- home
- Advanced Search
- Energy Research
- 11. Sustainability
- PL
- AT
- Energies
- Energy Research
- 11. Sustainability
- PL
- AT
- Energies
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022 PolandPublisher:MDPI AG doi: 10.3390/en15041260
Energy efficiency is an increasingly important dimension of household appliances, which is why they are labeled to indicate their energy consumption. In 2020, the European Union countries changed the labeling system from the previous system: ranging from A+++ to D, to the new system: ranging from A to G, assuming it would be more transparent for the consumer. The aim of the study was to find out the extent to which consumers are aware of the new labeling system, and the impact that the new labels have (compared to the previous ones) on the perception of household appliances and consumer decision-making. For this purpose, the survey was conducted on a nationwide representative Polish sample (n = 1054). The research was partly experimental, where the same appliances were presented with new and previous energy labels. The results showed that currently most people do not identify the new energy classes. Furthermore, products with the new labels are perceived as being less energy efficient in comparison with products with the previous labels, which shows that there is some confusion among consumers in terms of the new energy efficiency labeling system.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1260/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041260&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1260/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041260&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors:Fabio Gualandri;
Fabio Gualandri
Fabio Gualandri in OpenAIREAleksandra Kuzior;
Aleksandra Kuzior
Aleksandra Kuzior in OpenAIREdoi: 10.3390/en16134946
The 2030 zero-net emission target in the E.U. demands a significant improvement in the energy performance of the building stock. This study analyses the adoption of connected thermostats and Home energy-management system solutions (HEMS) as an effective means to tackle the residential energy footprint. It reviews the main features of HEMS systems in terms of technology, cross-study performances, and the obstacles to widespread adoption; the study adopts the case-study methodology to examine the impact on the Italian real estate stock at a regional level. A matrix of adoption scenarios assesses the potential benefits of global residential energy savings, weighted by local climatic variations, dimension, number of single dwellings, and average primary energy reduction per household. Results demonstrate that all adoption scenarios dramatically reduce residential energy consumption, outperforming the E.U. targets for Italy by 2030.
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/13/4946/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16134946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/13/4946/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16134946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019Publisher:MDPI AG Authors:Magdalena Tutak;
Magdalena Tutak
Magdalena Tutak in OpenAIREJarosław Brodny;
Jarosław Brodny
Jarosław Brodny in OpenAIREdoi: 10.3390/en12203840
With regard to underground mining, methane is a gas that, on the one hand, poses a threat to the exploitation process and, on the other hand, creates an opportunity for economic development. As a result of coal exploitation, large amounts of coal enter the natural environment mainly through ventilation systems. Since methane is a greenhouse gas, its emission has a significant impact on global warming. Nevertheless, methane is also a high-energy gas that can be utilized as a very valuable energy resource. These different properties of methane prompted an analysis of both the current and the future states of methane emissions from coal seams, taking into account the possibilities of its use. For this reason, the following article presents the results of the study of methane emissions from Polish hard coal mines between 1993–2018 and their forecast until 2025. In order to predict methane emissions, research methodology was developed based on artificial neural networks and selected statistical methods. The multi-layer perceptron (MLP) network was used to make a prognostic model. The aim of the study was to develop a method to predict methane emissions and determine trends in terms of the amount of methane that may enter the natural environment in the coming years and the amount that can be used as a result of the methane drainage process. The methodology developed with the use of neural networks, the conducted research, and the findings constitute a new approach in the scope of both analysis and prediction of methane emissions from hard coal mines. The results obtained confirm that this methodology works well in mining practice and can also be successfully used in other industries to forecast greenhouse gas and other substance emissions.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/20/3840/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12203840&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/20/3840/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12203840&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG doi: 10.3390/en15124275
Nuclear power can replace fossil fuels and will have a decisive impact on the change in the approach to conventional energy. However, nuclear (or radioactive) wastes are produced by the operation of the nuclear reactors should be safely and properly disposed of. This paper assesses the uranium resources and the global state of nuclear power plants and determines the energy mixes in different countries using the most nuclear energy. Furthermore, this paper analysed the nuclear waste management and disposal and the depletion of abiotic resources, and the primary energy sources of a basic production process using electricity mix and nuclear electricity for a basic production (PET bottle manufacturing) process. The life cycle assessment was completed by applying the GaBi 8.0 (version 10.6) software and the CML method. In this study, we limit our discussion to high-level nuclear waste (HLW) and spent nuclear fuel (SNF) waste. We do not consider waste generated from uranium mining and milling, which is usually disposed of in near-surface impoundments close to the mine or the mill. The investigation of waste management methods is limited to European countries. This research work is relevant because determining abiotic resources is important in a life cycle assessment and current literature available on LCA analysis for nuclear powers remains under-developed. These results can guide and compare manufacturing processes involving a nuclear electricity and electricity grid mix input. The results of this research can be used to develop production processes using nuclear energy with lower abiotic depletion impacts. This research work facilitates the industry in making predictions for a production-scale plant using an LCA of production processes with nuclear energy consumption.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/12/4275/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 69 citations 69 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/12/4275/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15124275&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Joanna Irena Odzijewicz;Elżbieta Wołejko;
Elżbieta Wołejko
Elżbieta Wołejko in OpenAIREUrszula Wydro;
Urszula Wydro
Urszula Wydro in OpenAIREMariola Wasil;
+1 AuthorsMariola Wasil
Mariola Wasil in OpenAIREJoanna Irena Odzijewicz;Elżbieta Wołejko;
Elżbieta Wołejko
Elżbieta Wołejko in OpenAIREUrszula Wydro;
Urszula Wydro
Urszula Wydro in OpenAIREMariola Wasil;
Mariola Wasil
Mariola Wasil in OpenAIREAgata Jabłońska-Trypuć;
Agata Jabłońska-Trypuć
Agata Jabłońska-Trypuć in OpenAIREdoi: 10.3390/en15249653
Biomass is one of the most important sources of renewable energy in the energy industry. It is assumed that by 2050 the global energy deposit could be covered in 33–50% of biomass combustion. As with conventional fuels, the combustion of biomass produces combustion by-products, such as fly ash. Therefore, along with the growing interest in the use of biomass as a source of energy, the production of ash as a combustion by-product increases every year. It is estimated that approximately 476 million tons of ashes per year can be produced from biomass combustion. For example, the calorific value of dry wood mass tends to be between 18.5 MJ × kg−1 and 19.5 MJ × kg−1, while the ash content resulting from thermal treatment of wood is from 0.4 to 3.9% of dry fuel mass. However, biomass ash is a waste that is particularly difficult to characterize due to the large variability of the chemical composition depending on the biomass and combustion technology. In addition, this waste is, on the one hand, a valuable fertilizer component, as it contains significant amounts of nutrients, e.g., calcium (Ca), potassium (K) and microelements, but on the other hand, it may contain toxic compounds harmful to the environment, including heavy metals and substances formed as a result of combustion, such as polycyclic aromatic hydrocarbons (PAHs) or volatile organic compounds (VOCs). PAHs and VOCs are formed mainly in the processes of incomplete combustion of coal and wood in low-power boilers, with unstable operating conditions. However, it is important to remember that before the fly ash is used in various industries (e.g., zeolite synthesis, recovery of rare earth metals or plastic production) as an additive to building materials or fertilizers for cultivation, a number of analyses are to be conducted so that the by-products of combustion could be used to allow the by-product of combustion to be used. It is important to conduct tests for the content of heavy metals, chlorides, sulphates, microelements and macroelements, grain and phase composition and organic compounds. If such ash is characterized by low pollution levels, it should be used in agriculture and reclamation of degraded land and not directed to landfills where it loses its valuable properties. The purpose of this review is to present the properties of ashes generated as a result of biomass combustion in Poland and the world, to discuss factors influencing changes in its composition and to present the possibilities of their reuse in the environment and in various branches of industry.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 62 citations 62 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15249653&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors:Mateusz Płoszaj-Mazurek;
Mateusz Płoszaj-Mazurek
Mateusz Płoszaj-Mazurek in OpenAIREElżbieta Ryńska;
Elżbieta Ryńska
Elżbieta Ryńska in OpenAIREMagdalena Grochulska-Salak;
Magdalena Grochulska-Salak
Magdalena Grochulska-Salak in OpenAIREdoi: 10.3390/en13205289
The analyzed research issue provides a model for Carbon Footprint estimation at an early design stage. In the context of climate neutrality, it is important to introduce regenerative design practices in the architect’s design process, especially in early design phases when the possibility of modifying the design is usually high. The research method was based on separate consecutive research works–partial tasks: Developing regenerative design guidelines for simulation purposes and for parametric modeling; generating a training set and a testing set of building designs with calculated total Carbon Footprint; using the pre-generated set to train a Machine Learning Model; applying the Machine Learning Model to predict optimal building features; prototyping an application for a quick estimation of the Total Carbon Footprint in the case of other projects in early design phases; updating the prototyped application with additional features; urban layout analysis; preparing a new approach based on Convolutional Neural Networks and training the new algorithm; and developing the final version of the application that can predict the Total Carbon Footprint of a building design based on basic building features and on the urban layout. The results of multi-criteria analyses showed relationships between the parameters of buildings and the possibility of introducing Carbon Footprint estimation and implementing building optimization at the initial design stage.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/20/5289/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/20/5289/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13205289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Funded by:EC | IPODDEC| IPODDAuthors: Grzegorz Ślusarz; Dariusz Twaróg;Barbara Gołębiewska;
Marek Cierpiał-Wolan; +2 AuthorsBarbara Gołębiewska
Barbara Gołębiewska in OpenAIREGrzegorz Ślusarz; Dariusz Twaróg;Barbara Gołębiewska;
Marek Cierpiał-Wolan; Jarosław Gołębiewski; Philipp Plutecki;Barbara Gołębiewska
Barbara Gołębiewska in OpenAIREdoi: 10.3390/en16031366
Increasing biogas production in the Three Seas Initiative countries (3SI) is a good way to reduce greenhouse gas emissions and to increase energy self-sufficiency by replacing some of the fossil energy sources. An assessment of the biogas production potential carried out for the 3SI at the NUTS 1 and NUTS 2 level shows that the potential of this energy carrier was stable for the period (from 2010–2021). The results showed that it can cover from approximately 10% (Hungary, Slovakia) to more than 34% (Estonia, Slovenia) of natural gas consumption; moreover, there is strong variation in the value of potential at the regional level (NUTS 2) in most of the countries studied. The biogas production forecast was carried out with the ARIMA model using four regressors, which are GDP, biogas potential utilisation, natural gas consumption and investments in RES (renewable energy sources) infrastructure, including changes in the EU energy policy after 24 February 2022. In the most promising scenario (four regressors), the results obtained for the period from 2022–2030 predict a rapid increase in biogas production in the 3SI countries, from 32.4 ± 11.3% for the Czech Republic to 138.7 ± 27.5% for Estonia (relative to 2021). However, in the case of six countries (Bulgaria, Lithuania, Hungary, Austria, Poland and Romania) the utilisation of 50% of the potential will most likely occur in the fifth decade of the 21st century. The above results differ significantly for those obtained for three regressors, where the highest rise is predicted for Bulgaria at 33.5 ± 16.1% and the lowest for Slovenia, at only 2.8 ± 14.4% (relative to 2021).
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/3/1366/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/3/1366/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031366&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors:Justyna Światowiec-Szczepańska;
Justyna Światowiec-Szczepańska
Justyna Światowiec-Szczepańska in OpenAIREBeata Stępień;
Beata Stępień
Beata Stępień in OpenAIREdoi: 10.3390/en15041437
This article attempts to identify the key forces driving the successful digitalization of the energy sector, ensuring improvements in the energy triangle including sustainability, stability, and economic performance. The article sheds light on the diverse energy priorities at supra-, national, and managerial levels, and the role of digitalization in achieving these objectives. Catching up economies (such as Poland), being post-socialist EU member states, in order to transform its energetic sector, must overcome a number of infrastructural and social shortcomings retained as a legacy of the socialist economy. As such, sustainability (as the core priority at EU energy agenda) may not be the leading objective at both national and company level in the energy sector transformation. This article presents the results of empirical research carried out through distribution of e-questionnaire addressed to Polish managers from the energy sector. The results were analyzed using the fsQCA method. The findings suggest that, for managers, the most important drivers of digitalization and transformation of the energy sector in Poland are its high economic performance, together with support for energy prosumers and consumers. The prerequisites for a successful digitalization are alternatively the absence of management barriers, or a combination of high economic performance and a strong focus on environmental protection. Surprisingly, according to managers surveyed, the rapid implementation of new technologies is not considered a vital condition for successful digital transformation of the energy sector, which implies either or managerial lack of knowledge in this area and/or a reluctance to introduce digital rapid technologies.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1437/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041437&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 30 citations 30 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/4/1437/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15041437&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors:Barbara Bielowicz;
Barbara Bielowicz
Barbara Bielowicz in OpenAIREMonika Chuchro;
Monika Chuchro
Monika Chuchro in OpenAIRERadosław Jędrusiak;
Radosław Jędrusiak
Radosław Jędrusiak in OpenAIREKatarzyna Wątor;
Katarzyna Wątor
Katarzyna Wątor in OpenAIREdoi: 10.3390/en14030771
In Poland, special attention is focused on sustainable municipal waste management. As a result, new waste incineration plants are being planned. They are considered to be modern, ecologically friendly, and renewable energy sources. The waste from conventional incineration, which contains hazardous substances, must be disposed of in an appropriate manner. This study used advanced statistical tools, such as control charts, trend analysis, and time series analysis. The analysis was based on the leachability of selected elements and chemical compounds in incineration bottom ashes (IBAs) from the Waste to Energy Plant in Kraków, which were weathered for 2 weeks. The analysis was performed for 34 weeks. The obtained leachability results were compared with the leachability limit values of individual components. Based on the analysis of the control charts, it was found that in the case of selected samples, the leachability limit values for processing outside the plant using the R5 recovery process (LLVR5) values were exceeded. Seasonality analysis was performed using the autocorrelation function (ACF), the partial autocorrelation function (PACF), and the frequency analysis. Based on the obtained results, it was concluded that the leachability of elements and chemical compounds from waste does not confirm the occurrence of seasonality. It was found that from the exceedances of the LLVR5 mean that the two-week weathering is not sufficient and further studies should be carried out. The research methodology, which was presented on the example of the leachability of elements and compounds from IBA, can also be used for other waste analyses.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/3/771/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14030771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/3/771/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14030771&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG doi: 10.3390/en14133891
This article’s aim is to explain the impact of technology entrepreneurship phenomenon on waste management enterprise performance in the conditions of COVID-19 pandemic. The concept of technology entrepreneurship according to the configuration approach and the category of high-performance organization are the theoretical bases of empirical investigation. For the implementation of empirical research, Fuzzy set Qualitative Comparative Analysis (FsQCA) was adopted. The research sample included a group of producers of Refused Derived Fuel (RDF) as a central part of the waste to energy industry located in Poland. The research results showed that the waste to energy sector is highly immune to pandemic threats. While during COVID-19, the basic economic parameters (i.e., sales, profitability and employment) of the entire industry in Poland clearly decreased, the same parameters in the case of the waste to energy industry remained at the same level. The research results allow the formulation of two high-performance models of technology entrepreneurship in the waste to energy industry under COVID-19 conditions. The first model is based on traditional technologies and hierarchical organizational structures, and the second is using innovative technologies and flexible structures. Both technology entrepreneurship models are determined by their emergence as complementary to implementation strategies and the opportunity-oriented allocation of resources within business model portfolios.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/13/3891/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14133891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/13/3891/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14133891&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu