- home
- Advanced Search
- Energy Research
- 13. Climate action
- QA
- BH
- Energy Research
- 13. Climate action
- QA
- BH
description Publicationkeyboard_double_arrow_right Article , Journal 2021 QatarPublisher:Elsevier BV Authors: Singh, Aparna; Sinh, Shailendra;Choudhary, Akhilesh Kumar;
Choudhary, Akhilesh Kumar
Choudhary, Akhilesh Kumar in OpenAIRESharma, Deepak;
+2 AuthorsSharma, Deepak
Sharma, Deepak in OpenAIRESingh, Aparna; Sinh, Shailendra;Choudhary, Akhilesh Kumar;
Choudhary, Akhilesh Kumar
Choudhary, Akhilesh Kumar in OpenAIRESharma, Deepak;
Panchal, Hitesh;Sharma, Deepak
Sharma, Deepak in OpenAIRESadasivuni, Kishor Kumar;
Sadasivuni, Kishor Kumar
Sadasivuni, Kishor Kumar in OpenAIREhandle: 10576/28574
Tremendous growth in the number of automobiles in developed and developing global economies has exorbitantly boosted competition for petroleum products. Petroleum products derived from fossil fuels are predominantly responsible for environmental pollution as unburnt hydrocarbon (HC), carbon monoxide (CO), oxides of nitrogen (NOx) & carbon dioxide (CO2) emissions are released from the fossil fuel combustion. In the view of increasing environmental pollution and stringent emission norms, the present study is concentrated on using Jatropha biodiesel as an alternate fuel source to run variable compression ratio (VCR) diesel engine. The characteristics of VCR diesel engine emission have been evaluated under different compression ratio (CR), operating conditions of load & pressure of fuel injection. In this research work, Jatropha biodiesel diesel blend B30 (30% biodiesel and 70% diesel) and B0 (100% diesel) have been taken as fuel to run the engine. For conducting experiments, load has been varied from 0 to 12 Kg, CR from 14 to 18 and FIP from 180 to 270 bar as per the model of Response Surface Methodology experiments. The experimental investigation showed that the use of the B30 blend reduces HC & CO emissions by about 16.7% and 24% correspondingly in comparison to diesel. However noteworthy rise in NOx & CO2 emissions rate recorded by using the B30 blend as that of diesel. It has been shown that with enhancing in load & CR, HC&CO emissions decreased significantly however increase in CO2 and NOx observed. Advancing FIP, significantly decreases HC & CO emissions as well as tends to increase NOx and CO2 emissions.
Case Studies in Ther... arrow_drop_down Case Studies in Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefQatar University Institutional RepositoryArticle . 2021Data sources: Qatar University Institutional RepositoryQatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2021.100876&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 46 citations 46 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Case Studies in Ther... arrow_drop_down Case Studies in Thermal EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefQatar University Institutional RepositoryArticle . 2021Data sources: Qatar University Institutional RepositoryQatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.csite.2021.100876&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 QatarPublisher:Elsevier BV Authors:Carolina, Kelly;
Carolina, Kelly
Carolina, Kelly in OpenAIREOnat, Nuri Cihat;
Tatari, Omer;Onat, Nuri Cihat
Onat, Nuri Cihat in OpenAIREhandle: 10576/14084
Abstract Renewable energy has gained popularity as an alternative to fossil fuels, which regularly emit large amounts of Greenhouse Gases and consume/withdraw large amounts of water, but renewable energy market penetration is still limited while fossil fuels are still the U.S.‘s dominant power source. This is due to resistance in the market, or in this case, the failure of renewable energy policies to achieve long-term environmental sustainability due to neglected external factors (economic, societal, etc.). No available literature analyzes potential sources and/or effects of this policy resistance, so this research investigates the underlying mechanisms in the renewable energy generation market by utilizing a system dynamics model. A two-alternative Generalized Bass Model was developed to simulate the renewable energy market (specifically with respect to solar PV and wind energy), including the environmental, societal, and economic concerns associated with each of the alternatives evaluated in this study, so as to identify and address possible causes of policy resistance and its subsequent effects on environmental impacts (esp. GHG emissions and water withdrawal rates). Based on this model, three separate policy areas (solar PV investments, wind power investments, and the elimination of fossil fuel subsidies) and various combinations thereof were proposed and tested within the context of the model. Based on the results of this study, it is highly recommended to invest as generously as possible into multiple renewable energy industries, reduce fossil fuel subsidies (in turn freeing up funding for renewable energy investments), and seek further advancement in renewable energy technologies (e.g. enhancing the useable lifetimes of wind turbines). A balanced policy have potential to increase the share of renewable's up to roughly 40% in the U.S. by 2050, as well as 17% and 32% GHG and water withdrawal reduction potential by 2050.
Qatar University Ins... arrow_drop_down Qatar University Institutional RepositoryArticle . 2019Data sources: Qatar University Institutional RepositoryJournal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefQatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.04.268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 51 citations 51 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Qatar University Ins... arrow_drop_down Qatar University Institutional RepositoryArticle . 2019Data sources: Qatar University Institutional RepositoryJournal of Cleaner ProductionArticle . 2019 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefQatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2019.04.268&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Rahul R. Bhosale;Abstract By applying the principles of the second law of thermodynamics and utilizing the HSC Chemistry software, the thermodynamic equilibrium and efficiency analysis of the CaSO4 CaO water splitting cycle was performed in this investigation. The temperatures desirable and the equilibrium compositions allied with the thermal reduction of CaSO4 and the re-oxidation of CaO via water splitting reaction were estimated. The obtained results indicate that the thermal reduction temperature (TH) required to completely decompose the CaSO4 was decerased from 2220 to 1890 K due to the rise in the molar flow rate of ( n ˙ A r ) from 1 to 50 mol/s. In addition, the consequence of the TH, n ˙ A r , and the water splitting temperature ( T L ) on the process parameters such as total amount of solar energy needed, re-radiation losses, energy dissipated by the water splitting reactor and others associated with the CaSO4 CaO water splitting cycle was scrutinized. By utilizing higher n ˙ A r from 1 to 50 mol/s, the TH was decreased from 2200 to 1890 K. However, as the n ˙ A r was increased from 1 to 50 mol/s, the amount of heat energy needed to heat the Ar was also upsurged from 12.5 to 625.6 kW. This rise in the Q ˙ A r − h e a t i n g , directly reflected into an increase in the Q ˙ s o l a r − c y c l e from 1063.4 up to 2653.9 kW. The findings of this study further confirms that the maximum solar-to-fuel energy conversion efficiency ( η s o l a r − t o − f u e l ) equal to 27.4% was realized by conducting the CaSO4 CaO water splitting cycle at TH = 2220 K, n ˙ A r = 1 mol/s, and TL = 1100 K. By using 50% of the recuperable heat, the η s o l a r − t o − f u e l of the CaSO4 CaO water splitting cycle can be enhanced up to 36.2%.
International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.02.239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Hydrogen EnergyArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2019.02.239&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2011Publisher:SPE Sylvia Ruoh Mei Kueh; Larry Mark Dittaro; George R. Scott; Yueming Liang; Heather Fawcett; Sheng-Yuan Hsu;doi: 10.2118/144135-ms
Abstract The Cold Lake development, located in Alberta, Canada, is the world’s largest heavy oil in situ thermal development. At Cold Lake, operated by Imperial Oil Resources, an ExxonMobil affiliate, the Cyclic Steam Stimulation (CSS) process is used to produce 23,500 m3/d (150 kB/d) of heavy oil. In 2009, Cold Lake produced its one billionth barrel (160 million m3) of heavy oil. The Nabiye project will be the fifth central steam generation and fluid processing hub added at Cold Lake. Nabiye (Dené for Otter) continues the historical Cold Lake development concept of maximizing value through the utilization of a phased development strategy. Relative to current operations, the key reservoir difference at Nabiye is reduced pay thickness. Averaging 12 meters (40 feet), Nabiye pay is about half as thick as the initial pads of the previous expansion (Mahkeses). While reservoir of similar thickness as Nabiye is currently being developed as Productivity Maintenance pads to sustain production in the existing operation, the risk profile for Nabiye is higher because new plant investment is required. As Cold Lake develops more challenging subsurface environments, more advanced reservoir engineering techniques must be employed to mitigate risk. This paper describes the extensive use of both thermal simulation and wellbore integrity modeling to complement analog performance prediction techniques. This paper will demonstrate how the Nabiye project is effectively commercializing an unconventional resource by integrating analog performance data and advanced reservoir and geomechanical modeling. The application of (1) thermal simulation for performance prediction and (2) geomechanical modeling for steam strategy optimization will be presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2118/144135-ms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2118/144135-ms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors: Athar Kamal;Sami G. Al-Ghamdi;
Sami G. Al-Ghamdi
Sami G. Al-Ghamdi in OpenAIREMuammer Koç;
Muammer Koç
Muammer Koç in OpenAIREdoi: 10.3390/en14144348
Water and electricity have a unique relationship in the modern world as one requires the other in a complex system of networks to supply the utility to the customers. This energy–water interaction is especially peculiar in the Gulf Cooperation Council, where there are limited water resources, but extremely high use rates. Qatar provides a unique case in terms of extreme water scarcity and excessive water use. To understand the intricate network, this paper establishes an updated and comprehensive qualitative model of the water system in the country with the help of a water balance and system dynamics (causal loop diagram) methodology. Regression estimates are then used to estimate future water and energy consumption in addition to carbon dioxide emissions until the year 2050. Finally, system dynamics (stock and flow diagram) is used to determine the supply impacts of efficiency policies including limiting of groundwater abstraction to only 50 million m3, reduction of water consumption in the household, commercial and industrial sector by 10%, and gradual increase in the share of reverse osmosis (RO)-produced desalinated water to 50% in order to assess the supply volume, electricity consumption and CO2 emissions. The efficient use of water in different sectors of the economy results in a combined saving of 1222 GWh (8.1%) or 594,000 tons CO2. Furthermore, by moving to membrane-based desalination technology energy consumption and carbon dioxide emissions can be reduced by 3672 GWh (24.3%) and 1.8 million tons CO2, respectively. Further results suggest that while replacing groundwater with desalinated water can increase the energy consumption significantly, reuse of treated wastewater has almost the same footprint as groundwater, but can increase the resilience of the system considerably as groundwater abstraction levels are lowered to their renewal rates.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/14/4348/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/14/4348/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144348&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 QatarPublisher:Elsevier BV Authors: Swapnil Dharaskar; Dinesh Mevada; Dinesh Mevada;M. Suresh;
+4 AuthorsM. Suresh
M. Suresh in OpenAIRESwapnil Dharaskar; Dinesh Mevada; Dinesh Mevada;M. Suresh;
M. Suresh
M. Suresh in OpenAIREHemin Thakkar;
Hitesh Panchal;Hemin Thakkar
Hemin Thakkar in OpenAIREKishor Kumar Sadasivuni;
Kishor Kumar Sadasivuni
Kishor Kumar Sadasivuni in OpenAIREMohammad Israr;
Mohammad Israr
Mohammad Israr in OpenAIREhandle: 10576/28660
Abstract Drinking water is a necessity not only for humanity but also for the all living organisms available in the earth today. But the availability of the potable water is not in abundant amount; hence clean water is scarce in the world today. Solar desalination system is used to turn the saline water into the freshwater by use of sunrays. Solar still is a device which can be employed for desalination. As the daily productivity of solar distiller is low so, multiple techniques have been used by various researchers to improve its productivity. But work done on the fins to enhance the distillate output is not much. Fin is a low-cost heat transfer enhancement which is used by many researchers in the solar thermal applications. Present review paper shows the use of fins in solar still and how it can be used to enhance the distillate output of solar still. At last, a table is also presented to show the use of fins to increase the distillate output alone and with the use of certain materials.
Qatar University Ins... arrow_drop_down Qatar University Institutional RepositoryArticle . 2020Data sources: Qatar University Institutional RepositoryGroundwater for Sustainable DevelopmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefQatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gsd.2019.100289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 84 citations 84 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Qatar University Ins... arrow_drop_down Qatar University Institutional RepositoryArticle . 2020Data sources: Qatar University Institutional RepositoryGroundwater for Sustainable DevelopmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefQatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gsd.2019.100289&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV AbstractCurrent building regulations enforce building designers towards efficient system design and provision of alternative means of supplying energy. Different green building certification schemes are deployed worldwide to encourage creating a sustainable built environment and the adoption of green building best practices.Micro-generation technologies, low and zero carbon, are either recommended by designers or mandated. A range of constraints including design and technical issues, are currently affecting the wide-scale deployment of micro-generation. For instance, it is important that the micro-generation plant operates for as many hours as possible as an idle plant accrues no benefits. Such issues make the design of a micro-cogeneration technology not quite as straightforward. Combined Heat and Power (CHP) or micro-cogeneration provides means of electricity and heat supply.This paper investigates, through a detailed study, the maximum CO2 reduction that could be achieved by CHP and biomass technologies in a mixed-use development. The implementation of micro-cogeneration, its combination with district heating and the integration of CHP into a trigeneration scheme are investigated. The coupling of CHP unit with absorption cooling, as well as the interactions with biomass boilers, to allow for setting up multi-generation systems for combined local production of different energy vectors are assessed and optimised for maximum CO2 reduction.
International Journa... arrow_drop_down International Journal of Sustainable Built EnvironmentArticle . 2013 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Journal of Sustainable Built EnvironmentArticleLicense: CC BY NC NDData sources: UnpayWallInternational Journal of Sustainable Built EnvironmentArticle . 2013License: CC BY NC NDData sources: BASE (Open Access Aggregator)International Journal of Sustainable Built EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijsbe.2013.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of Sustainable Built EnvironmentArticle . 2013 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefInternational Journal of Sustainable Built EnvironmentArticleLicense: CC BY NC NDData sources: UnpayWallInternational Journal of Sustainable Built EnvironmentArticle . 2013License: CC BY NC NDData sources: BASE (Open Access Aggregator)International Journal of Sustainable Built EnvironmentJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijsbe.2013.11.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Frontiers Media SA Authors: Hideki Hamamoto; Michinori Kimura; Kenshi Baba;Takaaki Kato;
+10 AuthorsTakaaki Kato
Takaaki Kato in OpenAIREHideki Hamamoto; Michinori Kimura; Kenshi Baba;Takaaki Kato;
Aiko Endo; Terukazu Kumazawa;Takaaki Kato
Takaaki Kato in OpenAIRERyo Sugimoto;
Naoki Masuhara; Hisami Honda; Jun Nishijima; Akira Ishii; Masahiko Fujii; Yuji Miyashita; Makoto Yamada;Ryo Sugimoto
Ryo Sugimoto in OpenAIREThis study has developed a methodology for the nexus approach by integrating interdisciplinary and transdisciplinary concepts and qualitative and quantitative mixed methods into the process of the systems thinking approach. The nexus approach was institutionalized in two projects using the location specific case study of Beppu, Japan where a set of interconnected issues in using geothermal hot spring resources have emerged due to the promotion of geothermal energy development under low-carbon policies at global and national levels. The interlinkages among geothermal hot spring resources, including heat, steam, nutrients, and drainage between land and coastal systems were analyzed to improve decision- and policy-making. This study discusses (1) how different discipline-oriented methods and data are integrated, (2) how much of the targeted water-energy-food nexus systems are understood using the nexus approach, and (3) how far does the nexus approach influence changes in the policy agenda and human behavior regarding sustainable geothermal hot spring resources use. The nexus approach facilitated the sequential integration of individual methods and data to better explain the causal linkages focusing on water-energy-food resources in the human-nature systems in Beppu. The proposed policy recommendations are based on the local government initiative for continuing to conduct citizen participatory surveys on geothermal hot spring resources. Transferring the developed methodology will help to effectively develop geothermal hot spring resources and compliment the current national renewable energy and natural resource policies and management.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2021.713000&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/frwa.2021.713000&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 NorwayPublisher:Norwegian Polar Institute Authors: Hansen, Kia Krarup;Sundset, Monica Alterskjær;
Folkow, Lars; Nilsen, Marte; +1 AuthorsSundset, Monica Alterskjær
Sundset, Monica Alterskjær in OpenAIREHansen, Kia Krarup;Sundset, Monica Alterskjær;
Folkow, Lars; Nilsen, Marte; Mathiesen, Svein Disch;Sundset, Monica Alterskjær
Sundset, Monica Alterskjær in OpenAIREhandle: 10037/14158
Methane emissions from reindeer (Rangifer tarandus tarandus) fed lichens (mainly Cladonia stellaris) and a concentrate feed were determined using open-circuit respirometry. The lichen diet was low in crude protein ( 4 weeks prior to experiments and methane emissions recorded for two separate 23 h periods for each diet. Methane emissions increased on average by 0.93 g/h (or by 5.8 times) in the first hour after feeding the concentrate feed, while emissions remained unchanged after the intake of lichens. Mean methane emissions from reindeer (n = 5) were 7.5 ± 0.54 (SE) g CH4 day−1 when fed lichens, compared to a higher emission (p = 0.001) of 11.2 ± 0.54 g CH4 day−1 on the concentrate diet. The mean proportion of gross energy intake lost as methane was 5.2 ± 0.37% on the lichens and 7.6 ± 0.37%, or some 50% higher, on the concentrate feed. This difference was significant (p < 0.001). Our results suggest that it is of environmental importance to preserve the lichens on the tundra and minimize supplementary feeding with concentrate diets, in order to reduce methane emission.
Polar Research arrow_drop_down Munin - Open Research ArchiveArticle . 2018 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17518369.2018.1505396&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Polar Research arrow_drop_down Munin - Open Research ArchiveArticle . 2018 . Peer-reviewedData sources: Munin - Open Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17518369.2018.1505396&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 QatarPublisher:Frontiers Media SA Authors:Zaidan, Esmat;
Ghofrani, Ali; Abulibdeh, Ammar; Jafari, Mohsen;Zaidan, Esmat
Zaidan, Esmat in OpenAIREhandle: 10576/27988
Urban communities differ in their social, economic, and environmental characteristics, as well as in the approach to energy use. Dynamic energy use and available on-site resources allow interaction with the surroundings and contribute to the key performance indicators of smart cities. This study aimed at proposing systematically a strategic framework for smart cities development by gradually transforming urban communities into smart-energy systems. This framework is based on multidisciplinary practices regarding the staged planning of smart communities and develops smart transformation concepts to enhance capacities toward the preservation, revitalization, livability, and sustainability of a community. In this study, we focused on the concept of smart and zero-carbon communities by using technology and infrastructure. We also considered the premise of the “community” and the related social, technological, and economic aspects. The decision constructs are explained from the perspective of a bottom-up approach ranging from preliminary inspections to economic investment planning. The study proposed a set of decision constructs aimed at allowing planners, engineers, and investors to have different alternatives at their disposal and select a feasible set of practical solutions for smart transformations accordingly.
Frontiers in Energy ... arrow_drop_down Qatar University Institutional RepositoryArticle . 2022Data sources: Qatar University Institutional RepositoryQatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.852092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Frontiers in Energy ... arrow_drop_down Qatar University Institutional RepositoryArticle . 2022Data sources: Qatar University Institutional RepositoryQatar University: QU Institutional RepositoryArticleData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2022.852092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu