- home
- Advanced Search
- Energy Research
- 7. Clean energy
- 4. Education
- KR
- Energy Research
- 7. Clean energy
- 4. Education
- KR
description Publicationkeyboard_double_arrow_right Article , Journal 2017 Korea (Republic of)Publisher:Wiley Lee, Un-Hak; Azmi, Randi; Sinaga, Septy; Hwang, Sunbin; Eom, Seung Hun; Kim, Tae-Wook; Yoon, Sung Cheol; Jang, Sung-Yeon; Jung, In Hwan;pmid: 28875552
AbstractThe susceptibility of porphyrin derivatives to light‐harvesting and charge‐transport operations have enabled these materials to be employed in solar cell applications. The potential of porphyrin derivatives as hole‐transporting materials (HTMs) for perovskite solar cells (PSCs) has recently been demonstrated, but knowledge of the relationships between the porphyrin structure and device performance remains insufficient. In this work, a series of novel zinc porphyrin (PZn) derivatives has been developed and employed as HTMs for low‐temperature processed PSCs. Key to the design strategy is the incorporation of an electron‐deficient pyridine moiety to down‐shift the HOMO levels of porphyrin HTMs. The porphyrin HTMs incorporating diphenyl‐2‐pyridylamine (DPPA) have HOMO levels that are in good agreement with the perovskite active layers, thus facilitating hole transfers from the perovskite to the HTMs. The DPPA‐containing zinc porphyrin‐based PSCs gave the best performance, with efficiency levels comparable to those of PSCs using spiro‐OMeTAD, a current state‐of‐the‐art HTM. In particular, PZn–DPPA‐based PSCs show superior air stability, in both doped and undoped forms, to spiro‐OMeTAD based devices.
ChemSusChem arrow_drop_down ChemSusChemArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefScholarWorks@UNIST (Ulsan National Institute of Science and Technology)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201701526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert ChemSusChem arrow_drop_down ChemSusChemArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefScholarWorks@UNIST (Ulsan National Institute of Science and Technology)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201701526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:MDPI AG Authors: Yeongho Choi; Yujin Lim; Hak-Man Kim;doi: 10.3390/en10010045
A microgrid (MG) is a discrete energy system that can operate either in parallel with or independently from a main power grid. It is designed to enhance reliability, carbon emission reduction, diversification of energy sources, and cost reduction. When a power fault occurs in a grid, an MG operates in an islanded manner from the grid and protects its power generations and loads from disturbance by means of intelligent load shedding. A load shedding is a control procedure that results in autonomous decrease of the power demands of loads in an MG. In this study, we propose a load shedding algorithm for the optimization problem to maximize the satisfaction of system components. The proposed algorithm preferentially assigns the power to the subdemand with a high preference to maximize the satisfaction of power consumers. In addition, the algorithm assigns the power to maximize the power sale and minimize the power surplus for satisfaction of power suppliers. To verify the performance of our algorithm, we implement a multi-agent system (MAS) on top of a conventional development framework and assess the algorithm’s adaptability, satisfaction metric, and running time.
Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/1/45/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10010045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/1/45/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10010045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Deok Han Kim; Kilsung Kwon; Byung Ho Park; Daejoong Kim;Abstract Waste heat recovery has attracted a significant attention because of the world growth in energy demand. In this paper, we report the study on an energy recovery system utilizing low-grade waste heat below 100 °C. This system called a thermal-driven electrochemical generator is composed of reverse electrodialysis (RED) power generation and thermal separation using waste heat. We especially focus on the experimental characterization of the RED process with ammonium bicarbonate (NH4HCO3) solution, which is known to be easily decomposed at the temperature around 60 °C. We characterized this NH4HCO3-RED system with various parameters including the concentration difference, the membrane type, the inlet flow rate, and the compartment thickness. We found the best power density at the concentrated solution of 1.5 mol L−1 and the diluted solution of 0.01 mol L−1. The maximum power density increases as the inlet flow rate increases or the compartment thickness decreases owing to the decrease in the internal resistance. We obtained the excellent power density of 0.77 W m−2, compared with the previous studies.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.06.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.06.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:AIP Publishing Authors: Jeong-Il Kwon; Yun-Ho Shin; Seok-Jun Moon; Tae-Young Chung;doi: 10.1063/1.4826703
As concern about limited energy is gradually growing and wind energy is regarded as one of the best solutions, research on the wind turbine system has been vigorously accomplished. The commercial tools to simulate the non-linear dynamic characteristics of the wind turbine system are various, but the tools take a significant amount of time to simulate the control algorithm and require many input variables. In this paper, the procedures to simulate and examine the controller of wind turbines at the initial design stage are proposed by a 4 degrees of freedom mathematical model of wind turbine, and methodology to make the turbine model is also proposed by effective mass and stiffness defined in the modal domain. The proposed method in this paper is simpler than other methods. The simulations by the three kinds of models for the 2-MW wind turbine are accomplished to discuss the simulation results: a 2 degrees of freedom wind turbine model without considering tower and blade behavior, a 4 degrees of freedom model considering tower and blade behavior modeled by mode shape function, and a 4 degrees of freedom model by the suggested method.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4826703&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4826703&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Povilaitis, M.; Kljenak, I.; Sathiah, P.; Bentaib, A.; Bleyer, A.; Meynet, N.; Chaumeix, N.; Schramm, B.; Höhne, M.; Kostka, P.; Movahed, M.; Worapittayaporn, S.; Brähler, T.; Seok-Kang, H.;Abstract In case of a core melt-down accident in a light water nuclear reactor, hydrogen is produced during reactor core degradation and released into the reactor building. This subsequently creates a combustion hazard. A local ignition of the combustible mixture may generate standing flames or initially slow propagating flames. Depending on geometry, mixture composition and turbulence level, the flame can accelerate or be quenched after a certain distance. The loads generated by the combustion process (increase of the containment atmosphere pressure and temperature) may threaten the integrity of the containment building and of internal walls and equipment. Turbulent deflagration flames may generate high pressure pulses, temperature peaks, shock waves and large pressure gradients which could severely damage specific containment components, internal walls and/or safety equipment. The evaluation of such loads requires validated codes which can be used with a high level of confidence. Currently, turbulence and steam effect on flame acceleration, flame deceleration and flame quenching mechanisms are not well reproduced by combustion models usually implemented in safety tools and further model enhancement and validation are still needed. For this purpose, two hydrogen deflagration benchmark exercises have been organised in the framework of the SARNET network. The first benchmark was focused on turbulence effect on flame propagation. For this purpose, three tests performed in the ENACCEF facility were considered. They concern vertical flame propagation in an initially homogenous mixture with 13 vol.% hydrogen content and different geometrical configurations. Three blockage ratios of 0, 0.33 and 0.6 were considered to generate different levels of turbulence. The second benchmark objective was the investigation of the diluting effect on flame propagation. Thus, three tests performed in the ENACCEF facility using the same blockage ratio of 0.63 and three different initial gas compositions (with 10, 20 and 30 vol.% diluents) have been considered. Since ENACCEF runs at ambient temperature, a surrogate to steam was used consisting of a mixture of 0.6He + 0.4CO 2 on molar basis. This paper aims to present the benchmarks conclusions regarding the ability of LP and CFD combustion models to predict the effect of turbulence and diluent on flame propagation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2014.07.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2014.07.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:ASME International Suk-Whan Ko; Tae-Hee Jung; Young-Chul Ju; Gi-Hwan Kang; Han-Byul Kim; Hee-eun Song;doi: 10.1115/1.4029933
In the potential induced degradation (PID) phenomenon, the output power of a photovoltaic (PV) module decreases due to the high potential difference between the PV system and the ground. This voltage forcefully moves the positive charge in the module to the surface of the solar cell. The accumulated charge leads to the performance deterioration of the module, namely, PID of the module. We conducted a study to accurately predict the output reduction of the module operating in various installation conditions coming from the PID phenomenon. We investigated the leakage current flowing through front glass laminated with encapsulation material simultaneously exposed to various performance conditions of the PV system, namely, relative humidity, temperature, and applied voltage, which have an important effect on the PID of the module. The degradation of the module coming from PID was calculated on the basis of the obtained leakage current. To confirm the calculated data, modules with one solar cell were manufactured and the power loss results of the modules' exposure to various PID generation experiments were compared with the expected results. The results showed that we could predict the degradation of the modules by PID within a 2% tolerance under the PV system installation conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4029933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4029933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001Publisher:Elsevier BV Seungho Jung; Seungho Kim; Chang Hoi Kim; Bong Seob Han; Gyu Seop Lee; Yong Chil Seo;Abstract A tele-operated mobile robot has been developed for the preventive maintenance and remote inspection of nuclear power plants such as remote maintenance work in reactor coolant system at PWR and inspection of pressure tubes in calandria at PHWR. The extendable inspection mast attached on the mobile platform enables human eyes to look into reactor face during full power plant operation. These robotic systems have been developed for keeping human workers from high radiation exposure in hostile nuclear environments
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s1474-6670(17)34302-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s1474-6670(17)34302-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Korea (Republic of), Australia, Korea (Republic of)Publisher:Wiley Funded by:ARC | Directed assembly and pho...ARC| Directed assembly and photoelectric properties of core-shell nanowire networks of PbSe-TiO2 heterostructures for high efficiency low-cost solar cellsHasani Bijarbooneh, Fargol; Zhao, Yue; Kim, Jung Ho; Sun, Ziqi; Malgras, Victor; Aboutalebi, Seyed Hamed; HEO, YOON UK; Ikegami, Masashi; Dou, Shi Xue;doi: 10.1111/jace.12371
Controlling the morphological structure of titanium dioxide (TiO2) is crucial for obtaining superior power conversion efficiency for dye‐sensitized solar cells. Although the sol–gel‐based process has been developed for this purpose, there has been limited success in resisting the aggregation of nanostructured TiO2, which could act as an obstacle for mass production. Herein, we report a simple approach to improve the efficiency of dye‐sensitized solar cells (DSSC) by controlling the degree of aggregation and particle surface charge through zeta potential analysis. We found that different aqueous colloidal conditions, i.e., potential of hydrogen (pH), water/titanium alkoxide (titanium isopropoxide) ratio, and surface charge, obviously led to different particle sizes in the range of 10–500 nm. We have also shown that particles prepared under acidic conditions are more effective for DSSC application regarding the modification of surface charges to improve dye loading and electron injection rate properties. Power conversion efficiency of 6.54%, open‐circuit voltage of 0.73 V, short‐circuit current density of 15.32 mA/cm2, and fill factor of 0.73 were obtained using anatase TiO2 optimized to 10–20 nm in size, as well as by the use of a compact TiO2 blocking layer.
Journal of the Ameri... arrow_drop_down Journal of the American Ceramic SocietyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jace.12371&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of the Ameri... arrow_drop_down Journal of the American Ceramic SocietyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jace.12371&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Sangjun Park; Jungsoo Park; Jungkeun Cho;Abstract Because of the increased need for virtual analysis during the vehicle manufacturing processes, more stringent optimization methods are required for the simulation field. Owing to the use of big data from engine testing, 1D analysis can provide more powerful approaches in the conceptual design phase for car makers. In this study, system-level optimization of dual-loop EGR was performed at both the engine and vehicle level, whereas our previous research had been performed at the engine level. Depending on the virtually developed engine and vehicle models and control scheme from our previous works, improved driving capabilities could be observed under light-duty diesel vehicle systems under the world-harmonized light-vehicles test procedure (WLTP). The numerical model was extended through two steps. The first step includes model conversion from the base engine model with an HP EGR system to a virtual engine model with a dual-loop EGR system. The second step represents mode extension from the virtual engine model with a dual-loop EGR system to a vehicle model with a dual-loop EGR system. Optimizing the dominant parameters and using design of experiment (DoE)-based multi-objective Pareto optimization methods in each step, fuel economy could be improved by approximately, 1.5% and the deNOX rate was approximately 5% that of the conventional NEDC. It is implied that the dual-loop EGR system and gear strategy could improve vehicle performance under difficult driving conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.03.181&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.03.181&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Hyunbin Jo; Jongkeun Park; Woosuk Kang; Junseok Hong; Sungmin Yoon; Howon Ra; Changkook Ryu;doi: 10.3390/en14248352
Tangential-firing boilers develop large swirling fireballs by using pulverized coal and air from the corners of the burner zone. During operation, however, the boiler may experience an uneven air supply between corners; this deforms the fireball, raising various issues concerning performance and structural safety. This study investigated the characteristic boiler performance and the role of burner tilting in a 500 MWe boiler with secondary air (SA) in two corners that are up to 1.9 times larger than those in the other corners. Computational fluid dynamics simulations with advanced coal combustion sub-models were employed with the following two sets of cases: (i) six cases of actual operation to validate the modeling and (ii) sixteen cases for the parametric study of SA flow ratio and burner tilt between −15° and +26°. The results showed that the uneven SA supply deteriorated the boiler performance in various aspects and the burner tilt can be used to alleviate its impact. With a larger SA supply from the left wind box, the mass flow, heat absorption, and O2 concentration were larger in the right half of the heat exchanger sections owing to the rotating flow. The corresponding imbalance in the reaction stoichiometry increased the peak temperature entering the tube bundles by up to 60 °C and NO emissions by 6.7% as compared with normal operations. The wall heat absorption was up to 19% larger on the right and front walls. The high burner tilt of +26° helped alleviate the impact of uneven SA supply on the heat distribution and uniformity of the flow pattern and temperature, whereas a +15° burner tilt was the least favorable.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8352/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8352/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 Korea (Republic of)Publisher:Wiley Lee, Un-Hak; Azmi, Randi; Sinaga, Septy; Hwang, Sunbin; Eom, Seung Hun; Kim, Tae-Wook; Yoon, Sung Cheol; Jang, Sung-Yeon; Jung, In Hwan;pmid: 28875552
AbstractThe susceptibility of porphyrin derivatives to light‐harvesting and charge‐transport operations have enabled these materials to be employed in solar cell applications. The potential of porphyrin derivatives as hole‐transporting materials (HTMs) for perovskite solar cells (PSCs) has recently been demonstrated, but knowledge of the relationships between the porphyrin structure and device performance remains insufficient. In this work, a series of novel zinc porphyrin (PZn) derivatives has been developed and employed as HTMs for low‐temperature processed PSCs. Key to the design strategy is the incorporation of an electron‐deficient pyridine moiety to down‐shift the HOMO levels of porphyrin HTMs. The porphyrin HTMs incorporating diphenyl‐2‐pyridylamine (DPPA) have HOMO levels that are in good agreement with the perovskite active layers, thus facilitating hole transfers from the perovskite to the HTMs. The DPPA‐containing zinc porphyrin‐based PSCs gave the best performance, with efficiency levels comparable to those of PSCs using spiro‐OMeTAD, a current state‐of‐the‐art HTM. In particular, PZn–DPPA‐based PSCs show superior air stability, in both doped and undoped forms, to spiro‐OMeTAD based devices.
ChemSusChem arrow_drop_down ChemSusChemArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefScholarWorks@UNIST (Ulsan National Institute of Science and Technology)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201701526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 43 citations 43 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert ChemSusChem arrow_drop_down ChemSusChemArticle . 2017 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefScholarWorks@UNIST (Ulsan National Institute of Science and Technology)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/cssc.201701526&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:MDPI AG Authors: Yeongho Choi; Yujin Lim; Hak-Man Kim;doi: 10.3390/en10010045
A microgrid (MG) is a discrete energy system that can operate either in parallel with or independently from a main power grid. It is designed to enhance reliability, carbon emission reduction, diversification of energy sources, and cost reduction. When a power fault occurs in a grid, an MG operates in an islanded manner from the grid and protects its power generations and loads from disturbance by means of intelligent load shedding. A load shedding is a control procedure that results in autonomous decrease of the power demands of loads in an MG. In this study, we propose a load shedding algorithm for the optimization problem to maximize the satisfaction of system components. The proposed algorithm preferentially assigns the power to the subdemand with a high preference to maximize the satisfaction of power consumers. In addition, the algorithm assigns the power to maximize the power sale and minimize the power surplus for satisfaction of power suppliers. To verify the performance of our algorithm, we implement a multi-agent system (MAS) on top of a conventional development framework and assess the algorithm’s adaptability, satisfaction metric, and running time.
Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/1/45/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10010045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/1996-1073/10/1/45/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en10010045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Authors: Deok Han Kim; Kilsung Kwon; Byung Ho Park; Daejoong Kim;Abstract Waste heat recovery has attracted a significant attention because of the world growth in energy demand. In this paper, we report the study on an energy recovery system utilizing low-grade waste heat below 100 °C. This system called a thermal-driven electrochemical generator is composed of reverse electrodialysis (RED) power generation and thermal separation using waste heat. We especially focus on the experimental characterization of the RED process with ammonium bicarbonate (NH4HCO3) solution, which is known to be easily decomposed at the temperature around 60 °C. We characterized this NH4HCO3-RED system with various parameters including the concentration difference, the membrane type, the inlet flow rate, and the compartment thickness. We found the best power density at the concentrated solution of 1.5 mol L−1 and the diluted solution of 0.01 mol L−1. The maximum power density increases as the inlet flow rate increases or the compartment thickness decreases owing to the decrease in the internal resistance. We obtained the excellent power density of 0.77 W m−2, compared with the previous studies.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.06.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2015 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.06.051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:AIP Publishing Authors: Jeong-Il Kwon; Yun-Ho Shin; Seok-Jun Moon; Tae-Young Chung;doi: 10.1063/1.4826703
As concern about limited energy is gradually growing and wind energy is regarded as one of the best solutions, research on the wind turbine system has been vigorously accomplished. The commercial tools to simulate the non-linear dynamic characteristics of the wind turbine system are various, but the tools take a significant amount of time to simulate the control algorithm and require many input variables. In this paper, the procedures to simulate and examine the controller of wind turbines at the initial design stage are proposed by a 4 degrees of freedom mathematical model of wind turbine, and methodology to make the turbine model is also proposed by effective mass and stiffness defined in the modal domain. The proposed method in this paper is simpler than other methods. The simulations by the three kinds of models for the 2-MW wind turbine are accomplished to discuss the simulation results: a 2 degrees of freedom wind turbine model without considering tower and blade behavior, a 4 degrees of freedom model considering tower and blade behavior modeled by mode shape function, and a 4 degrees of freedom model by the suggested method.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4826703&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.4826703&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Povilaitis, M.; Kljenak, I.; Sathiah, P.; Bentaib, A.; Bleyer, A.; Meynet, N.; Chaumeix, N.; Schramm, B.; Höhne, M.; Kostka, P.; Movahed, M.; Worapittayaporn, S.; Brähler, T.; Seok-Kang, H.;Abstract In case of a core melt-down accident in a light water nuclear reactor, hydrogen is produced during reactor core degradation and released into the reactor building. This subsequently creates a combustion hazard. A local ignition of the combustible mixture may generate standing flames or initially slow propagating flames. Depending on geometry, mixture composition and turbulence level, the flame can accelerate or be quenched after a certain distance. The loads generated by the combustion process (increase of the containment atmosphere pressure and temperature) may threaten the integrity of the containment building and of internal walls and equipment. Turbulent deflagration flames may generate high pressure pulses, temperature peaks, shock waves and large pressure gradients which could severely damage specific containment components, internal walls and/or safety equipment. The evaluation of such loads requires validated codes which can be used with a high level of confidence. Currently, turbulence and steam effect on flame acceleration, flame deceleration and flame quenching mechanisms are not well reproduced by combustion models usually implemented in safety tools and further model enhancement and validation are still needed. For this purpose, two hydrogen deflagration benchmark exercises have been organised in the framework of the SARNET network. The first benchmark was focused on turbulence effect on flame propagation. For this purpose, three tests performed in the ENACCEF facility were considered. They concern vertical flame propagation in an initially homogenous mixture with 13 vol.% hydrogen content and different geometrical configurations. Three blockage ratios of 0, 0.33 and 0.6 were considered to generate different levels of turbulence. The second benchmark objective was the investigation of the diluting effect on flame propagation. Thus, three tests performed in the ENACCEF facility using the same blockage ratio of 0.63 and three different initial gas compositions (with 10, 20 and 30 vol.% diluents) have been considered. Since ENACCEF runs at ambient temperature, a surrogate to steam was used consisting of a mixture of 0.6He + 0.4CO 2 on molar basis. This paper aims to present the benchmarks conclusions regarding the ability of LP and CFD combustion models to predict the effect of turbulence and diluent on flame propagation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2014.07.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.anucene.2014.07.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:ASME International Suk-Whan Ko; Tae-Hee Jung; Young-Chul Ju; Gi-Hwan Kang; Han-Byul Kim; Hee-eun Song;doi: 10.1115/1.4029933
In the potential induced degradation (PID) phenomenon, the output power of a photovoltaic (PV) module decreases due to the high potential difference between the PV system and the ground. This voltage forcefully moves the positive charge in the module to the surface of the solar cell. The accumulated charge leads to the performance deterioration of the module, namely, PID of the module. We conducted a study to accurately predict the output reduction of the module operating in various installation conditions coming from the PID phenomenon. We investigated the leakage current flowing through front glass laminated with encapsulation material simultaneously exposed to various performance conditions of the PV system, namely, relative humidity, temperature, and applied voltage, which have an important effect on the PID of the module. The degradation of the module coming from PID was calculated on the basis of the obtained leakage current. To confirm the calculated data, modules with one solar cell were manufactured and the power loss results of the modules' exposure to various PID generation experiments were compared with the expected results. The results showed that we could predict the degradation of the modules by PID within a 2% tolerance under the PV system installation conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4029933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1115/1.4029933&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2001Publisher:Elsevier BV Seungho Jung; Seungho Kim; Chang Hoi Kim; Bong Seob Han; Gyu Seop Lee; Yong Chil Seo;Abstract A tele-operated mobile robot has been developed for the preventive maintenance and remote inspection of nuclear power plants such as remote maintenance work in reactor coolant system at PWR and inspection of pressure tubes in calandria at PHWR. The extendable inspection mast attached on the mobile platform enables human eyes to look into reactor face during full power plant operation. These robotic systems have been developed for keeping human workers from high radiation exposure in hostile nuclear environments
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s1474-6670(17)34302-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s1474-6670(17)34302-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 Korea (Republic of), Australia, Korea (Republic of)Publisher:Wiley Funded by:ARC | Directed assembly and pho...ARC| Directed assembly and photoelectric properties of core-shell nanowire networks of PbSe-TiO2 heterostructures for high efficiency low-cost solar cellsHasani Bijarbooneh, Fargol; Zhao, Yue; Kim, Jung Ho; Sun, Ziqi; Malgras, Victor; Aboutalebi, Seyed Hamed; HEO, YOON UK; Ikegami, Masashi; Dou, Shi Xue;doi: 10.1111/jace.12371
Controlling the morphological structure of titanium dioxide (TiO2) is crucial for obtaining superior power conversion efficiency for dye‐sensitized solar cells. Although the sol–gel‐based process has been developed for this purpose, there has been limited success in resisting the aggregation of nanostructured TiO2, which could act as an obstacle for mass production. Herein, we report a simple approach to improve the efficiency of dye‐sensitized solar cells (DSSC) by controlling the degree of aggregation and particle surface charge through zeta potential analysis. We found that different aqueous colloidal conditions, i.e., potential of hydrogen (pH), water/titanium alkoxide (titanium isopropoxide) ratio, and surface charge, obviously led to different particle sizes in the range of 10–500 nm. We have also shown that particles prepared under acidic conditions are more effective for DSSC application regarding the modification of surface charges to improve dye loading and electron injection rate properties. Power conversion efficiency of 6.54%, open‐circuit voltage of 0.73 V, short‐circuit current density of 15.32 mA/cm2, and fill factor of 0.73 were obtained using anatase TiO2 optimized to 10–20 nm in size, as well as by the use of a compact TiO2 blocking layer.
Journal of the Ameri... arrow_drop_down Journal of the American Ceramic SocietyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jace.12371&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of the Ameri... arrow_drop_down Journal of the American Ceramic SocietyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)Queensland University of Technology: QUT ePrintsArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jace.12371&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors: Sangjun Park; Jungsoo Park; Jungkeun Cho;Abstract Because of the increased need for virtual analysis during the vehicle manufacturing processes, more stringent optimization methods are required for the simulation field. Owing to the use of big data from engine testing, 1D analysis can provide more powerful approaches in the conceptual design phase for car makers. In this study, system-level optimization of dual-loop EGR was performed at both the engine and vehicle level, whereas our previous research had been performed at the engine level. Depending on the virtually developed engine and vehicle models and control scheme from our previous works, improved driving capabilities could be observed under light-duty diesel vehicle systems under the world-harmonized light-vehicles test procedure (WLTP). The numerical model was extended through two steps. The first step includes model conversion from the base engine model with an HP EGR system to a virtual engine model with a dual-loop EGR system. The second step represents mode extension from the virtual engine model with a dual-loop EGR system to a vehicle model with a dual-loop EGR system. Optimizing the dominant parameters and using design of experiment (DoE)-based multi-objective Pareto optimization methods in each step, fuel economy could be improved by approximately, 1.5% and the deNOX rate was approximately 5% that of the conventional NEDC. It is implied that the dual-loop EGR system and gear strategy could improve vehicle performance under difficult driving conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.03.181&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.03.181&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Hyunbin Jo; Jongkeun Park; Woosuk Kang; Junseok Hong; Sungmin Yoon; Howon Ra; Changkook Ryu;doi: 10.3390/en14248352
Tangential-firing boilers develop large swirling fireballs by using pulverized coal and air from the corners of the burner zone. During operation, however, the boiler may experience an uneven air supply between corners; this deforms the fireball, raising various issues concerning performance and structural safety. This study investigated the characteristic boiler performance and the role of burner tilting in a 500 MWe boiler with secondary air (SA) in two corners that are up to 1.9 times larger than those in the other corners. Computational fluid dynamics simulations with advanced coal combustion sub-models were employed with the following two sets of cases: (i) six cases of actual operation to validate the modeling and (ii) sixteen cases for the parametric study of SA flow ratio and burner tilt between −15° and +26°. The results showed that the uneven SA supply deteriorated the boiler performance in various aspects and the burner tilt can be used to alleviate its impact. With a larger SA supply from the left wind box, the mass flow, heat absorption, and O2 concentration were larger in the right half of the heat exchanger sections owing to the rotating flow. The corresponding imbalance in the reaction stoichiometry increased the peak temperature entering the tube bundles by up to 60 °C and NO emissions by 6.7% as compared with normal operations. The wall heat absorption was up to 19% larger on the right and front walls. The high burner tilt of +26° helped alleviate the impact of uneven SA supply on the heat distribution and uniformity of the flow pattern and temperature, whereas a +15° burner tilt was the least favorable.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8352/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8352/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248352&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu