds by HPLC-MS/MS method of some of the AFBYs and studied their fate by performing an in vitro digestion. In particular, I focused on different agrifood-derived by-products added to various food matrices as reported below: - Grape pomace from vinification processes and Breadsticks; - Grape pomace from the distillery process and Muffins; - Amarone wine lees as a fat substitute in Muffins; - Red chicory by-product in durum wheat semolina Pasta; - Red chicory by-product in Bread; - Apple cider by-product (apple pomace) in Cracker
IRIS - Università de... arrow_drop_down IRIS - Università degli Studi di VeronaBachelor thesis . 2025License: CC 0Data sources: IRIS - Università degli Studi di Veronaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11562/1160847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IRIS - Università de... arrow_drop_down IRIS - Università degli Studi di VeronaBachelor thesis . 2025License: CC 0Data sources: IRIS - Università degli Studi di Veronaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=11562/1160847&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 NetherlandsPublisher:Wiley Xiaoxiao Li; Wei Yang; Mark Novak; Lei Zhao; Peter C. de Ruiter; Zhifeng Yang; Christian Guill;doi: 10.1111/ele.70086
pmid: 39964095
ABSTRACTIdentifying species with disproportionate effects on other species under press perturbations is essential, yet how species traits and community context drive their ‘keystone‐ness’ remain unclear. We quantified keystone‐ness as linearly approximated per capita net effect derived from normalised inverse community matrices and as non‐linear per capita community biomass change from simulated perturbations in food webs with varying biomass structure. In bottom‐heavy webs (negative relationship between species' body mass and their biomass within the web), larger species at higher trophic levels tended to be keystone species, whereas in top‐heavy webs (positive body mass to biomass relationship), the opposite was true and the relationships between species' energetic traits and keystone‐ness were weakened or reversed compared to bottom‐heavy webs. Linear approximations aligned well with non‐linear responses in bottom‐heavy webs, but were less consistent in top‐heavy webs. These findings highlight the importance of community context in shaping species' keystone‐ness and informing effective conservation actions.
Research@WUR arrow_drop_down Ecology LettersArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.70086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research@WUR arrow_drop_down Ecology LettersArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.70086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 NetherlandsPublisher:Wiley Xiaoxiao Li; Wei Yang; Mark Novak; Lei Zhao; Peter C. de Ruiter; Zhifeng Yang; Christian Guill;doi: 10.1111/ele.70086
pmid: 39964095
ABSTRACTIdentifying species with disproportionate effects on other species under press perturbations is essential, yet how species traits and community context drive their ‘keystone‐ness’ remain unclear. We quantified keystone‐ness as linearly approximated per capita net effect derived from normalised inverse community matrices and as non‐linear per capita community biomass change from simulated perturbations in food webs with varying biomass structure. In bottom‐heavy webs (negative relationship between species' body mass and their biomass within the web), larger species at higher trophic levels tended to be keystone species, whereas in top‐heavy webs (positive body mass to biomass relationship), the opposite was true and the relationships between species' energetic traits and keystone‐ness were weakened or reversed compared to bottom‐heavy webs. Linear approximations aligned well with non‐linear responses in bottom‐heavy webs, but were less consistent in top‐heavy webs. These findings highlight the importance of community context in shaping species' keystone‐ness and informing effective conservation actions.
Research@WUR arrow_drop_down Ecology LettersArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.70086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Research@WUR arrow_drop_down Ecology LettersArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/ele.70086&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu