- home
- Advanced Search
- Energy Research
- IT
- GB
- DE
- KG
- Energies
- Energy Research
- IT
- GB
- DE
- KG
- Energies
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Antonio Mariani; Gaetano Crispino; Pasquale Contestabile; Furio Cascetta; Corrado Gisonni; Diego Vicinanza; Andrea Unich;doi: 10.3390/en14154618
handle: 20.500.14243/535176 , 11591/453263
Overtopping-type wave power conversion devices represent one of the most promising technology to combine reliability and competitively priced electricity supplies from waves. While satisfactory hydraulic and structural performance have been achieved, the selection of the hydraulic turbines and their regulation is a complex process due to the very low head and a variable flow rate in the overtopping breakwater set-ups. Based on the experience acquired on the first Overtopping BReakwater for Energy Conversion (OBREC) prototype, operating since 2016, an activity has been carried out to select the most appropriate turbine dimension and control strategy for such applications. An example of this multivariable approach is provided and illustrated through a case study in the San Antonio Port, along the central coast of Chile. In this site the deployment of a breakwater equipped with OBREC modules is specifically investigated. Axial-flow turbines of different runner diameter are compared, proposing the optimal ramp height and turbine control strategy for maximizing system energy production. The energy production ranges from 20.5 MWh/y for the smallest runner diameter to a maximum of 34.8 MWh/y for the largest runner diameter.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/15/4618/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154618&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/15/4618/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154618&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Chiodo E.; Lauria D.; Mottola F.; Proto D.; Villacci D.; Giannuzzi G. M.; Pisani C.;doi: 10.3390/en15186508
handle: 11588/896000
Battery participation in the service of power system frequency regulation is universally recognized as a viable means for counteracting the dramatic impact of the increasing utilization of renewable energy sources. One of the most complex aspects, in both the planning and operation stage, is the adequate characterization of the dynamic variation of the state of charge of the battery in view of lifetime preservation as well as the adequate participation in the regulation task. Since the power system frequency, which is the input of the battery regulation service, is inherently of a stochastic nature, it is easy to argue that the most proper methodology for addressing this complex issue is that of the theory of stochastic processes. In the first part of the paper, a preliminary characterization of the power system frequency is presented by showing that with an optimal degree of approximation it can be regarded as an Ornstein–Uhlenbeck process. Some considerations for guaranteeing desirable performances of the control strategy are performed by assuming that the battery-regulating power depending on the frequency can be described by means of a Wiener process. In the second part of the paper, more realistically, the regulating power due to power system changes is described as an Ornstein–Uhlenbeck or an exponential shot noise process driven by a homogeneous Poisson process depending on the frequency response features requested of the battery. Because of that, the battery state of charge is modeled as the output of a dynamic filter having this exponential shot noise process as input and its characterization constitutes the central role for the correct characterization of the battery life. Numerical simulations are carried out for demonstrating the goodness and the applicability of the proposed probabilistic approach.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/18/6508/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186508&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/18/6508/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186508&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 GermanyPublisher:MDPI AG Authors: Wiem Fekih Hassen; Maher Challouf;doi: 10.3390/en17133145
The transition towards sustainable energy systems necessitates effective management of renewable energy sources alongside conventional grid infrastructure. This paper presents a comprehensive approach to optimizing grid management by integrating Photovoltaic (PV), wind, and grid energies to minimize costs and enhance sustainability. A key focus lies in developing an accurate scheduling algorithm utilizing Mixed Integer Programming (MIP), enabling dynamic allocation of energy resources to meet demand while minimizing reliance on cost-intensive grid energy. An ensemble learning technique, specifically a stacking algorithm, is employed to construct a robust forecasting pipeline for PV and wind energy generation. The forecasting model achieves remarkable accuracy with a Root Mean Squared Error (RMSE) of less than 0.1 for short-term (15 min and one day ahead) and long-term (one week and one month ahead) predictions. By combining optimization and forecasting methodologies, this research contributes to advancing grid management systems capable of harnessing renewable energy sources efficiently, thus facilitating cost savings and fostering sustainability in the energy sector.
Energies arrow_drop_down OPUS - Volltextserver Universität PassauArticle . 2024License: CC BYData sources: OPUS - Volltextserver Universität Passauadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17133145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down OPUS - Volltextserver Universität PassauArticle . 2024License: CC BYData sources: OPUS - Volltextserver Universität Passauadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17133145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 ItalyPublisher:MDPI AG Authors: Krastev V. K.; Falcucci G.;doi: 10.3390/en11040715
handle: 2108/212808
In this paper, recent achievements in the application of the lattice Boltzmann method (LBM) to complex fluid flows are reported. More specifically, we focus on flows through reactive porous media, such as the flow through the substrate of a selective catalytic reactor (SCR) for the reduction of gaseous pollutants in the automotive field; pulsed-flow analysis through heterogeneous catalyst architectures; and transport and electro-chemical phenomena in microbial fuel cells (MFC) for novel waste-to-energy applications. To the authors’ knowledge, this is the first known application of LBM modeling to the study of MFCs, which represents by itself a highly innovative and challenging research area. The results discussed here essentially confirm the capabilities of the LBM approach as a flexible and accurate computational tool for the simulation of complex multi-physics phenomena of scientific and technological interest, across physical scales.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/4/715/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018License: CC BY NC NDData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018Full-Text: http://hdl.handle.net/2108/212808Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11040715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/4/715/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018License: CC BY NC NDData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018Full-Text: http://hdl.handle.net/2108/212808Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11040715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Susann Stritzke; Carlos Sakyi-Nyarko; Iwona Bisaga; Malcolm Bricknell; Jon Leary; Edward Brown;doi: 10.3390/en14154559
Results-based financing (RBF) programmes in the clean cooking sector have gained increasing donor interest over the last decade. Although the risks and advantages of RBF have been discussed quite extensively for other sectors, especially health services, there is limited research-documented experience of its application to clean cooking. Due to the sheer scale of the important transition from ‘dirty’ to clean cooking for the 4 billion people who lack access, especially in the Global South, efficient and performance-proven solutions are urgently required. This paper, undertaken as part of the work of the UKAid-funded Modern Energy Cooking Services (MECS) programme, aims to close an important research gap by reviewing evidence-based support mechanisms and documenting essential experiences from previous and ongoing RBF programmes in the clean cooking and other sectors. On this basis, the paper derives key strategic implications and learning lessons for the global scaling of RBF programmes and finds that qualitative key performance indicators such as consumer acceptance as well as longer-term monitoring are critical long-term success factors for RBF to ensure the continued uptake and use of clean cooking solutions (CCS), however securing the inclusion of these indicators within programmes remains challenging. Finally, by discussing the opportunities for the evolution of RBF into broader impact funding programmes and the integration of energy access and clean cooking strategies through multi-sector approaches, the paper illustrates potential steps to enhance the impact of RBF in this sector in the future.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/15/4559/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/15/4559/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Corti P.; Capannolo L.; Bonomo P.; De Berardinis P.; Frontini F.;doi: 10.3390/en13153827
handle: 11697/174172
The built environment remains a strategic research and innovation domain in view of the goal of full decarbonization. The priority is the retrofitting of existing buildings as zero-emission to improve their energy efficiency with renewable energy technologies pulling the market with cost-effective strategies. From the first age of photovoltaics (PV) mainly integrated in solar roofs, we rapidly moved towards complete active building skins where all the architectural surfaces are photoactive (Building Integrated Photovoltaics - BIPV). This change of paradigm, where PV replaces a conventional building material, shifted the attention to relate construction choices with energy and cost effectiveness. However, systematic investigations which put into action a cross-disciplinary approach between construction, economic and energy related domains is still missing. This paper provides the detailed assessment of a real multifamily building, taking into account retrofit scenarios for making active the building skin, with the goal to identify the sensitive aspects of the energetic and economic effectiveness of