- home
- Advanced Search
- Energy Research
- Restricted
- Open Source
- IT
- University Federico II of Naples
- Energy Research
- Restricted
- Open Source
- IT
- University Federico II of Naples
description Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Elsevier BV Authors: Antonio Coppola; Fabrizio Scala; Piero Salatino; Fabio Montagnaro;[object Object]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2013.09.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2013.09.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Springer Science and Business Media LLC Authors: Sepe M.; Pitt; M.;doi: 10.1057/udi.2013.3
The paper presents a method of analysis and design of urban landscapes called PlaceMaker. The method is intended as a key resource for assessing the identity of places and measures for its enhancement, reconstruction and design. By using different tools for analysis and interpretation of places and questionnaires administered to their users, PlaceMaker finds the identity material that the city has available and how to de-compose and re-compose it for its sustainable project transformation. Pedestrian-intensive areas, in particular urban, cultural and historical poles of attraction, increasingly bear the imprint of globalization, conveying messages which have developed in an uncontrolled manner and are aimed at conveying their users' patterns of thought and action. The presence of a dense mixture of contrasting elements and perceptions can detract from the image of a city. As regards, the paper is completed with a synopsis of the experiment carried out in an historic axe in London - Oxford Street - where globalization is in danger of levelling out the beauty of the area in favour of widespread genericity
CNR ExploRA arrow_drop_down URBAN DESIGN InternationalArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1057/udi.2013.3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down URBAN DESIGN InternationalArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1057/udi.2013.3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:SAE International Authors: Fabio Bozza; Daniela Siano; Vincenzo De Bellis; Luigi Teodosio;doi: 10.4271/2014-01-2864
This paper reports 1D and 3D CFD analyses aiming to improve the gas-dynamic noise emission of a downsized turbocharged VVA engine through the re-design of the intake air-box device, consisting in the introduction of external or internal resonators. Nowadays, modern spark-ignition (SI) engines show more and more complex architectures that, while improving the brake specific fuel consumption (BSFC), may be responsible for the increased noise radiation at the engine intake mouth. In particular VVA systems allow for the actuation of advanced valve strategies that provide a reduction in the BSFC at part load operations thanks to the intake line de-throttling. In these conditions, due to a less effective attenuation of the pressure waves that travel along the intake system, VVA engines produce higher gas-dynamic noise levels. The worsening of the engine gas-dynamic performance can be compensated with a partial re-design of the air-box device, without significantly penalizing the engine power output. In order to find new design configurations of the air-box device capable of improving the noise levels, different numerical models can be successfully employed. In the present work, a detailed 1D engine model is firstly developed and validated against the experimental data at full load operations. 1D model is realized within GT-Power(TM) software and it utilizes proper user routines for the modeling of the turbulence and combustion process and for the handling of different intake valve strategies. The 1D engine model also includes a refined user model of the turbocharger able to better describe the acoustic behavior of the device. The engine model allows for the prediction of the main overall engine performances and the gas-dynamic noise with good accuracy. It also provides a first estimation of the gas-dynamic noise and gives reliable boundary conditions for the subsequent unsteady 3D CFD analyses, allowing to obtain a more accurate noise prediction. A proper Helmholtz resonator is designed and virtually installed along the inlet pipe of the air-box device. An additional geometrical configuration of the air-filter box, that includes an internal resonator, obtained through the insertion of inner walls, is considered, too. The effectiveness of the redesigned air-box configurations, are firstly tested in terms of Transmission Loss characteristics, and in terms of gasdynamic noise abatement, as well.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2014-01-2864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2014-01-2864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Other literature type 2017 ItalyPublisher:SAE International Authors: Giuseppe Langella; Luigi Allocca; Amedeo Amoresano; Alessandro Montanaro;doi: 10.4271/2017-24-0106
The analysis of a spray behavior is confined to study the fluid dynamic parameters such as axial and radial velocity of the droplets, size distribution of the droplets, and geometrical aspect as the penetration length. In this paper, the spray is considered like a dynamic system and consequently it can be described by a number of parameters that characterize its dynamic behavior. The parameter chosen to describe the dynamic behavior is the external cone angle. This parameter has been detected by using an experimental injection chamber, a multi-hole (8 holes) injector for GDI applications and recorded by a high-speed C-Mos camera. The images have been elaborated by a fuzzy logic and neural network algorithm and are processed by using a chaos deterministic theory. This procedure carries out a map distribution of the working point of the spray and determines the stable (signature of the spray) and instable behavior. This approach allows using the acquired information as a first step to define an advanced control of the injection of a GDI system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2017-24-0106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2017-24-0106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Italy, Italy, Italy, United KingdomPublisher:Elsevier BV Bosso, Luciano; Luchi, Nicola; Maresi, Giorgio; Cristinzio, Gennaro; Smeraldo, Sonia; Russo, Danilo;Species distribution models (SDMs) provide realistic scenarios to explain the influence of bioclimatic variables on plant pathogen distribution. Diplodia sapinea is most harmful to plantations of both exotic and native pine species in Italy, causing economic consequences expecially to edible seed production. In this study, we developed maximum entropy models for D. sapinea in Italy to reach the following goals: (i) to carry out the pathogen's first geographical distribution analysis in Italy and determine which ecogeographical variables (EGVs) may influence its outbreaks; (ii) to detect the effect of climate change on the potential occurrence of disease outbreaks by 2050 and 2070. We used Maxent ver. 3.4.0 to develop SDMs. We used six global climate models (BCC-CSM1-1, CCSM4, GISS-E2-R, MIROC5, HadGEM2-ES and MPI-ESM-LR) for two representative concentration pathways (4.5 and 8.5) and two time projections (2050 and 2070) to detect future climate projections of D. sapinea. The most important EGVs influencing outbreaks were land cover, altitude, mean temperature of driest and wettest quarter, precipitation of wettest quarter, precipitation seasonality and minimum temperature of coldest month. The distribution of D. sapinea mostly expanded in central and southern Italy and shifted in altitude upwards on average by ca. 93m a.s.l. Moreover the fungus expanded the range where disease outbreaks may be recorded in response to an increase in the mean temperature of wettest and driest quarter by ca. 1.9 C and 5.8 C, respectively in all climate change scenarios. Precipitation of wettest quarter did not differ between current and any of future models. Under different climate change scenarios D. sapinea's disease outbreaks will be likely to affect larger areas of pine forests in the country, probably causing heavy effects on the dynamics and evolution of these stands or perhaps constraining their survival.
CNR ExploRA arrow_drop_down Forest Ecology and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2017.06.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 66 citations 66 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Forest Ecology and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2017.06.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Wiley Authors: Paolo Iodice; Amedeo Amoresano; Giuseppe Langella; Francesco Saverio Marra;doi: 10.1002/er.7163
This research proposes an innovative solar thermal plant able to generate mechanical power through an optimized system of heliostats with Scheffler-type solar receivers coupled with screw-type steam expanders. Scheffler receivers appear to perform better than parabolic trough collectors due to the high compactness of the focal receiver, which minimizes convective and radiative heat losses even at high vaporization temperatures. At the same time, steam screw expanders are volumetric machines that can be used to produce mechanical power with satisfactory efficiency also by admitting two-phase mixtures and with further advantages compared to steam turbines: low working fluid velocities, low operating pressures, and avoidance of overheating. This study establishes a mathematical model to assess the energetic advantages of the planned solar thermal power system by evaluating the solar-to-electricity efficiency for different off-design working conditions. For this purpose, a numerical model on the Scheffler receiver is initially investigated, thus assessing all the energy losses which affect the heat transfer phase. A thermodynamic model is then developed to evaluate the energy losses and performance of the screw expander under real working conditions. Finally, parametric optimization of the solar energy conversion is performed in a wide range of operating conditions by establishing thermodynamic formulations related to the whole solar electricity generation system. Water condensation pressure and vaporization temperature are so optimized with respect to global energy conversion efficiency which, under the best operating conditions achieved in this research, rises from 10.9% to 14.4% with increasing solar irradiation intensity. Hence, the combined use of screw expanders and Scheffler receivers for solar thermal power system application can be a promising technology with advantages over parabolic dish concentrators. Novelty statement: This research proposes an innovative direct steam solar power plant based on an SRC, with water utilized as both heat transfer and working fluid, equipped with Scheffler solar receivers as a thermal source and screw expanders as work-producing devices. Technical studies and energy assessments of this kind of SEGS at part-load operation do not exist in scientific literature; after reviewing the literature, it was determined that volumetric expanders have been rarely combined with Scheffler receivers for solar thermal power system application. In effect, combined use of screw expanders and Scheffler-type solar concentrator in a direct steam solar power system represents a completely new plant configuration; however, as a promising DSG solar system, at present numerical model of this new sort of SEGS is lacked in literature and the optimum operating conditions have yet to be defined. For this reason, the chief objective of this paper is to define a first parametric optimization of all thermodynamic variables involved to maximize global efficiency of the proposed solar thermal power generation system for ordinary working conditions.
CNR ExploRA arrow_drop_down International Journal of Energy ResearchArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.7163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down International Journal of Energy ResearchArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.7163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Mariano Sirignano; Marielena Conturso; Agnese Magno; Silvana Di Iorio; Ezio Mancaruso; Bianca Maria Vaglieco; Andrea D'Anna;Particle size distributions (PSDs) are measured at the exhaust of a diesel engine burning a sulphur-free diesel fuel and a blend of the fuel with a rapeseed methyl-ester. Different operating conditions of load and engine speed are analyzed. Particles with sizes ranging from few nanometers up 1 ?m are generated during combustion in the engine. Operating conditions and fuel characteristics strongly affect the PSDs confirming that particles are generated from fuel oxidation and pyrolysis rather than from the oxidation of lube oil or from other sources in the engine. The higher is the engine load, the higher the emission of mass concentration of particulate matter but the lower their number concentration. At fixed engine loads, the increase of the engine speed produces more particles and with larger mean sizes. The use of the biofuel blended with a commercial fuel reduces the total mass concentration of particulate matter but strongly increases the number concentration of sub-10 nm particles
CNR ExploRA arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2018.01.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2018.01.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:SAE International Vincenzo De Bellis; Daniela Siano; Fabrizio Minarelli; Diego Cacciatore; Luigi Teodosio;doi: 10.4271/2015-24-2392
In this paper, a high performance V12 spark-ignition engine is experimentally investigated at test-bench in order to fully characterize its behavior in terms of both average parameters, cycle-by-cycle variations and knock tendency, for different operating conditions. In particular, for each considered operating point, a spark advance sweep is actuated, starting from a knock-free calibration, up to intense knock operation. Sequences of 300 consecutive pressure cycles are measured for each cylinder, together with the main overall engine performance, including fuel flow, torque, and fuel consumption. Acquired data are statistically analyzed to derive the distributions of main indicated parameters, in order to find proper correlations with ensemble-averaged quantities. In particular, the Coefficient of Variation (CoV) of IMEP and of the in-cylinder peak pressure (pmax) are correlated to the average combustion phasing and duration (MFB50 and ??b), with a good coefficient of determination. In addition, a high-pass-filtering technique is used to derive the cycle-bycycle scattering of the Maximum Amplitude of Pressure Oscillation (MAPO) index. A similar statistical analysis is carried out to derive the log-normal distributions of the MAPO index and a methodology to asses a proper knock threshold is applied to identify the presence of knocking combustion. The above data represent the prerequisites for the implementation and validation of an advanced 1D model, described in Part 2, taking into account cycle-by-cycle variations, and finally aiming to identify the knock-limited spark advance on a completely theoretical basis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2015-24-2392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2015-24-2392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Giancarlo Sorrentino; Pino Sabia; Pio Bozza; Raffaele Ragucci; Mara de Joannon;Chemical storage in suitable energy carriers is a requirement for any renewable source-based energy supply system. In this framework, owing to its very high hydrogen density and long established production processes, ammonia appears to be a very promising carrier. Furthermore, it is not necessary to use hydrogen extraction processes because ammonia can be directly used as a fuel in combustion systems. Nevertheless, there is a notable gap between the rising interest in ammonia-based power technologies and the actual knowledge and understanding of the physical and chemical underpinnings of its reactivity features. In particular, the viability of ammonia as an energy vector relies on the global process conversion efficiency, including the possibility of obtaining the required power levels at consumption points with minimal environmental impact. Therefore, this study is aimed at bridging the gap between the fundamental research and the development and implementation of ammonia-fueled combustion technologies in the context of eco-friendly, safe, and sustainable energy systems. The combination of high preheating and dilution levels, which are realized by means of a strong internal recirculation, leads to a very peculiar combustion regime. The potential of this oxidation mode, as realized in a cyclonic flow burner, to achieve stable ammonia combustion is explored to determine the influence of the operational parameters. The dependence of the process stability and NO emissions on the equivalence ratio, inlet preheating level, and thermal load of the inflow mixture was studied by monitoring the temperatures and species concentrations to identify the optimal burner operating conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 131 citations 131 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Antonino Pollio; Paola Imbimbo; Angela Amoresano; Armando Zarrelli; Valeria Romanucci; Daria Maria Monti; Carolina Fontanarosa; Giuseppe Olivieri; Giuseppe Olivieri;pmid: 31696285
The setup of an economic and sustainable method to increase the production and commercialization of products from microalgae, beyond niche markets, is a challenge. Here, a cascade approach has been designed to optimize the recovery of high valuable bioproducts starting from the wet biomass of Galdieria phlegrea. This unicellular thermo-acidophilic red alga can accumulate high-value compounds and can live under conditions considered hostile to most other species. Extractions were performed in two sequential steps: a conventional high-pressure procedure to recover phycocyanins and a solvent extraction to obtain fatty acids. Phycocyanins were purified to the highest purification grade reported so far and were active as antioxidants on a cell-based model. Fatty acids isolated from the residual biomass contained high amount of PUFAs, more than those recovered from the raw biomass. Thus, a simple, economic, and high effective procedure was set up to isolate phycocyanin at high purity levels and PUFAs.
Applied Microbiology... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Applied Microbiology and BiotechnologyArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-019-10154-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Microbiology... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Applied Microbiology and BiotechnologyArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-019-10154-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Elsevier BV Authors: Antonio Coppola; Fabrizio Scala; Piero Salatino; Fabio Montagnaro;[object Object]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2013.09.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2013.09.059&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 ItalyPublisher:Springer Science and Business Media LLC Authors: Sepe M.; Pitt; M.;doi: 10.1057/udi.2013.3
The paper presents a method of analysis and design of urban landscapes called PlaceMaker. The method is intended as a key resource for assessing the identity of places and measures for its enhancement, reconstruction and design. By using different tools for analysis and interpretation of places and questionnaires administered to their users, PlaceMaker finds the identity material that the city has available and how to de-compose and re-compose it for its sustainable project transformation. Pedestrian-intensive areas, in particular urban, cultural and historical poles of attraction, increasingly bear the imprint of globalization, conveying messages which have developed in an uncontrolled manner and are aimed at conveying their users' patterns of thought and action. The presence of a dense mixture of contrasting elements and perceptions can detract from the image of a city. As regards, the paper is completed with a synopsis of the experiment carried out in an historic axe in London - Oxford Street - where globalization is in danger of levelling out the beauty of the area in favour of widespread genericity
CNR ExploRA arrow_drop_down URBAN DESIGN InternationalArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1057/udi.2013.3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CNR ExploRA arrow_drop_down URBAN DESIGN InternationalArticle . 2013 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1057/udi.2013.3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:SAE International Authors: Fabio Bozza; Daniela Siano; Vincenzo De Bellis; Luigi Teodosio;doi: 10.4271/2014-01-2864
This paper reports 1D and 3D CFD analyses aiming to improve the gas-dynamic noise emission of a downsized turbocharged VVA engine through the re-design of the intake air-box device, consisting in the introduction of external or internal resonators. Nowadays, modern spark-ignition (SI) engines show more and more complex architectures that, while improving the brake specific fuel consumption (BSFC), may be responsible for the increased noise radiation at the engine intake mouth. In particular VVA systems allow for the actuation of advanced valve strategies that provide a reduction in the BSFC at part load operations thanks to the intake line de-throttling. In these conditions, due to a less effective attenuation of the pressure waves that travel along the intake system, VVA engines produce higher gas-dynamic noise levels. The worsening of the engine gas-dynamic performance can be compensated with a partial re-design of the air-box device, without significantly penalizing the engine power output. In order to find new design configurations of the air-box device capable of improving the noise levels, different numerical models can be successfully employed. In the present work, a detailed 1D engine model is firstly developed and validated against the experimental data at full load operations. 1D model is realized within GT-Power(TM) software and it utilizes proper user routines for the modeling of the turbulence and combustion process and for the handling of different intake valve strategies. The 1D engine model also includes a refined user model of the turbocharger able to better describe the acoustic behavior of the device. The engine model allows for the prediction of the main overall engine performances and the gas-dynamic noise with good accuracy. It also provides a first estimation of the gas-dynamic noise and gives reliable boundary conditions for the subsequent unsteady 3D CFD analyses, allowing to obtain a more accurate noise prediction. A proper Helmholtz resonator is designed and virtually installed along the inlet pipe of the air-box device. An additional geometrical configuration of the air-filter box, that includes an internal resonator, obtained through the insertion of inner walls, is considered, too. The effectiveness of the redesigned air-box configurations, are firstly tested in terms of Transmission Loss characteristics, and in terms of gasdynamic noise abatement, as well.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2014-01-2864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2014-01-2864&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Other literature type 2017 ItalyPublisher:SAE International Authors: Giuseppe Langella; Luigi Allocca; Amedeo Amoresano; Alessandro Montanaro;doi: 10.4271/2017-24-0106
The analysis of a spray behavior is confined to study the fluid dynamic parameters such as axial and radial velocity of the droplets, size distribution of the droplets, and geometrical aspect as the penetration length. In this paper, the spray is considered like a dynamic system and consequently it can be described by a number of parameters that characterize its dynamic behavior. The parameter chosen to describe the dynamic behavior is the external cone angle. This parameter has been detected by using an experimental injection chamber, a multi-hole (8 holes) injector for GDI applications and recorded by a high-speed C-Mos camera. The images have been elaborated by a fuzzy logic and neural network algorithm and are processed by using a chaos deterministic theory. This procedure carries out a map distribution of the working point of the spray and determines the stable (signature of the spray) and instable behavior. This approach allows using the acquired information as a first step to define an advanced control of the injection of a GDI system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2017-24-0106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2017-24-0106&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 Italy, Italy, Italy, United KingdomPublisher:Elsevier BV Bosso, Luciano; Luchi, Nicola; Maresi, Giorgio; Cristinzio, Gennaro; Smeraldo, Sonia; Russo, Danilo;Species distribution models (SDMs) provide realistic scenarios to explain the influence of bioclimatic variables on plant pathogen distribution. Diplodia sapinea is most harmful to plantations of both exotic and native pine species in Italy, causing economic consequences expecially to edible seed production. In this study, we developed maximum entropy models for D. sapinea in Italy to reach the following goals: (i) to carry out the pathogen's first geographical distribution analysis in Italy and determine which ecogeographical variables (EGVs) may influence its outbreaks; (ii) to detect the effect of climate change on the potential occurrence of disease outbreaks by 2050 and 2070. We used Maxent ver. 3.4.0 to develop SDMs. We used six global climate models (BCC-CSM1-1, CCSM4, GISS-E2-R, MIROC5, HadGEM2-ES and MPI-ESM-LR) for two representative concentration pathways (4.5 and 8.5) and two time projections (2050 and 2070) to detect future climate projections of D. sapinea. The most important EGVs influencing outbreaks were land cover, altitude, mean temperature of driest and wettest quarter, precipitation of wettest quarter, precipitation seasonality and minimum temperature of coldest month. The distribution of D. sapinea mostly expanded in central and southern Italy and shifted in altitude upwards on average by ca. 93m a.s.l. Moreover the fungus expanded the range where disease outbreaks may be recorded in response to an increase in the mean temperature of wettest and driest quarter by ca. 1.9 C and 5.8 C, respectively in all climate change scenarios. Precipitation of wettest quarter did not differ between current and any of future models. Under different climate change scenarios D. sapinea's disease outbreaks will be likely to affect larger areas of pine forests in the country, probably causing heavy effects on the dynamics and evolution of these stands or perhaps constraining their survival.
CNR ExploRA arrow_drop_down Forest Ecology and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2017.06.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 66 citations 66 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Forest Ecology and ManagementArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)University of Bristol: Bristol ResearchArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.foreco.2017.06.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 ItalyPublisher:Wiley Authors: Paolo Iodice; Amedeo Amoresano; Giuseppe Langella; Francesco Saverio Marra;doi: 10.1002/er.7163
This research proposes an innovative solar thermal plant able to generate mechanical power through an optimized system of heliostats with Scheffler-type solar receivers coupled with screw-type steam expanders. Scheffler receivers appear to perform better than parabolic trough collectors due to the high compactness of the focal receiver, which minimizes convective and radiative heat losses even at high vaporization temperatures. At the same time, steam screw expanders are volumetric machines that can be used to produce mechanical power with satisfactory efficiency also by admitting two-phase mixtures and with further advantages compared to steam turbines: low working fluid velocities, low operating pressures, and avoidance of overheating. This study establishes a mathematical model to assess the energetic advantages of the planned solar thermal power system by evaluating the solar-to-electricity efficiency for different off-design working conditions. For this purpose, a numerical model on the Scheffler receiver is initially investigated, thus assessing all the energy losses which affect the heat transfer phase. A thermodynamic model is then developed to evaluate the energy losses and performance of the screw expander under real working conditions. Finally, parametric optimization of the solar energy conversion is performed in a wide range of operating conditions by establishing thermodynamic formulations related to the whole solar electricity generation system. Water condensation pressure and vaporization temperature are so optimized with respect to global energy conversion efficiency which, under the best operating conditions achieved in this research, rises from 10.9% to 14.4% with increasing solar irradiation intensity. Hence, the combined use of screw expanders and Scheffler receivers for solar thermal power system application can be a promising technology with advantages over parabolic dish concentrators. Novelty statement: This research proposes an innovative direct steam solar power plant based on an SRC, with water utilized as both heat transfer and working fluid, equipped with Scheffler solar receivers as a thermal source and screw expanders as work-producing devices. Technical studies and energy assessments of this kind of SEGS at part-load operation do not exist in scientific literature; after reviewing the literature, it was determined that volumetric expanders have been rarely combined with Scheffler receivers for solar thermal power system application. In effect, combined use of screw expanders and Scheffler-type solar concentrator in a direct steam solar power system represents a completely new plant configuration; however, as a promising DSG solar system, at present numerical model of this new sort of SEGS is lacked in literature and the optimum operating conditions have yet to be defined. For this reason, the chief objective of this paper is to define a first parametric optimization of all thermodynamic variables involved to maximize global efficiency of the proposed solar thermal power generation system for ordinary working conditions.
CNR ExploRA arrow_drop_down International Journal of Energy ResearchArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.7163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down International Journal of Energy ResearchArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.7163&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 ItalyPublisher:Elsevier BV Mariano Sirignano; Marielena Conturso; Agnese Magno; Silvana Di Iorio; Ezio Mancaruso; Bianca Maria Vaglieco; Andrea D'Anna;Particle size distributions (PSDs) are measured at the exhaust of a diesel engine burning a sulphur-free diesel fuel and a blend of the fuel with a rapeseed methyl-ester. Different operating conditions of load and engine speed are analyzed. Particles with sizes ranging from few nanometers up 1 ?m are generated during combustion in the engine. Operating conditions and fuel characteristics strongly affect the PSDs confirming that particles are generated from fuel oxidation and pyrolysis rather than from the oxidation of lube oil or from other sources in the engine. The higher is the engine load, the higher the emission of mass concentration of particulate matter but the lower their number concentration. At fixed engine loads, the increase of the engine speed produces more particles and with larger mean sizes. The use of the biofuel blended with a commercial fuel reduces the total mass concentration of particulate matter but strongly increases the number concentration of sub-10 nm particles
CNR ExploRA arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2018.01.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down Experimental Thermal and Fluid ScienceArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.expthermflusci.2018.01.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 ItalyPublisher:SAE International Vincenzo De Bellis; Daniela Siano; Fabrizio Minarelli; Diego Cacciatore; Luigi Teodosio;doi: 10.4271/2015-24-2392
In this paper, a high performance V12 spark-ignition engine is experimentally investigated at test-bench in order to fully characterize its behavior in terms of both average parameters, cycle-by-cycle variations and knock tendency, for different operating conditions. In particular, for each considered operating point, a spark advance sweep is actuated, starting from a knock-free calibration, up to intense knock operation. Sequences of 300 consecutive pressure cycles are measured for each cylinder, together with the main overall engine performance, including fuel flow, torque, and fuel consumption. Acquired data are statistically analyzed to derive the distributions of main indicated parameters, in order to find proper correlations with ensemble-averaged quantities. In particular, the Coefficient of Variation (CoV) of IMEP and of the in-cylinder peak pressure (pmax) are correlated to the average combustion phasing and duration (MFB50 and ??b), with a good coefficient of determination. In addition, a high-pass-filtering technique is used to derive the cycle-bycycle scattering of the Maximum Amplitude of Pressure Oscillation (MAPO) index. A similar statistical analysis is carried out to derive the log-normal distributions of the MAPO index and a methodology to asses a proper knock threshold is applied to identify the presence of knocking combustion. The above data represent the prerequisites for the implementation and validation of an advanced 1D model, described in Part 2, taking into account cycle-by-cycle variations, and finally aiming to identify the knock-limited spark advance on a completely theoretical basis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2015-24-2392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2015-24-2392&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 ItalyPublisher:Elsevier BV Giancarlo Sorrentino; Pino Sabia; Pio Bozza; Raffaele Ragucci; Mara de Joannon;Chemical storage in suitable energy carriers is a requirement for any renewable source-based energy supply system. In this framework, owing to its very high hydrogen density and long established production processes, ammonia appears to be a very promising carrier. Furthermore, it is not necessary to use hydrogen extraction processes because ammonia can be directly used as a fuel in combustion systems. Nevertheless, there is a notable gap between the rising interest in ammonia-based power technologies and the actual knowledge and understanding of the physical and chemical underpinnings of its reactivity features. In particular, the viability of ammonia as an energy vector relies on the global process conversion efficiency, including the possibility of obtaining the required power levels at consumption points with minimal environmental impact. Therefore, this study is aimed at bridging the gap between the fundamental research and the development and implementation of ammonia-fueled combustion technologies in the context of eco-friendly, safe, and sustainable energy systems. The combination of high preheating and dilution levels, which are realized by means of a strong internal recirculation, leads to a very peculiar combustion regime. The potential of this oxidation mode, as realized in a cyclonic flow burner, to achieve stable ammonia combustion is explored to determine the influence of the operational parameters. The dependence of the process stability and NO emissions on the equivalence ratio, inlet preheating level, and thermal load of the inflow mixture was studied by monitoring the temperatures and species concentrations to identify the optimal burner operating conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 131 citations 131 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113676&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Springer Science and Business Media LLC Antonino Pollio; Paola Imbimbo; Angela Amoresano; Armando Zarrelli; Valeria Romanucci; Daria Maria Monti; Carolina Fontanarosa; Giuseppe Olivieri; Giuseppe Olivieri;pmid: 31696285
The setup of an economic and sustainable method to increase the production and commercialization of products from microalgae, beyond niche markets, is a challenge. Here, a cascade approach has been designed to optimize the recovery of high valuable bioproducts starting from the wet biomass of Galdieria phlegrea. This unicellular thermo-acidophilic red alga can accumulate high-value compounds and can live under conditions considered hostile to most other species. Extractions were performed in two sequential steps: a conventional high-pressure procedure to recover phycocyanins and a solvent extraction to obtain fatty acids. Phycocyanins were purified to the highest purification grade reported so far and were active as antioxidants on a cell-based model. Fatty acids isolated from the residual biomass contained high amount of PUFAs, more than those recovered from the raw biomass. Thus, a simple, economic, and high effective procedure was set up to isolate phycocyanin at high purity levels and PUFAs.
Applied Microbiology... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Applied Microbiology and BiotechnologyArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-019-10154-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Applied Microbiology... arrow_drop_down Applied Microbiology and BiotechnologyArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Applied Microbiology and BiotechnologyArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00253-019-10154-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu