Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
229 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 3. Good health
  • 6. Clean water
  • JP
  • KR
  • IRDB

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Reiko Imai; Hirohiko Tsujii; Hiroshi Tsuji; Shin-ichiro Tatezaki; +3 Authors

    To summarize the results of treatment for sacral chordoma in Phase I-II and Phase II carbon ion radiotherapy trials for bone and soft-tissue sarcomas.We performed a retrospective analysis of 38 patients with medically unresectable sacral chordomas treated with the Heavy Ion Medical Accelerator in Chiba, Japan between 1996 and 2003. Of the 38 patients, 30 had not received previous treatment and 8 had locally recurrent tumor after previous resection. The applied carbon ion dose was 52.8-73.6 Gray equivalents (median, 70.4) in a total of 16 fixed fractions within 4 weeks.The median patient age was 66 years. The cranial tumor extension was S2 or greater in 31 patients. The median clinical target volume was 523 cm(3). The median follow-up period was 80 months. The 5-year overall survival rate was 86%, and the 5-year local control rate was 89%. After treatment, 27 of 30 patients with primary tumor remained ambulatory with or without supportive devices. Two patients experienced severe skin or soft-tissue complications requiring skin grafts.Carbon ion radiotherapy appears effective and safe in the treatment of patients with sacral chordoma and offers a promising alternative to surgery.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Radiation Oncology*Biology*Physics
    Article . 2010 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    IRDB
    Article . 2014
    Data sources: IRDB
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    82
    citations82
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Radiation Oncology*Biology*Physics
      Article . 2010 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      IRDB
      Article . 2014
      Data sources: IRDB
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Oki Sekizawa; Tomoya Uruga; Yasuhiro Iwasawa; Toshihiko Yokoyama; +11 Authors

    The structural kinetics of surface events on a Pt3Co/C cathode catalyst in a polymer electrolyte fuel cell (PEFC) was investigated by operando time-resolved X-ray absorption fine structure (XAFS) with a time resolution of 500 ms. The rate constants of electrochemical reactions, the changes in charge density on Pt, and the changes in the local coordination structures of the Pt3Co alloy catalyst in the PEFC were successfully evaluated during fuel-cell voltage-operating processes. Significant time lags were observed between the electrochemical reactions and the structural changes in the Pt3Co alloy catalyst. The rate constants of all the surface events on the Pt3Co/C catalyst were significantly higher than those on the Pt/C catalyst, suggesting the advantageous behaviors (cell performance and catalyst durability) on the Pt3Co alloy cathode catalyst.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRDBarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ACS Catalysis
    Article . 2012 . Peer-reviewed
    Data sources: Crossref
    IRDB
    Article
    Data sources: IRDB
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    104
    citations104
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Chanrithyrouth Mao; Yasuhiro Yamada; Yasuhiro Yamada; Toshifumi Matsuoka;

    This study screens and rank Cambodian sedimentary basins in terms of their containment, capacity, and feasibility for the geological storage of CO[2]. The results of the screening and ranking procedure indicate that the Khmer Basin is the most suitable basin, followed by the Kampong Saom and Tonle Sap basins. A quantitative volumetric assessment-based evaluation of CO[2] storage capacity is performed on these three suitable basins. The evaluation yields a range in the national CO[2] storage capacity of 90 Mt (in structural traps) to 45 Gt (in hydrodynamic traps), representing low- and high-case estimates, respectively. The saline aquifers associated with this storage capacity should be considered prospective storage options as hydrodynamic traps because of containment and capacity issues associated with the structural traps. Eight major point sources of CO[2] are identified that have a combined output (estimated for 2008–2024) of 43.1 Mt annually and 82 billion m[3] in place, and the potentially prospective matched storage capacity is assumed. Overall, a combination of the initial suitabilities of the basins and estimates of prospective matched storage capacity shows that the Khmer, Kampong Saom, and Tonle Sap basins may provide a solution to the problem of reducing future atmospheric emissions. The present results should assist both exploration geologists and experts in carbon capture and storage to gain a better understanding of the CO[2]storage resources of Cambodia. However, the results should be regarded as preliminary because of the limited available data on which the assessments were based; future geological and geophysical data should improve the reliability of the estimates of carbon storage capacity reported here.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRDBarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Greenhouse Gas Control
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    IRDB
    Article
    Data sources: IRDB
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRDBarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Greenhouse Gas Control
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      IRDB
      Article
      Data sources: IRDB
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Muroyama, H; Matsui, T; Kikuchi, R; Eguchi, K;

    Proton-conductive electrolytes of CsHSO 4 composite were synthesized, and the influence of the matrix on their structure and proton conductivity was investigated at intermediate temperatures. As the supporting matrix, heat-treated TiOSO 4 hydrate was used. When the matrix heat-treated at 300°C was employed, formation of new phases was observed in the composite during the heat-treatment at 200°C due to the interfacial chemical reaction between CsHSO 4 and the matrix. The resulting composite with a suitable composition exhibited higher conductivity than pure CsHSO 4 with linear temperature dependence. This anomalous behavior is quite different from that of the pure CsHSO 4 , which exhibits the "conductivity jump" at ca. 140°C because of the phase transition.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    19
    citations19
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Tohru Suzuki; Satoshi Kaneco; Mohammad Arifur Rahman; Kiyohisa Ohta; +2 Authors

    The effect of temperature on the wastewater treatment with waste materials (refuse concrete and refuse waste) and natural material (shell) was investigated. The removal of suspended solid (SS), phosphate ion, nitrate ion, ammonium ion and chemical oxygen demand (COD) were evaluated for the temperature effect. Although the extensive improvement of removal efficiencies for nitrate ion and ammonium ion could not be achieved by increasing the temperature, the significant enhancement of the removal of SS and COD was observed. The present wastewater treatment system is simple, convenient and low-cost. Therefore, the developed methods can be applied to the small-scale plant for the wastewater treatment in the local and nonexclusive areas.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Clean Technologies a...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Clean Technologies and Environmental Policy
    Article . 2005 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    IRDB
    Article . 2005
    Data sources: IRDB
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    24
    citations24
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Clean Technologies a...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Clean Technologies and Environmental Policy
      Article . 2005 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      IRDB
      Article . 2005
      Data sources: IRDB
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Takiya, Hiroaki; Watanabe, Naoko; Kozaki, Tamotsu; Sato, Seichi;

    Apparent diffusion coefficients (D-a) of water and activation energies (E-a) of diffusion in hardened cement pastes (HCPs) were determined as a function of water-to-cement (w/c) ratio (0.36-0.60) and temperature (293-323K) using HTO and (H2O)-O-18 as tracers. The values of D-a and E-a ranged from 1.1x10(-11) to 1.7x10(-10) m(2) s(-1) and from 21.5 to 31.3 kJ mol(-1), respectively. No significant difference between the D-a values of HTO and (H2O)-O-18 suggests that water predominantly diffuses as H2O molecule and dissociation of water is not significant even at high pH range in HCP. The values of E-a at low w/c ratio were higher than in bulk liquid water, suggesting a contribution of a different water regime, such as supercooled bulk water. Two simple models consisting of capillary and gel pores were considered to estimate the volume ratio of gel pores to total pores by optimizing the model to fit with the experimental data. The result suggests that HCP has a pore network mostly consisting of capillary pores with some very narrow pores plugged with hydrates, where HTO must diffuse through gel pores. This view of the HCP pore network was made available through analysis of E-a values.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRDBarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Nuclear Science and Technology
    Article . 2014 . Peer-reviewed
    Data sources: Crossref
    IRDB
    Article
    Data sources: IRDB
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRDBarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Nuclear Science and Technology
      Article . 2014 . Peer-reviewed
      Data sources: Crossref
      IRDB
      Article
      Data sources: IRDB
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mitsuru Sano; Masahiro Nagao; Takashi Hibino; Daisuke Hirabayashi; +1 Authors

    Single-chamber solid oxide fuel cells (SOFCs) with an anode-supported Ce 0 . 9 Gd 0 . 1 O 1 . 9 5 electrolyte were operated in a mixture of butane and air at furnace temperatures of 200-300°C. The electromotive force (emf) of the cell and the voltage drop were strongly influenced by the catalytic activity of the anode for the partial oxidation of butane. The promotion of hydrogen formation by the addition of Ru to the anode caused an increase in the emf and a reduction in the voltage drop. As a result, stable power densities of 44 and 176 mW cm - 2 were obtained at 200 and 300°C, respectively.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRDBarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    IRDB
    Article . 2005
    Data sources: IRDB
    Electrochemical and Solid-State Letters
    Article . 2005 . Peer-reviewed
    Data sources: Crossref
    IRDB
    Article . 2005
    Data sources: IRDB
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    28
    citations28
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRDBarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      IRDB
      Article . 2005
      Data sources: IRDB
      Electrochemical and Solid-State Letters
      Article . 2005 . Peer-reviewed
      Data sources: Crossref
      IRDB
      Article . 2005
      Data sources: IRDB
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: KUMAGAI Seiji; IKAWA Kaoru; TAKEDA Koichi;

    Ammonia is a principal component of foul odors of agricultural and livestock wastes. This study investigated ammonia gas adsorption of rice husk carbonized in vacuum at different temperatures (300 ―800°C) for 3h. In an enclosed bag, 1.00 g of the carbonized rice husk was exposed to ammonia gas at 100 ppm. Rice husk carbonized at 400°C adsorbed ammonia the fastest. Its performance was much better than those of commercial deodorants. Pore characteristics and chemical characteristics of carbonized rice husk were examined to correlate them with the ammonia adsorption property. Remaining acidic functional groups were inferred to play a beneficial role in improving the ammonia adsorption.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRDBarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    IRDB
    Article
    Data sources: IRDB
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    10
    citations10
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRDBarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      IRDB
      Article
      Data sources: IRDB
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Tsuyoshi Ishida; Kazuhei Aoyagi; Qu Chen; Youqing Chen; +3 Authors

    Carbon dioxide (CO2) is often used for enhanced oil recovery in depleted petroleum reservoirs, and its behavior in rock is also of interest in CO2 capture and storage projects. CO2usually becomes supercritical (SC‐CO2) at depths greater than 1,000 m, while it is liquid (L‐CO2) at low temperatures. The viscosity of L‐CO2is one order lower than that of normal liquid water, and that of SC‐CO2is much lower still. To clarify fracture behavior induced with injection of the low viscosity fluids, we conducted hydraulic fracturing experiments using 17 cm cubic granite blocks. The AE sources with the SC‐ and L‐CO2injections tend to distribute in a larger area than those with water injection, and furthermore, SC‐CO2tended to generate cracks extending more three dimensionally rather than along a flat plane than L‐CO2. It was also found that the breakdown pressures for SC‐ and L‐CO2 injections are expected to be considerably lower than for water.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRDBarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Geophysical Research Letters
    Article . 2012 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    IRDB
    Article
    Data sources: IRDB
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    243
    citations243
    popularityTop 1%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRDBarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Geophysical Research Letters
      Article . 2012 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      IRDB
      Article
      Data sources: IRDB
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Hwang, I.H.; Matsuto, T.; Tanaka, N.;

    Chlorine in char derived from municipal solid waste (MSW) was characterized and quantified based on its water solubility: easily water-soluble, hardly water-soluble, and non-water-soluble chlorine. For that, a four-cycle process of water-washing, heating or carbonation were carried out. In order to confirm the characteristics of non-water-soluble chlorine, additional thermal treatment and an alkali-acid washing process were applied to washed char. It was found that a large particle size of char (0.5-1.0 mm) significantly contributed to the amount of non-water-soluble chlorine. Pulverization and HNO3-HF digestion were performed to identify a factor to interfere chlorine release from char with a large particle size. Pulverization was proven ineffective for release of non-water-soluble chlorine, whereas approximately 32% of non-water-soluble chlorine was extracted by HNO3-HF digestion. Therefore, the presence of non-water-soluble chlorine is likely to originate from its chemical property rather than simply from its physical one.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRDBarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Waste Management
    Article
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Waste Management
    Article . 2006 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Waste Management
    Article . 2006
    IRDB
    Article
    Data sources: IRDB
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    29
    citations29
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRDBarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Waste Management
      Article
      Data sources: UnpayWall
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Waste Management
      Article . 2006 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Waste Management
      Article . 2006
      IRDB
      Article
      Data sources: IRDB
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
229 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Reiko Imai; Hirohiko Tsujii; Hiroshi Tsuji; Shin-ichiro Tatezaki; +3 Authors

    To summarize the results of treatment for sacral chordoma in Phase I-II and Phase II carbon ion radiotherapy trials for bone and soft-tissue sarcomas.We performed a retrospective analysis of 38 patients with medically unresectable sacral chordomas treated with the Heavy Ion Medical Accelerator in Chiba, Japan between 1996 and 2003. Of the 38 patients, 30 had not received previous treatment and 8 had locally recurrent tumor after previous resection. The applied carbon ion dose was 52.8-73.6 Gray equivalents (median, 70.4) in a total of 16 fixed fractions within 4 weeks.The median patient age was 66 years. The cranial tumor extension was S2 or greater in 31 patients. The median clinical target volume was 523 cm(3). The median follow-up period was 80 months. The 5-year overall survival rate was 86%, and the 5-year local control rate was 89%. After treatment, 27 of 30 patients with primary tumor remained ambulatory with or without supportive devices. Two patients experienced severe skin or soft-tissue complications requiring skin grafts.Carbon ion radiotherapy appears effective and safe in the treatment of patients with sacral chordoma and offers a promising alternative to surgery.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Radiation Oncology*Biology*Physics
    Article . 2010 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    IRDB
    Article . 2014
    Data sources: IRDB
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    82
    citations82
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao International Journa...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Radiation Oncology*Biology*Physics
      Article . 2010 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      IRDB
      Article . 2014
      Data sources: IRDB
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Oki Sekizawa; Tomoya Uruga; Yasuhiro Iwasawa; Toshihiko Yokoyama; +11 Authors

    The structural kinetics of surface events on a Pt3Co/C cathode catalyst in a polymer electrolyte fuel cell (PEFC) was investigated by operando time-resolved X-ray absorption fine structure (XAFS) with a time resolution of 500 ms. The rate constants of electrochemical reactions, the changes in charge density on Pt, and the changes in the local coordination structures of the Pt3Co alloy catalyst in the PEFC were successfully evaluated during fuel-cell voltage-operating processes. Significant time lags were observed between the electrochemical reactions and the structural changes in the Pt3Co alloy catalyst. The rate constants of all the surface events on the Pt3Co/C catalyst were significantly higher than those on the Pt/C catalyst, suggesting the advantageous behaviors (cell performance and catalyst durability) on the Pt3Co alloy cathode catalyst.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRDBarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ACS Catalysis
    Article . 2012 . Peer-reviewed
    Data sources: Crossref
    IRDB
    Article
    Data sources: IRDB
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    104
    citations104
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Chanrithyrouth Mao; Yasuhiro Yamada; Yasuhiro Yamada; Toshifumi Matsuoka;

    This study screens and rank Cambodian sedimentary basins in terms of their containment, capacity, and feasibility for the geological storage of CO[2]. The results of the screening and ranking procedure indicate that the Khmer Basin is the most suitable basin, followed by the Kampong Saom and Tonle Sap basins. A quantitative volumetric assessment-based evaluation of CO[2] storage capacity is performed on these three suitable basins. The evaluation yields a range in the national CO[2] storage capacity of 90 Mt (in structural traps) to 45 Gt (in hydrodynamic traps), representing low- and high-case estimates, respectively. The saline aquifers associated with this storage capacity should be considered prospective storage options as hydrodynamic traps because of containment and capacity issues associated with the structural traps. Eight major point sources of CO[2] are identified that have a combined output (estimated for 2008–2024) of 43.1 Mt annually and 82 billion m[3] in place, and the potentially prospective matched storage capacity is assumed. Overall, a combination of the initial suitabilities of the basins and estimates of prospective matched storage capacity shows that the Khmer, Kampong Saom, and Tonle Sap basins may provide a solution to the problem of reducing future atmospheric emissions. The present results should assist both exploration geologists and experts in carbon capture and storage to gain a better understanding of the CO[2]storage resources of Cambodia. However, the results should be regarded as preliminary because of the limited available data on which the assessments were based; future geological and geophysical data should improve the reliability of the estimates of carbon storage capacity reported here.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRDBarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    International Journal of Greenhouse Gas Control
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    IRDB
    Article
    Data sources: IRDB
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    13
    citations13
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRDBarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      International Journal of Greenhouse Gas Control
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      IRDB
      Article
      Data sources: IRDB
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Muroyama, H; Matsui, T; Kikuchi, R; Eguchi, K;

    Proton-conductive electrolytes of CsHSO 4 composite were synthesized, and the influence of the matrix on their structure and proton conductivity was investigated at intermediate temperatures. As the supporting matrix, heat-treated TiOSO 4 hydrate was used. When the matrix heat-treated at 300°C was employed, formation of new phases was observed in the composite during the heat-treatment at 200°C due to the interfacial chemical reaction between CsHSO 4 and the matrix. The resulting composite with a suitable composition exhibited higher conductivity than pure CsHSO 4 with linear temperature dependence. This anomalous behavior is quite different from that of the pure CsHSO 4 , which exhibits the "conductivity jump" at ca. 140°C because of the phase transition.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    19
    citations19
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Tohru Suzuki; Satoshi Kaneco; Mohammad Arifur Rahman; Kiyohisa Ohta; +2 Authors

    The effect of temperature on the wastewater treatment with waste materials (refuse concrete and refuse waste) and natural material (shell) was investigated. The removal of suspended solid (SS), phosphate ion, nitrate ion, ammonium ion and chemical oxygen demand (COD) were evaluated for the temperature effect. Although the extensive improvement of removal efficiencies for nitrate ion and ammonium ion could not be achieved by increasing the temperature, the significant enhancement of the removal of SS and COD was observed. The present wastewater treatment system is simple, convenient and low-cost. Therefore, the developed methods can be applied to the small-scale plant for the wastewater treatment in the local and nonexclusive areas.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Clean Technologies a...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Clean Technologies and Environmental Policy
    Article . 2005 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    IRDB
    Article . 2005
    Data sources: IRDB
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    24
    citations24
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Clean Technologies a...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Clean Technologies and Environmental Policy
      Article . 2005 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      IRDB
      Article . 2005
      Data sources: IRDB
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Takiya, Hiroaki; Watanabe, Naoko; Kozaki, Tamotsu; Sato, Seichi;

    Apparent diffusion coefficients (D-a) of water and activation energies (E-a) of diffusion in hardened cement pastes (HCPs) were determined as a function of water-to-cement (w/c) ratio (0.36-0.60) and temperature (293-323K) using HTO and (H2O)-O-18 as tracers. The values of D-a and E-a ranged from 1.1x10(-11) to 1.7x10(-10) m(2) s(-1) and from 21.5 to 31.3 kJ mol(-1), respectively. No significant difference between the D-a values of HTO and (H2O)-O-18 suggests that water predominantly diffuses as H2O molecule and dissociation of water is not significant even at high pH range in HCP. The values of E-a at low w/c ratio were higher than in bulk liquid water, suggesting a contribution of a different water regime, such as supercooled bulk water. Two simple models consisting of capillary and gel pores were considered to estimate the volume ratio of gel pores to total pores by optimizing the model to fit with the experimental data. The result suggests that HCP has a pore network mostly consisting of capillary pores with some very narrow pores plugged with hydrates, where HTO must diffuse through gel pores. This view of the HCP pore network was made available through analysis of E-a values.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRDBarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Journal of Nuclear Science and Technology
    Article . 2014 . Peer-reviewed
    Data sources: Crossref
    IRDB
    Article
    Data sources: IRDB
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRDBarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Journal of Nuclear Science and Technology
      Article . 2014 . Peer-reviewed
      Data sources: Crossref
      IRDB
      Article
      Data sources: IRDB
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Mitsuru Sano; Masahiro Nagao; Takashi Hibino; Daisuke Hirabayashi; +1 Authors

    Single-chamber solid oxide fuel cells (SOFCs) with an anode-supported Ce 0 . 9 Gd 0 . 1 O 1 . 9 5 electrolyte were operated in a mixture of butane and air at furnace temperatures of 200-300°C. The electromotive force (emf) of the cell and the voltage drop were strongly influenced by the catalytic activity of the anode for the partial oxidation of butane. The promotion of hydrogen formation by the addition of Ru to the anode caused an increase in the emf and a reduction in the voltage drop. As a result, stable power densities of 44 and 176 mW cm - 2 were obtained at 200 and 300°C, respectively.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRDBarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    IRDB
    Article . 2005
    Data sources: IRDB
    Electrochemical and Solid-State Letters
    Article . 2005 . Peer-reviewed
    Data sources: Crossref
    IRDB
    Article . 2005
    Data sources: IRDB
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    28
    citations28
    popularityAverage
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRDBarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      IRDB
      Article . 2005
      Data sources: IRDB
      Electrochemical and Solid-State Letters
      Article . 2005 . Peer-reviewed
      Data sources: Crossref
      IRDB
      Article . 2005
      Data sources: IRDB
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: KUMAGAI Seiji; IKAWA Kaoru; TAKEDA Koichi;

    Ammonia is a principal component of foul odors of agricultural and livestock wastes. This study investigated ammonia gas adsorption of rice husk carbonized in vacuum at different temperatures (300 ―800°C) for 3h. In an enclosed bag, 1.00 g of the carbonized rice husk was exposed to ammonia gas at 100 ppm. Rice husk carbonized at 400°C adsorbed ammonia the fastest. Its performance was much better than those of commercial deodorants. Pore characteristics and chemical characteristics of carbonized rice husk were examined to correlate them with the ammonia adsorption property. Remaining acidic functional groups were inferred to play a beneficial role in improving the ammonia adsorption.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRDBarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    IRDB
    Article
    Data sources: IRDB
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    10
    citations10
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRDBarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      IRDB
      Article
      Data sources: IRDB
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Tsuyoshi Ishida; Kazuhei Aoyagi; Qu Chen; Youqing Chen; +3 Authors

    Carbon dioxide (CO2) is often used for enhanced oil recovery in depleted petroleum reservoirs, and its behavior in rock is also of interest in CO2 capture and storage projects. CO2usually becomes supercritical (SC‐CO2) at depths greater than 1,000 m, while it is liquid (L‐CO2) at low temperatures. The viscosity of L‐CO2is one order lower than that of normal liquid water, and that of SC‐CO2is much lower still. To clarify fracture behavior induced with injection of the low viscosity fluids, we conducted hydraulic fracturing experiments using 17 cm cubic granite blocks. The AE sources with the SC‐ and L‐CO2injections tend to distribute in a larger area than those with water injection, and furthermore, SC‐CO2tended to generate cracks extending more three dimensionally rather than along a flat plane than L‐CO2. It was also found that the breakdown pressures for SC‐ and L‐CO2 injections are expected to be considerably lower than for water.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRDBarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Geophysical Research Letters
    Article . 2012 . Peer-reviewed
    License: Wiley Online Library User Agreement
    Data sources: Crossref
    IRDB
    Article
    Data sources: IRDB
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    243
    citations243
    popularityTop 1%
    influenceTop 1%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRDBarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Geophysical Research Letters
      Article . 2012 . Peer-reviewed
      License: Wiley Online Library User Agreement
      Data sources: Crossref
      IRDB
      Article
      Data sources: IRDB
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Hwang, I.H.; Matsuto, T.; Tanaka, N.;

    Chlorine in char derived from municipal solid waste (MSW) was characterized and quantified based on its water solubility: easily water-soluble, hardly water-soluble, and non-water-soluble chlorine. For that, a four-cycle process of water-washing, heating or carbonation were carried out. In order to confirm the characteristics of non-water-soluble chlorine, additional thermal treatment and an alkali-acid washing process were applied to washed char. It was found that a large particle size of char (0.5-1.0 mm) significantly contributed to the amount of non-water-soluble chlorine. Pulverization and HNO3-HF digestion were performed to identify a factor to interfere chlorine release from char with a large particle size. Pulverization was proven ineffective for release of non-water-soluble chlorine, whereas approximately 32% of non-water-soluble chlorine was extracted by HNO3-HF digestion. Therefore, the presence of non-water-soluble chlorine is likely to originate from its chemical property rather than simply from its physical one.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRDBarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Waste Management
    Article
    Data sources: UnpayWall
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Waste Management
    Article . 2006 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    Waste Management
    Article . 2006
    IRDB
    Article
    Data sources: IRDB
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    29
    citations29
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRDBarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Waste Management
      Article
      Data sources: UnpayWall
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Waste Management
      Article . 2006 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      Waste Management
      Article . 2006
      IRDB
      Article
      Data sources: IRDB
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.