BIPV design options. By assuming a real case study with monitored data, the analysis will consider a breakdown of the main individual parts composing the building envelope, by then combining alternative re-configurations in merged clusters with different energy and construction goals. Results will highlight the correlation between building skin construction strategies and the energy and cost parameters by identifying the cornerstones for enhancing efficiency. The outcomes, related to the total life cost, self-consumption/sufficiency, in combination with different building design options (façade, roof, balconies, surface orientations, etc.), provide a practical insight for researchers and professionals to identify renovation strategies by synergistically exploiting the solar active parts towards lower global costs and higher energy efficiency of the whole building system.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3827/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3827/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Muhammad Haroon; Nadeem Ahmed Sheikh; Abubakr Ayub; Rasikh Tariq; Farooq Sher; Aklilu Tesfamichael Baheta; Muhammad Imran;doi: 10.3390/en13195080
This study focused on investigating the bottoming power cycles operating with CO2-based binary mixture, taking into account exergetic, economic and exergo-environmental impact indices. The main intent is to assess the benefits of employing a CO2-based mixture working fluid in closed Brayton bottoming power cycles in comparison with pure CO2 working fluid. Firstly, selection criteria for the choice of suitable additive compound for CO2-based binary mixture is delineated and the composition of the binary mixture is decided based on required cycle minimum temperature. The decided CO2-C7H8 binary mixture with a 0.9 mole fraction of CO2 is analyzed in two cycle configurations: Simple regenerative cycle (SRC) and Partial heating cycle (PHC). Comparative analysis among two configurations with selected working fluid are carried out. Thermodynamic analyses at varying cycle pressure ratio shows that cycle with CO2-C7H8 mixture shows maximum power output and exergy efficiency at rather higher cycle pressure ratio compared to pure CO2 power cycles. PHC with CO2-C7H8 mixture shows 28.68% increment in exergy efficiency with the levelized cost of electricity (LCOE) 21.62% higher than pure CO2 PHC. Whereas, SRC with CO2-C7H8 mixture shows 25.17% increment in exergy efficiency with LCOE 57.14% higher than pure CO2 SRC. Besides showing lower economic value, cycles with a CO2-C7H8 mixture saves larger CO2 emissions and also shows greater exergo-environmental impact improvement and plant sustainability index.
CORE arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/19/5080/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/19/5080/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Germany, ItalyPublisher:MDPI AG Authors: Eric Stefan Miele; Nicole Ludwig; Alessandro Corsini;doi: 10.3390/en16083522
handle: 11573/1678667 , 10900/143749
Wind energy represents one of the leading renewable energy sectors and is considered instrumental in the ongoing decarbonization process. Accurate forecasts are essential for a reliable large-scale wind power integration, allowing efficient operation and maintenance, planning of unit commitment, and scheduling by system operators. However, due to non-stationarity, randomness, and intermittency, forecasting wind power is challenging. This work investigates a multi-modal approach for wind power forecasting by considering turbine-level time series collected from SCADA systems and high-resolution Numerical Weather Prediction maps. A neural architecture based on stacked Recurrent Neural Networks is proposed to process and combine different data sources containing spatio-temporal patterns. This architecture allows combining the local information from the turbine’s internal operating conditions with future meteorological data from the surrounding area. Specifically, this work focuses on multi-horizon turbine-level hourly forecasts for an entire wind farm with a lead time of 90 h. This work explores the impact of meteorological variables on different spatial scales, from full grids to cardinal point features, on wind power forecasts. Results show that a subset of features associated with all wind directions, even when spatially distant, can produce more accurate forecasts with respect to full grids and reduce computation times. The proposed model outperforms the linear regression baseline and the XGBoost regressor achieving an average skill score of 25%. Finally, the integration of SCADA data in the training process improved the predictions allowing the multi-modal neural network to model not only the meteorological patterns but also the turbine’s internal behavior.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/8/3522/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca- Università di Roma La SapienzaArticle . 2023License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaEberhard Karls University Tübingen: Publication SystemArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16083522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/8/3522/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca- Università di Roma La SapienzaArticle . 2023License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaEberhard Karls University Tübingen: Publication SystemArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16083522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:MDPI AG Authors: Mehrdad Chahardowli; Hassan Sajadzadeh; Farshid Aram; Amir Mosavi;doi: 10.3390/en13112708
The united nations educational, scientific and cultural organization (UNESCO) considers the historic urban landscapes as the world heritages. Managing historic city centers and maintaining historic cores are the emerging challenges for sustainable urban planning. Today, the historic cores form an important part of the economic, social, environmental, and physical assets and capacities of contemporary cities, and play a strategic role in their development. One of the most important approaches to the development of central textures, especially in historical and cultural cities, is the sustainable urban regeneration approach, which encompasses all aspects of sustainability, such as the economic, social, cultural and environmental aspects. To maintain sustainability and regeneration of historic cores of cities, it is necessary to provide insight into the underlying characteristics of the local urbanization. Furthermore, the fundamental assets are to be investigated as indicators of sustainable regeneration and drivers of urban development. In the meantime, a variety of research and experience has taken place around the world, all of which has provided different criteria and indicators for the development of strategies for the historic cores of cities. The present study, through a meta-analytic and survey method, analyzing the experience and research reported in 139 theoretical and empirical papers in the last twenty years, seeks to provide a comprehensive conceptual model taking into account the criteria and indices of sustainable regeneration in historic cores of cities. The quality of the survey has been ensured using the preferred reporting items for systematic reviews and meta-analysis (PRISMA).
Oxford Brookes Unive... arrow_drop_down Oxford Brookes University: RADARArticle . 2020License: CC BYFull-Text: https://radar.brookes.ac.uk/radar/file/24d1653d-d5ca-4d9a-a3aa-808d6a402434/1/energies-13-02708.pdfData sources: Oxford Brookes University: RADARRecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAOxford Brookes University: RADAROther literature type . 2020License: CC BYData sources: Oxford Brookes University: RADARadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Oxford Brookes Unive... arrow_drop_down Oxford Brookes University: RADARArticle . 2020License: CC BYFull-Text: https://radar.brookes.ac.uk/radar/file/24d1653d-d5ca-4d9a-a3aa-808d6a402434/1/energies-13-02708.pdfData sources: Oxford Brookes University: RADARRecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAOxford Brookes University: RADAROther literature type . 2020License: CC BYData sources: Oxford Brookes University: RADARadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022Embargo end date: 28 Aug 2024 ItalyPublisher:MDPI AG Authors: Chandra Prakash Beura; Michael Beltle; Philipp Wenger; Stefan Tenbohlen;Ultra-high-frequency (UHF) partial discharge (PD) monitoring is gaining popularity because of its advantages over electrical methods for onsite/online applications. One such advantage is the possibility of three-dimensional PD source localization. However, it is necessary to understand the signal propagation and attenuation characteristics in transformers to improve localization. Since transformers are available in a wide range of ratings and geometric sizes, it is necessary to ascertain the similarities and differences in UHF signal characteristics across the different designs. Therefore, in this contribution, the signal attenuation and propagation characteristics of two 300 MVA transformers are analyzed and compared based on experiments. The two transformers have the same rating but different internal structures. It should be noted that the oil is drained out of the transformers for these tests. Additionally, a simulation model of one of the transformers is built and validated based on the experimental results. Subsequently, a simulation model is used to analyze the electromagnetic wave propagation inside the tank. Analysis of the experimental data shows that the distance-dependent signal attenuation characteristics are similar in the case of both transformers and can be well represented by hyperbolic equations, thus indicating that transformers with the same rating have similar attenuation characteristics even if they have different internal structures.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/8/2766/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Publikationen der Universität StuttgartArticle . 2022License: CC BYData sources: Online Publikationen der Universität StuttgartOPUS - Publication Server of the University of StuttgartArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15082766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/8/2766/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Publikationen der Universität StuttgartArticle . 2022License: CC BYData sources: Online Publikationen der Universität StuttgartOPUS - Publication Server of the University of StuttgartArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15082766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 ItalyPublisher:MDPI AG Antonio Mariani; Gaetano Crispino; Pasquale Contestabile; Furio Cascetta; Corrado Gisonni; Diego Vicinanza; Andrea Unich;doi: 10.3390/en14154618
handle: 20.500.14243/535176 , 11591/453263
Overtopping-type wave power conversion devices represent one of the most promising technology to combine reliability and competitively priced electricity supplies from waves. While satisfactory hydraulic and structural performance have been achieved, the selection of the hydraulic turbines and their regulation is a complex process due to the very low head and a variable flow rate in the overtopping breakwater set-ups. Based on the experience acquired on the first Overtopping BReakwater for Energy Conversion (OBREC) prototype, operating since 2016, an activity has been carried out to select the most appropriate turbine dimension and control strategy for such applications. An example of this multivariable approach is provided and illustrated through a case study in the San Antonio Port, along the central coast of Chile. In this site the deployment of a breakwater equipped with OBREC modules is specifically investigated. Axial-flow turbines of different runner diameter are compared, proposing the optimal ramp height and turbine control strategy for maximizing system energy production. The energy production ranges from 20.5 MWh/y for the smallest runner diameter to a maximum of 34.8 MWh/y for the largest runner diameter.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/15/4618/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154618&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/15/4618/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154618&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 ItalyPublisher:MDPI AG Chiodo E.; Lauria D.; Mottola F.; Proto D.; Villacci D.; Giannuzzi G. M.; Pisani C.;doi: 10.3390/en15186508
handle: 11588/896000
Battery participation in the service of power system frequency regulation is universally recognized as a viable means for counteracting the dramatic impact of the increasing utilization of renewable energy sources. One of the most complex aspects, in both the planning and operation stage, is the adequate characterization of the dynamic variation of the state of charge of the battery in view of lifetime preservation as well as the adequate participation in the regulation task. Since the power system frequency, which is the input of the battery regulation service, is inherently of a stochastic nature, it is easy to argue that the most proper methodology for addressing this complex issue is that of the theory of stochastic processes. In the first part of the paper, a preliminary characterization of the power system frequency is presented by showing that with an optimal degree of approximation it can be regarded as an Ornstein–Uhlenbeck process. Some considerations for guaranteeing desirable performances of the control strategy are performed by assuming that the battery-regulating power depending on the frequency can be described by means of a Wiener process. In the second part of the paper, more realistically, the regulating power due to power system changes is described as an Ornstein–Uhlenbeck or an exponential shot noise process driven by a homogeneous Poisson process depending on the frequency response features requested of the battery. Because of that, the battery state of charge is modeled as the output of a dynamic filter having this exponential shot noise process as input and its characterization constitutes the central role for the correct characterization of the battery life. Numerical simulations are carried out for demonstrating the goodness and the applicability of the proposed probabilistic approach.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/18/6508/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186508&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/18/6508/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186508&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 GermanyPublisher:MDPI AG Authors: Wiem Fekih Hassen; Maher Challouf;doi: 10.3390/en17133145
The transition towards sustainable energy systems necessitates effective management of renewable energy sources alongside conventional grid infrastructure. This paper presents a comprehensive approach to optimizing grid management by integrating Photovoltaic (PV), wind, and grid energies to minimize costs and enhance sustainability. A key focus lies in developing an accurate scheduling algorithm utilizing Mixed Integer Programming (MIP), enabling dynamic allocation of energy resources to meet demand while minimizing reliance on cost-intensive grid energy. An ensemble learning technique, specifically a stacking algorithm, is employed to construct a robust forecasting pipeline for PV and wind energy generation. The forecasting model achieves remarkable accuracy with a Root Mean Squared Error (RMSE) of less than 0.1 for short-term (15 min and one day ahead) and long-term (one week and one month ahead) predictions. By combining optimization and forecasting methodologies, this research contributes to advancing grid management systems capable of harnessing renewable energy sources efficiently, thus facilitating cost savings and fostering sustainability in the energy sector.
Energies arrow_drop_down OPUS - Volltextserver Universität PassauArticle . 2024License: CC BYData sources: OPUS - Volltextserver Universität Passauadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17133145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down OPUS - Volltextserver Universität PassauArticle . 2024License: CC BYData sources: OPUS - Volltextserver Universität Passauadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en17133145&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 ItalyPublisher:MDPI AG Authors: Krastev V. K.; Falcucci G.;doi: 10.3390/en11040715
handle: 2108/212808
In this paper, recent achievements in the application of the lattice Boltzmann method (LBM) to complex fluid flows are reported. More specifically, we focus on flows through reactive porous media, such as the flow through the substrate of a selective catalytic reactor (SCR) for the reduction of gaseous pollutants in the automotive field; pulsed-flow analysis through heterogeneous catalyst architectures; and transport and electro-chemical phenomena in microbial fuel cells (MFC) for novel waste-to-energy applications. To the authors’ knowledge, this is the first known application of LBM modeling to the study of MFCs, which represents by itself a highly innovative and challenging research area. The results discussed here essentially confirm the capabilities of the LBM approach as a flexible and accurate computational tool for the simulation of complex multi-physics phenomena of scientific and technological interest, across physical scales.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/4/715/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018License: CC BY NC NDData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018Full-Text: http://hdl.handle.net/2108/212808Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11040715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/4/715/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018License: CC BY NC NDData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università di Roma Tor vergataArticle . 2018Full-Text: http://hdl.handle.net/2108/212808Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11040715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Susann Stritzke; Carlos Sakyi-Nyarko; Iwona Bisaga; Malcolm Bricknell; Jon Leary; Edward Brown;doi: 10.3390/en14154559
Results-based financing (RBF) programmes in the clean cooking sector have gained increasing donor interest over the last decade. Although the risks and advantages of RBF have been discussed quite extensively for other sectors, especially health services, there is limited research-documented experience of its application to clean cooking. Due to the sheer scale of the important transition from ‘dirty’ to clean cooking for the 4 billion people who lack access, especially in the Global South, efficient and performance-proven solutions are urgently required. This paper, undertaken as part of the work of the UKAid-funded Modern Energy Cooking Services (MECS) programme, aims to close an important research gap by reviewing evidence-based support mechanisms and documenting essential experiences from previous and ongoing RBF programmes in the clean cooking and other sectors. On this basis, the paper derives key strategic implications and learning lessons for the global scaling of RBF programmes and finds that qualitative key performance indicators such as consumer acceptance as well as longer-term monitoring are critical long-term success factors for RBF to ensure the continued uptake and use of clean cooking solutions (CCS), however securing the inclusion of these indicators within programmes remains challenging. Finally, by discussing the opportunities for the evolution of RBF into broader impact funding programmes and the integration of energy access and clean cooking strategies through multi-sector approaches, the paper illustrates potential steps to enhance the impact of RBF in this sector in the future.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/15/4559/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/15/4559/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14154559&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 ItalyPublisher:MDPI AG Corti P.; Capannolo L.; Bonomo P.; De Berardinis P.; Frontini F.;doi: 10.3390/en13153827
handle: 11697/174172
The built environment remains a strategic research and innovation domain in view of the goal of full decarbonization. The priority is the retrofitting of existing buildings as zero-emission to improve their energy efficiency with renewable energy technologies pulling the market with cost-effective strategies. From the first age of photovoltaics (PV) mainly integrated in solar roofs, we rapidly moved towards complete active building skins where all the architectural surfaces are photoactive (Building Integrated Photovoltaics - BIPV). This change of paradigm, where PV replaces a conventional building material, shifted the attention to relate construction choices with energy and cost effectiveness. However, systematic investigations which put into action a cross-disciplinary approach between construction, economic and energy related domains is still missing. This paper provides the detailed assessment of a real multifamily building, taking into account retrofit scenarios for making active the building skin, with the goal to identify the sensitive aspects of the energetic and economic effectiveness of BIPV design options. By assuming a real case study with monitored data, the analysis will consider a breakdown of the main individual parts composing the building envelope, by then combining alternative re-configurations in merged clusters with different energy and construction goals. Results will highlight the correlation between building skin construction strategies and the energy and cost parameters by identifying the cornerstones for enhancing efficiency. The outcomes, related to the total life cost, self-consumption/sufficiency, in combination with different building design options (façade, roof, balconies, surface orientations, etc.), provide a practical insight for researchers and professionals to identify renovation strategies by synergistically exploiting the solar active parts towards lower global costs and higher energy efficiency of the whole building system.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3827/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/15/3827/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13153827&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Muhammad Haroon; Nadeem Ahmed Sheikh; Abubakr Ayub; Rasikh Tariq; Farooq Sher; Aklilu Tesfamichael Baheta; Muhammad Imran;doi: 10.3390/en13195080
This study focused on investigating the bottoming power cycles operating with CO2-based binary mixture, taking into account exergetic, economic and exergo-environmental impact indices. The main intent is to assess the benefits of employing a CO2-based mixture working fluid in closed Brayton bottoming power cycles in comparison with pure CO2 working fluid. Firstly, selection criteria for the choice of suitable additive compound for CO2-based binary mixture is delineated and the composition of the binary mixture is decided based on required cycle minimum temperature. The decided CO2-C7H8 binary mixture with a 0.9 mole fraction of CO2 is analyzed in two cycle configurations: Simple regenerative cycle (SRC) and Partial heating cycle (PHC). Comparative analysis among two configurations with selected working fluid are carried out. Thermodynamic analyses at varying cycle pressure ratio shows that cycle with CO2-C7H8 mixture shows maximum power output and exergy efficiency at rather higher cycle pressure ratio compared to pure CO2 power cycles. PHC with CO2-C7H8 mixture shows 28.68% increment in exergy efficiency with the levelized cost of electricity (LCOE) 21.62% higher than pure CO2 PHC. Whereas, SRC with CO2-C7H8 mixture shows 25.17% increment in exergy efficiency with LCOE 57.14% higher than pure CO2 SRC. Besides showing lower economic value, cycles with a CO2-C7H8 mixture saves larger CO2 emissions and also shows greater exergo-environmental impact improvement and plant sustainability index.
CORE arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/19/5080/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/19/5080/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13195080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023 Germany, ItalyPublisher:MDPI AG Authors: Eric Stefan Miele; Nicole Ludwig; Alessandro Corsini;doi: 10.3390/en16083522
handle: 11573/1678667 , 10900/143749
Wind energy represents one of the leading renewable energy sectors and is considered instrumental in the ongoing decarbonization process. Accurate forecasts are essential for a reliable large-scale wind power integration, allowing efficient operation and maintenance, planning of unit commitment, and scheduling by system operators. However, due to non-stationarity, randomness, and intermittency, forecasting wind power is challenging. This work investigates a multi-modal approach for wind power forecasting by considering turbine-level time series collected from SCADA systems and high-resolution Numerical Weather Prediction maps. A neural architecture based on stacked Recurrent Neural Networks is proposed to process and combine different data sources containing spatio-temporal patterns. This architecture allows combining the local information from the turbine’s internal operating conditions with future meteorological data from the surrounding area. Specifically, this work focuses on multi-horizon turbine-level hourly forecasts for an entire wind farm with a lead time of 90 h. This work explores the impact of meteorological variables on different spatial scales, from full grids to cardinal point features, on wind power forecasts. Results show that a subset of features associated with all wind directions, even when spatially distant, can produce more accurate forecasts with respect to full grids and reduce computation times. The proposed model outperforms the linear regression baseline and the XGBoost regressor achieving an average skill score of 25%. Finally, the integration of SCADA data in the training process improved the predictions allowing the multi-modal neural network to model not only the meteorological patterns but also the turbine’s internal behavior.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/8/3522/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca- Università di Roma La SapienzaArticle . 2023License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaEberhard Karls University Tübingen: Publication SystemArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16083522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/8/3522/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della ricerca- Università di Roma La SapienzaArticle . 2023License: CC BYData sources: Archivio della ricerca- Università di Roma La SapienzaEberhard Karls University Tübingen: Publication SystemArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16083522&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:MDPI AG Authors: Mehrdad Chahardowli; Hassan Sajadzadeh; Farshid Aram; Amir Mosavi;doi: 10.3390/en13112708
