Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
  • Access
    Clear
  • Type
  • Year range
    Clear
  • Field of Science
  • Funder
  • SDG [Beta]
  • Country
    Clear
  • Language
  • Source
  • Research community
  • Organization
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
262 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 2021-2025
  • Open Source
  • Embargo
  • ES
  • DE
  • CN
  • IT

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Sarabia Escrivà, Emilio José;
    Sarabia Escrivà, Emilio José
    ORCID
    Harvested from ORCID Public Data File

    Sarabia Escrivà, Emilio José in OpenAIRE
    orcid Soto Francés, Víctor Manuel;
    Soto Francés, Víctor Manuel
    ORCID
    Harvested from ORCID Public Data File

    Soto Francés, Víctor Manuel in OpenAIRE
    orcid Pinazo Ojer, José Manuel;
    Pinazo Ojer, José Manuel
    ORCID
    Harvested from ORCID Public Data File

    Pinazo Ojer, José Manuel in OpenAIRE
    Acha, Salvador;

    [EN] The objective of this article is to compare the behaviour of the most representative domestic hot water systems (DHW) in single-family buildings. The study evaluates the energy consumption, equivalent CO2 emissions and cost for each system over a 15-year life period. This analysis is carried out in four cli- matic zones across Europe to observe the influence of climatic conditions on the results. The four climatic zones are located in the cities of Athens, Madrid, London and Berlin. The analysed systems are: a) natural gas-fired instantaneous water heaters, b) electric storage water heater, c) solar thermal system with gas- fired instantaneous, d) solar thermal system with electric storage water heater, e) air-source heat pump, f) photovoltaic system with electric storage water heater, and g) photovoltaic system with air-source heat pump. This range of technologies covers the most likely solutions to be implemented across domestic buildings in Europe.The heat pump system (HPWH) with PV considering self-consumption shows the lowest environmen- tal impact in all zones, but is not an attractive investment in the coldest zones due to lower natural gas prices. Thermal solar systems have a high purchase and maintenance costs which do not compensate their energy savings. The PV HPWH system has a greater reduction of emissions and a lower cost than HPWH across a 15-year life. The gas boiler system has the lowest cost in a 15-year period in the coldest areas, despite having a greater environmental impact than the heat pump.(c) 2023 Elsevier B.V. All rights reserved.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    RiuNet
    Article . 2023
    License: CC BY NC ND
    Data sources: RiuNet
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    7
    citations7
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    visibility6
    visibilityviews6
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      RiuNet
      Article . 2023
      License: CC BY NC ND
      Data sources: RiuNet
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Yiwei Hu;
    Yiwei Hu
    ORCID
    Harvested from ORCID Public Data File

    Yiwei Hu in OpenAIRE
    orcid Benlei Wang;
    Benlei Wang
    ORCID
    Harvested from ORCID Public Data File

    Benlei Wang in OpenAIRE
    orcid Zhanghua Wu;
    Zhanghua Wu
    ORCID
    Harvested from ORCID Public Data File

    Zhanghua Wu in OpenAIRE
    Jianying Hu; +2 Authors

    Thermoacoustic technology emerges as a sustainable and low-carbon method for energy conversion, leveraging environmentally friendly working mediums and independence from electricity. This study presents the development of a multimode heat-driven thermoacoustic system designed to utilize medium/low-grade heat sources for room-temperature cooling and heating. We constructed both a simulation model and an experimental prototype for a single-unit direct-coupled thermoacoustic system, exploring its performance in heating-only, cooling-only, and hybrid heating and cooling modes. Internal characteristic analysis including an examination of internal exergy loss and a distribution analysis of key parameters was first conducted in the hybrid cooling and heating mode. The results indicated a positive-focused traveling-wave-dominant acoustic field within the thermoacoustic core unit, enhancing energy conversion efficiency. The output system performance was subsequently tested under different working conditions in the heating-only and cooling-only modes. A maximum output heating power of 2.3 kW and a maximum COPh of 1.41 were observed in the heating-only mode. Meanwhile, a cooling power of 748 W and a COPc of 0.4 were obtained in the typical cooling condition at 7 °C when operating in cooling-only mode. These findings underscore the promising potential of thermoacoustic systems for efficiently utilizing medium/low-grade heat sources for cooling and/or heating applications in the future.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://dx.doi.org/1...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Physics Letters
    Article . 2024 . Peer-reviewed
    Data sources: Crossref
    addClaim
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://dx.doi.org/1...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Physics Letters
      Article . 2024 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Franziska Klein;
    Franziska Klein
    ORCID
    Harvested from ORCID Public Data File

    Franziska Klein in OpenAIRE
    orcid Jeroen van den Bergh;
    Jeroen van den Bergh
    ORCID
    Harvested from ORCID Public Data File

    Jeroen van den Bergh in OpenAIRE
    Joël Foramitti; Théo Konc;

    Environmental tax reform (ETR), a shift from labour to carbon taxes, has been mostly modelled using general equilibrium (GE) analysis. Since a low-carbon transition will require deep transformations, one will also have to address out-of-equilibrium dynamics and increased agent heterogeneity. Unlike GE models, agent-based models (ABMs) are well equipped to deal with this. We therefore replicate a recent GE model for ETR using an agent-based approach. This process, known as "agentization", allows assessing similarities as well as differences in policy impacts between the two modelling approaches, in turn providing a test of the robustness of the GE results. We find that the agent-based model is able to replicate many results of the general equilibrium analysis, while revealing strengths and weaknesses of both model types. We discuss concrete implementation steps and difficulties experienced in the GE-ABM translation process. We illustrate the potential of ABM by extending the model in several directions. We show that heterogeneous subsistence consumption can increase the space for combining a double dividend with an equity goal, and that overall macro-economic results can conceal important distributional impacts when green preferences and labour supply elasticities vary.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research@WURarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Research@WUR
    Article
    Data sources: Research@WUR
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Environmental and Resource Economics
    Article . 2024 . Peer-reviewed
    License: Springer Nature TDM
    Data sources: Crossref
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Research@WURarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Research@WUR
      Article
      Data sources: Research@WUR
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Environmental and Resource Economics
      Article . 2024 . Peer-reviewed
      License: Springer Nature TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Wei Li;
    Wei Li
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Wei Li in OpenAIRE
    orcid bw Junfei Qiao;
    Junfei Qiao
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Junfei Qiao in OpenAIRE
    orcid Xiao-Jun Zeng;
    Xiao-Jun Zeng
    ORCID
    Harvested from ORCID Public Data File

    Xiao-Jun Zeng in OpenAIRE

    This paper proposes a novel online and self-learning algorithm to the identification of fuzzy neural networks, which not only learns the structure and parameters online but also learns the threshold parameters by itself and automatically. For structure learning, a self-constructing approach including adding neurons and merging highly similar fuzzy rules is proposed based on the criteria of the system error between actual and model output and the maximum firing strength of neurons. In order to achieve the efficient merging computing, a new calculation method of similarity degree between fuzzy rules is developed. Further and more importantly, the varying width of Gaussian membership functions can be learned by itself according to the underfitting and overfitting criteria. Similarly, different from the existing constant threshold of similarity degree for merging, the varying threshold of similarity degree can be self-learned according to the real-time accuracy of model. The proposed self-learning mechanism significantly improves the model accuracy and greatly enhances the easy usability. Several benchmark examples are implemented to illustrate the effectiveness and feasible of the proposed approach.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The University of Ma...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    IEEE Transactions on Fuzzy Systems
    Article . 2022 . Peer-reviewed
    License: IEEE Copyright
    Data sources: Crossref
    addClaim
    14
    citations14
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The University of Ma...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      IEEE Transactions on Fuzzy Systems
      Article . 2022 . Peer-reviewed
      License: IEEE Copyright
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Juan Cruz, Alejandro;
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility16
    visibilityviews16
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Vera Burau, María Alejandra;
    Vera Burau, María Alejandra
    ORCID
    Harvested from ORCID Public Data File

    Vera Burau, María Alejandra in OpenAIRE
    orcid bw Sanmiquel Pera, Lluís;
    Sanmiquel Pera, Lluís
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Sanmiquel Pera, Lluís in OpenAIRE
    orcid bw Bascompta Massanes, Marc;
    Bascompta Massanes, Marc
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Bascompta Massanes, Marc in OpenAIRE

    Integrating environmental, social and governance (ESG) variables into the assessment of a mining project is essential to ensure the short and long term acceptance by the various stakeholders involved and the lack of doing so can put the sustainability of a project at risk. Thus, a holistic approach has been proposed which combines profitability and sustainability analysis with social and environmental considerations for any decisions made on processing operation selection or mine expansion. The potential economic implications of these factors would be used for determining the operational strategy. This study is based on an actual quarry case study and statistical data taken from Spain. Quantitative variables related to ESG aspects have been integrated into a block model, and optimisations were performed based on different plant types and waste disposal strategies. Results demonstrate a strong interdependence between profitability and sustainability. It is observed that strategies related to operating costs impact the environmental and social impacts. A green index is also incorporated to evaluate and compare the different scenarios, determining that the most relevant strategies in adding value to mining projects include investment in new technologies, environmental solutions, and economic and social benefits. Objectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructura Objectius de Desenvolupament Sostenible::8 - Treball Decent i Creixement Econòmic Objectius de Desenvolupament Sostenible::12 - Producció i Consum Responsables Peer Reviewed

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Journal of Cleaner Production
    Article . 2025 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Journal of Cleaner Production
      Article . 2025 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Fusté Raurich, Jaume;

    Resumen: En este Trabajo de Final de Grado se aborda, como principal objetivo la reducción del consumo energético, en una bodega construida en el año 1965 con posteriores modificaciones para adaptarse a las demandas de la producción, en la actualidad tiene capacidad para procesa un máximo de 10 millones de kilos de uva por vendimia. Una de las modificaciones fue el cambio de ubicación de la zona de recepción del mosto, pasando de la cota más alta a la parte más baja de la finca, de unos depósitos de cemento a los de acero inoxidable i de estar ubicados en el interior de la bodega a la intemperie. Como se ha apuntado anteriormente, el principal objetivo de este proyecto es la reducción del consumo energético y concretamente de la zona de recepción, para tal fin se construirá un cofre aislante con las siguientes medidas 35 x 16 x 14 m, albergando en su interior los depósitos y el intercambiador de calor, ejecutándose la obra con dichos elementos inamovibles. Se han realizado los cálculos pertinentes para el dimensionado de la estructura metálica del cofre, de los cabales y dimensiones de los nuevos circuitos de refrigeración, calculando la potencia frigorífica necesaria para mantener la temperatura deseada, con una entrada máxima diaria de 200 tn de uva por día. Los cerramientos se realizarán con paneles aislantes que permitan mantener la temperatura del mosto refrigerado inicialmente hasta su clarificación y trasiego. Se ha calculado un presupuesto de ejecución de obra por contrato y se han elaborado los planos correspondientes. Así pues el proyecto consta de los siguientes documentos: Documento N.º 1 Memoria y 9 Anejos Documento N.º 2 Planos Documento N.º 4 Presupuesto detallado Como conclusión, podemos afirmar que con este proyecto se espera una reducción del 55% en el consumo energético de la zona de Recepción del mosto, mejoraría el rendimiento, tanto energético como en eficiencia con la automatización de las instalaciones entre la zona de Recepción y el Lagar. Abstract: This Final Degree Work addresses the reduction of energy consumption, mainly electricity, of a winery built in 1965, with subsequent modifications adapting to production circumstances, with the capacity to process 10 million kilos of grapes. One of the modifications was the change in location of the must reception area, moving from the highest to the lowest level of the farm, from cement tanks to stainless steel tanks and to be located inside the cellar in the open air. The objective of the project is the reduction of energy consumption in the must reception area, through the construction of an insulating box of 35 x 16 x 14 m, closing the six tanks and the tubular heat exchanger inside. the work being carried out with said immovable elements inside. The necessary calculations have been made for the dimensioning of the metal structure of the chest, the flow rates and the dimensions of the new refrigeration circuits, as well as the refrigeration power necessary to maintain them at the desired temperature, with a daily input of 200 t of grape The enclosures will be made with insulating panels that allow the temperature of the initially cooled must to be maintained until its clarification by gravity. A contract execution budget has been calculated and the corresponding plans have been drawn up. So, the project consists of the following documents: Document Nº1: Memory and 9 chapters. Document No. 2: 19 plans Document Nº4: Detailed budget. As a conclusion we will say that this project is expected to reduce energy consumption in the reception area by 55% and we can affirm that the performance, both energy and efficiency, would improve if the facilities between the Reception area and the Presses. Resum: En aquest treball de Final de Grau s'aborda la reducció del consum energètic d'un celler construït l'any 1965, amb posteriors modificacions per adaptar-se a les circumstancies de la producció, amb capacitat per processar 10 milions de quilos de raïm . Una d'elles va ser el canvi d'ubicació de la zona de recepció del most, passant de la cota mes alta a la part mes baixa de la finca, d'uns dipòsits de ciment a uns d'acer inoxidable i d'estar en el interior del celler al intempèrie. L'objectiu del projecte serà doncs, la reducció del consum energètic de la zona de recepció del most, mitjançant la construcció d'un cofre aïllant de 35 x 16 x 14 m, tancant en el seu interior els dipòsits i l'intercanviador de calor que romandran en el seu lloc mentre s'executi el projecte. S'han realitzat els càlculs necessaris per dimensionar l'estructura metàl·lica del cofre, dels cabals i dimensions dels nous circuits de refrigeració i de la potencia frigorífica necessària per mantenir-los, amb una entrada màxima diària de 200 tn de raïm per dia. Els tancaments es realitzaran amb panells aïllants que permetin mantenir la temperatura del most refredat inicialment, fins al seu desfangat estàtic. S'ha calculat un pressupost d'execució d'obra per contracta i s'han elaborat els plànols corresponents. Així doncs, el projecte consta del: Document Nº 1: Memòria i 9 Annexes. Document Nº 2: 19 plànols Document Nº 4: Pressupost detallat Com a conclusió direm que d'aquest projecte s'espera una reducció del 55% en el consum energètic a la zona de recepció del most i que es milloraria el rendiment, tant energètic com en eficiència amb l'automatització de les instal·lacions entre la Recepció i el Lagar. Objectius de Desenvolupament Sostenible::9 - Indústria, Innovació i Infraestructura Objectius de Desenvolupament Sostenible::12 - Producció i Consum Responsables

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao UPCommons. Portal de...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Martínez García, Daniel;
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility10
    visibilityviews10
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Godoy Godoy, Juan Ignacio;
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility8
    visibilityviews8
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Qishu Liao; Di Cao; orcid Zhe Chen;
    Zhe Chen
    ORCID
    Harvested from ORCID Public Data File

    Zhe Chen in OpenAIRE
    orcid Frede Blaabjerg;
    Frede Blaabjerg
    ORCID
    Harvested from ORCID Public Data File

    Frede Blaabjerg in OpenAIRE
    +1 Authors

    The accurate training of a wind power forecasting (WPF) model for a newly built wind farm is difficult because of limited historical data. This study established a multitask learning architecture wherein the WPF in different wind farms represents an independent task. Subsequently, a novel short-term WPF model based on a multitask learning architecture was proposed. In this model, a multitask Gaussian process is used to capture the intertask conjunction, which contributed to the training of each task. The proposed methodological framework employs dependencies from other tasks wherein older wind farms contain substantial historical data to enhance the performance of tasks in which there is a newly built wind farm. Several numerical experiments were conducted using datasets from seven independent wind farms in Australia. The results show that the proposed scheme not only obtains improved point forecasting results but also produces better probabilistic forecasting results, thus demonstrating the superiority of the proposed method.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    VBN
    Article . 2023
    Data sources: VBN
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable Energy
    Article . 2023 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    SSRN Electronic Journal
    Article . 2022 . Peer-reviewed
    Data sources: Crossref
    addClaim
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Aalborg University R...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      VBN
      Article . 2023
      Data sources: VBN
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable Energy
      Article . 2023 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      SSRN Electronic Journal
      Article . 2022 . Peer-reviewed
      Data sources: Crossref
      addClaim
  • chevron_left
  • 1
  • 2
  • 3
  • 4
  • 5
  • chevron_right
Powered by OpenAIRE graph