The united nations educational, scientific and cultural organization (UNESCO) considers the historic urban landscapes as the world heritages. Managing historic city centers and maintaining historic cores are the emerging challenges for sustainable urban planning. Today, the historic cores form an important part of the economic, social, environmental, and physical assets and capacities of contemporary cities, and play a strategic role in their development. One of the most important approaches to the development of central textures, especially in historical and cultural cities, is the sustainable urban regeneration approach, which encompasses all aspects of sustainability, such as the economic, social, cultural and environmental aspects. To maintain sustainability and regeneration of historic cores of cities, it is necessary to provide insight into the underlying characteristics of the local urbanization. Furthermore, the fundamental assets are to be investigated as indicators of sustainable regeneration and drivers of urban development. In the meantime, a variety of research and experience has taken place around the world, all of which has provided different criteria and indicators for the development of strategies for the historic cores of cities. The present study, through a meta-analytic and survey method, analyzing the experience and research reported in 139 theoretical and empirical papers in the last twenty years, seeks to provide a comprehensive conceptual model taking into account the criteria and indices of sustainable regeneration in historic cores of cities. The quality of the survey has been ensured using the preferred reporting items for systematic reviews and meta-analysis (PRISMA).
Oxford Brookes Unive... arrow_drop_down Oxford Brookes University: RADARArticle . 2020License: CC BYFull-Text: https://radar.brookes.ac.uk/radar/file/24d1653d-d5ca-4d9a-a3aa-808d6a402434/1/energies-13-02708.pdfData sources: Oxford Brookes University: RADARRecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAOxford Brookes University: RADAROther literature type . 2020License: CC BYData sources: Oxford Brookes University: RADARadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Oxford Brookes Unive... arrow_drop_down Oxford Brookes University: RADARArticle . 2020License: CC BYFull-Text: https://radar.brookes.ac.uk/radar/file/24d1653d-d5ca-4d9a-a3aa-808d6a402434/1/energies-13-02708.pdfData sources: Oxford Brookes University: RADARRecolector de Ciencia Abierta, RECOLECTAArticle . 2020 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAOxford Brookes University: RADAROther literature type . 2020License: CC BYData sources: Oxford Brookes University: RADARadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13112708&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022Embargo end date: 28 Aug 2024 ItalyPublisher:MDPI AG Authors: Chandra Prakash Beura; Michael Beltle; Philipp Wenger; Stefan Tenbohlen;Ultra-high-frequency (UHF) partial discharge (PD) monitoring is gaining popularity because of its advantages over electrical methods for onsite/online applications. One such advantage is the possibility of three-dimensional PD source localization. However, it is necessary to understand the signal propagation and attenuation characteristics in transformers to improve localization. Since transformers are available in a wide range of ratings and geometric sizes, it is necessary to ascertain the similarities and differences in UHF signal characteristics across the different designs. Therefore, in this contribution, the signal attenuation and propagation characteristics of two 300 MVA transformers are analyzed and compared based on experiments. The two transformers have the same rating but different internal structures. It should be noted that the oil is drained out of the transformers for these tests. Additionally, a simulation model of one of the transformers is built and validated based on the experimental results. Subsequently, a simulation model is used to analyze the electromagnetic wave propagation inside the tank. Analysis of the experimental data shows that the distance-dependent signal attenuation characteristics are similar in the case of both transformers and can be well represented by hyperbolic equations, thus indicating that transformers with the same rating have similar attenuation characteristics even if they have different internal structures.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/8/2766/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Publikationen der Universität StuttgartArticle . 2022License: CC BYData sources: Online Publikationen der Universität StuttgartOPUS - Publication Server of the University of StuttgartArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15082766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/8/2766/pdfData sources: Multidisciplinary Digital Publishing InstituteOnline Publikationen der Universität StuttgartArticle . 2022License: CC BYData sources: Online Publikationen der Universität StuttgartOPUS - Publication Server of the University of StuttgartArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15082766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu