- home
- Advanced Search
- Energy Research
- Open Access
- Embargo
- TH
- AU
- UNC Dataverse
- Energy Research
- Open Access
- Embargo
- TH
- AU
- UNC Dataverse
description Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Wiley Rueben A. Gonzales; Scott McConnell; Donita L. Robinson; Donita L. Robinson; Elaina C. Howard; R. Mark Wightman;Background: Dopamine concentrations in the nucleus accumbens fluctuate on phasic (subsecond) and tonic (over minutes) timescales in awake rats. Acute ethanol increases tonic concentrations of dopamine, but its effect on subsecond dopamine transients has not been fully explored.Methods: We measured tonic and phasic dopamine fluctuations in the nucleus accumbens of rats in response to ethanol (within‐subject cumulative dosing, 0.125 to 2 g/kg, i.v.).Results: Microdialysis samples yielded significant tonic increases in dopamine concentrations at 1 to 2 g/kg ethanol in each rat, while repeated saline infusions had no effect. When monitored with fast scan cyclic voltammetry, ethanol increased the frequency of dopamine transients in 6 of 16 recording sites, in contrast to the uniform effect of ethanol as measured with microdialysis. In the remaining 10 recording sites that were unresponsive to ethanol, dopamine transients either decreased in frequency or were unaffected by cumulative ethanol infusions, patterns also observed during repeated saline infusions. The responsiveness of particular recording sites to ethanol was not correlated with either core versus shell placement of the electrodes or the basal rate of dopamine transients. Importantly, the phasic response pattern to a single dose of ethanol at a particular site was qualitatively reproduced when a second dose of ethanol was administered, suggesting that the variable between‐site effects reflected specific pharmacology at that recording site.Conclusions: These data demonstrate that the relatively uniform dopamine concentrations obtained with microdialysis can mask a dramatic heterogeneity of phasic dopamine release within the accumbens.
Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1530-0277.2009.00942.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 86 citations 86 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1530-0277.2009.00942.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003 United Kingdom, Australia, DenmarkPublisher:Elsevier BV Djongolov, M.K.; Hartley, D J; Riedinger, L L; Kondev, Filip G; Janssens, R V F; Abu Saleem, K; Ahmad, I.; Balabanski, D; Carpenter, M P; Chowdhury, P; Cullen, D M; Danchev, M.; Dracoulis, George; El Masri, H; Goon, J.; Heinz, A; Kaye, R A; Khoo, T; Lauritsen, T; Lister, C J; Moore, E.F.; Riley, M.A.; Seweryniak, D; Shestakova, I; Sletten, G; Walker, Philip M; Wheldon, C; Wiedenhover, I; Zeidan, O; Zhang, Jing-ye;handle: 1885/91649
Three, possibly four, regularly spaced rotational bands with large dynamic moments of inertia have been identified in 174Hf. Their properties are consistent with known triaxial superdeformed bands of the Lu/Hf region. Calculations predict substantial triaxial deformation (γ ≈ γ17°) for 174Hf structures with deformation ε2 0.45, despite the fact that 174Hf is eight neutrons away from the previously established N = 94 triaxial superdeformed gap. Shell gaps at N = 100 and 106 with γ ≥15° are predicted for ε2 ≈ 0.45, and are most likely responsible for the calculated TSD minima in 174Hf.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/91649Data sources: Bielefeld Academic Search Engine (BASE)The University of Manchester - Institutional RepositoryArticle . 2003Data sources: The University of Manchester - Institutional RepositoryUniversity of Copenhagen: ResearchArticle . 2003Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0370-2693(03)00328-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 36 citations 36 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/91649Data sources: Bielefeld Academic Search Engine (BASE)The University of Manchester - Institutional RepositoryArticle . 2003Data sources: The University of Manchester - Institutional RepositoryUniversity of Copenhagen: ResearchArticle . 2003Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0370-2693(03)00328-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Society for Neuroscience Clyde W. Hodge; Marina Spanos; Michael C. Salling; Rebekah A. Stevenson; Joyce Besheer; Julie J. M. Grondin;The interoceptive effects of alcohol are major determinants of addiction liability. Metabotropic glutamate (mGlu) receptors are widely expressed in striatal circuits known to modulate drug-seeking. Given that the interoceptive effects of drugs can be important determinants of abuse liability, we hypothesized that striatal mGlu receptors modulate the interoceptive effects of alcohol. Using drug discrimination learning, rats were trained to discriminate alcohol (1 g/kg, i.g.) versus water. We found that systemic antagonism of metabotropic glutamate subtype 5 (mGlu5) receptors [10 mg/kg 2-methyl-6-(phenylethynyl)pyridine (MPEP) and 3 mg/kg 3-((2-methyl-1,3-thiazol-4-yl)ethynyl)pyridine], but not mGlu1 receptors ([0.3–3 mg/kg JNJ16259685) (3,4-dihydro-2H-pyrano[2,3]β-quinolin-7-yl)(cis-4-methoxycyclohexyl) methanone)], inhibited the discriminative stimulus effects of alcohol. Furthermore, mGlu5 receptor antagonism (10 mg/kg MPEP) significantly inhibited neuronal activity in the nucleus accumbens core as levels of the transcription factor c-Fos were significantly reduced. Accordingly, targeted inhibition of mGlu5 receptors (20 μg of MPEP) in the nucleus accumbens core blunted the discriminative stimulus effects of alcohol (1 g/kg). Anatomical specificity was confirmed by the lack of effect of inhibition of mGlu5 receptors (10–30 μg of MPEP) in the dorsomedial caudate–putamen and the similar cytological expression patterns and relative density of mGlu5 receptors between the brain regions. Functional involvement of intra-accumbens mGlu5 receptors was confirmed as activation of mGlu5 receptors [10 μg of (RS)-2-amino-2-(2-chloro-5-hydroxyphenyl)acetic acid sodium salt] enhanced the discriminative stimulus effects of a low alcohol dose (0.5 g/kg), and mGlu5 receptor inhibition (20 μg of MPEP) prevented the agonist-induced enhancement. These results show that mGlu5 receptor activity in the nucleus accumbens is required for the expression of the interoceptive effects of alcohol.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1523/jneurosci.2366-09.2009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1523/jneurosci.2366-09.2009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2002 AustraliaPublisher:Wiley Patel, C. N.; Noble, S. M.; Weatherly, G. T.; Tripathy, A.; Winzor, D. J.; Pielak, G. J.;AbstractGiven the importance of protein complexes as therapeutic targets, it is necessary to understand the physical chemistry of these interactions under the crowded conditions that exist in cells. We have used sedimentation equilibrium to quantify the enhancement of the reversible homodimerization of α‐chymotrypsin by high concentrations of the osmolytes glucose, sucrose, and raffinose. In an attempt to rationalize the osmolyte‐mediated stabilization of the α‐chymotrypsin homodimer, we have used models based on binding interactions (transfer‐free energy analysis) and steric interactions (excluded volume theory) to predict the stabilization. Although transfer‐free energy analysis predicts reasonably well the relatively small stabilization observed for complex formation between cytochrome c and cytochrome c peroxidase, as well as that between bobtail quail lysozyme and a monoclonal Fab fragment, it underestimates the sugar‐mediated stabilization of the α‐chymotrypsin dimer. Although predictions based on excluded volume theory overestimate the stabilization, it would seem that a major determinant in the observed stabilization of the α‐chymotrypsin homodimer is the thermodynamic nonideality arising from molecular crowding by the three small sugars.
Protein Science arrow_drop_down Protein ScienceArticle . 2002 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2002Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1110/ps.4450102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Protein Science arrow_drop_down Protein ScienceArticle . 2002 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2002Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1110/ps.4450102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Fulton T. Crews; Ryan P. Vetreno; Liya Qin;Adolescence is characterized behaviorally by increased impulsivity and risk-taking that declines in parallel with maturation of the prefrontal cortex and executive function. In the brain, the receptor for advanced glycation end products (RAGE) is critically involved in neurodevelopment and neuropathology. In humans, the risk of alcoholism is greatly increased in those who begin drinking between 13 and 15 years of age, and adolescents binge drink more than any other age group. We have previously found that alcoholism is associated with increased expression of neuroimmune genes. This manuscript tested the hypothesis that adolescent binge drinking upregulates RAGE and Toll-like receptor (TLR) 4 as well as their endogenous agonist, high-mobility group box 1 (HMGB1). Immunohistochemistry, Western blot, and mRNA analyses found that RAGE expression was increased in the human post-mortem alcoholic orbitofrontal cortex (OFC). Further, an earlier age of drinking onset correlated with increased expression of RAGE, TLR4, and HMGB1. To determine if alcohol contributed to these changes, we used an adolescent binge ethanol model in rats (5.0 g/kg, i.g., 2-day on/2-day off from postnatal day [P] 25 to P55) and assessed neuroimmune gene expression. We found an age-associated decline of RAGE expression from late adolescence (P56) to young adulthood (P80). Adolescent intermittent ethanol exposure did not alter RAGE expression at P56, but increased RAGE in the young adult PFC (P80). Adolescent intermittent ethanol exposure also increased TLR4 and HMGB1 expression at P56 that persisted into young adulthood (P80). Assessment of young adult frontal cortex mRNA (RT-PCR) found increased expression of proinflammatory cytokines, oxidases, and neuroimmune agonists at P80, 25 days after ethanol treatment. Together, these human and animal data support the hypothesis that an early age of drinking onset upregulates RAGE/TLR4-HMGB1 and other neuroimmune genes that persist into young adulthood and could contribute to risk of alcoholism or other brain diseases associated with neuroinflammation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nbd.2013.07.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 119 citations 119 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nbd.2013.07.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Funded by:NIH | Cellular Signaling in Alc..., NIH | 2/2 NADIA U24 Epigenetic/..., NIH | Administrative CoreNIH| Cellular Signaling in Alcoholism ,NIH| 2/2 NADIA U24 Epigenetic/Molecular Core ,NIH| Administrative CoreAmul J. Sakharkar; Amul J. Sakharkar; Dadasaheb M. Kokare; Huaibo Zhang; Huaibo Zhang; Ryan P. Vetreno; Subhash C. Pandey; Subhash C. Pandey; Fulton T. Crews;Binge drinking during adolescence is a risk factor for neuropsychiatric disorders that can develop later in life. Histone acetylation is an important epigenetic mechanism that contributes to neurodevelopment. We investigated the effects of adolescent intermittent ethanol (AIE) exposure, as opposed to normal saline (AIS) exposure, on histone acetylation-mediated regulation of brain-derived neurotrophic factor (BDNF) expression and developmental stages of neurogenesis (proliferating and immature neurons) in the hippocampus in adulthood. AIE exposure increased whole hippocampal histone deacetylase (HDAC) activity and decreased binding protein of cyclic adenosine monophosphate response element binding protein (CBP) and histone H3-K9 acetylation levels in the CA1, CA2, and CA3 regions of the hippocampus. BDNF protein and exon IV mRNA levels in the CA1 and CA3 regions of the hippocampus of AIE exposed adult rats were decreased as compared to AIS exposed adult rats. AIE induced anxiety-like behaviors and deficits in histone H3 acetylation at BDNF exon IV promoter in the hippocampus during adulthood, which were reversed by treatment with the HDAC inhibitor, trichostatin A (TSA). Similarly, neurogenesis was inhibited by AIE in adulthood as demonstrated by the decrease in Ki-67 and doublecortin (DCX)-positive cells in the dentate gyrus, which was normalized by TSA treatment. These results indicate that AIE exposure increases HDACs and decreases CBP levels that may be associated with a decrease in histone H3 acetylation in the hippocampus. These epigenetic changes potentially decrease BDNF expression and inhibit neurogenesis in the hippocampus that may be involved in AIE-induced behavioral abnormalities, including anxiety, in adulthood.
Brain Structure and ... arrow_drop_down Brain Structure and FunctionArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00429-016-1196-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 102 citations 102 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Brain Structure and ... arrow_drop_down Brain Structure and FunctionArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00429-016-1196-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Jeffrey J. Olney; Todd E. Thiele; Montserrat Navarro; Gretchen M. Sprow;Recent data have implicated the melanocortin (MC) system in modulating voluntary ethanol consumption. Administration of melanotan-II (MTII), a nonselective melanocortin receptor (MCR) agonist, reduces voluntary ethanol consumption in C57BL/6J mice. Previous studies have demonstrated that central infusion of MTII effectively reduced voluntary ethanol drinking in mutant mice lacking normal expression of MC3R (MC3R−/− mice) but failed to alter ethanol drinking in mice lacking expression of MC4R, demonstrating that central MTII administration reduces voluntary ethanol drinking by signaling through the MC4R. However, evidence shows that the neurocircuitry recruited during excessive binge-like ethanol drinking versus moderate ethanol drinking are not identical. Thus the present study sought to investigate the potential role of the MC3R in binge-like ethanol intake. To this end, the “drinking in the dark” (DID) procedure, a commonly used animal model of binge-like ethanol drinking, was employed. Wild-type MC3R+/+ and MC3R−/− mice were given intracerebroventricular (i.c.v.) infusion of MTII (0.0, 0.25, 0.50, or 1.0 μg) prior to the onset of a four-hour testing period in which mice were given access to 20% (v/v) ethanol. Immediately after the four-hour testing period, tail blood samples were collected from each animal in order to assess blood ethanol concentrations (BECs). Consistent with previous findings, central administration of MTII blunted binge-like ethanol drinking in both MC3R+/+ and MC3R−/− mice. Interestingly, all doses of MTII blunted binge-like ethanol drinking in MC3R−/− mice during the first hour of testing, while only the 1.0 μg dose reduced binge-like drinking in MC3R+/+ mice. Thus, MC3R−/− mice were more sensitive to the protective effects of MTII. These data suggest that MC3Rs oppose the protective effects of MTII against binge-like ethanol drinking, and thus selective MC3R antagonists may have potential therapeutic roles in treating excessive ethanol drinking.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.npep.2013.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.npep.2013.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Deborah B. Dehart; Shonagh K. O'Leary-Moore; Scott E. Parnell; Kathleen K. Sulik; +1 AuthorsDeborah B. Dehart; Shonagh K. O'Leary-Moore; Scott E. Parnell; Kathleen K. Sulik; Elizabeth A. Godin;Ethanol exposure on gestational day (GD) 7 in the mouse has previously been shown to result in ventromedian forebrain deficits along with facial anomalies characteristic of fetal alcohol syndrome (FAS). To further explore ethanol's teratogenic effect on the ventromedian forebrain in this mouse model, scanning electron microscopic and histological analyses were conducted. For this, time mated C57Bl/6J mice were injected with 2.9 g/kg ethanol or saline twice, at a four hour interval, on their 7th day of pregnancy. On GD 12.5, 13 and 17, control and ethanol-exposed specimens were collected and processed for light and scanning electron microscopic analyses. Gross morphological changes present in the forebrains of ethanol-exposed embryos included cerebral hemispheres that were too close in proximity or rostrally united, enlarged foramina of Monro, enlarged or united lateral ventricles, and varying degrees of hippocampal and ventromedian forebrain deficiency. In GD 12.5 control and ethanol-exposed embryos, in situ hybridization employing probes for Nkx2.1 or Fzd8 to distinguish the preoptic area and medial ganglionic eminences (MGE) from the lateral ganglionic eminences, respectively, confirmed the selective loss of ventromedian tissues. Immunohistochemical labeling of oligodendrocyte progenitors with Olig2, a transcription factor necessary for their specification, and of GABA, an inhibitory neurotransmitter, showed ethanol-induced reductions in both. To investigate later consequences of ventromedian forebrain loss, MGE-derived somatostatin-expressing interneurons in the subpallial region of GD 17 fetal mice were examined, with results showing that the somatostatin-expressing interneurons that were present were dysmorphic in the ethanol-exposed fetuses. The potential functional consequences of this insult are discussed.
Neurotoxicology and ... arrow_drop_down Neurotoxicology and TeratologyArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ntt.2010.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Neurotoxicology and ... arrow_drop_down Neurotoxicology and TeratologyArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ntt.2010.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Todd K. O’Buckley; Danielle H. Morrow; A. Leslie Morrow; Howard C. Becker; Howard C. Becker; Raechel E. McKinley; Antoniette M. Maldonado-Devincci; Marcelo F. Lopez; Jason B. Cook;BackgroundTheGABAergic neuroactive steroid (3α,5α)‐3‐hydroxy‐pregnan‐20‐one (3α,5α‐THP; allopregnanolone) has been studied during withdrawal from ethanol (EtOH) in humans, rats, and mice. Serum 3α,5α‐THPlevels decreased, and brain levels were not altered following acute EtOH administration (2 g/kg) in maleC57BL/6Jmice; however, the effects of chronic intermittent ethanol (CIE) exposure on 3α,5α‐THPlevels have not been examined. Given thatCIEexposure changes subsequent voluntary EtOH drinking in a time‐dependent fashion following repeated cycles of EtOH exposure, we conducted a time‐course analysis ofCIEeffects on 3α,5α‐THPlevels in specific brain regions known to influence drinking behavior.MethodsAdult maleC57BL/6Jmice were exposed to 4 cycles ofCIEto induce EtOH dependence. All mice were sacrificed and perfused at 1 of 2 time points, 8 or 72 hours following the final exposure cycle. Free‐floating brain sections (40 μm; 3 to 5 sections/region/animal) were immunostained and analyzed to determine relative levels of cellular 3α,5α‐THP.ResultsWithdrawal fromCIEexposure produced time‐dependent and region‐specific effects on immunohistochemical detection of 3α,5α‐THPlevels across cortical and limbic brain regions. A transient reduction in 3α,5α‐THPimmunoreactivity was observed in the central nucleus of the amygdala 8 hours after withdrawal fromCIE(−31.4 ± 9.3%). Decreases in 3α,5α‐THPimmunoreactivity were observed 72 hours following withdrawal in the medial prefrontal cortex (−25.0 ± 9.3%), nucleus accumbens core (−29.9 ± 6.6%), and dorsolateral striatum (−18.5 ± 6.0%), while an increase was observed in theCA3 pyramidal cell layer of the hippocampus (+42.8 ± 19.5%). Sustained reductions in 3α,5α‐THPimmunoreactivity were observed at both time points in the lateral amygdala (8 hours −28.3 ± 12.8%; 72 hours −27.5 ± 12.4%) and in the ventral tegmental area (8 hours −26.5 ± 9.9%; 72 hours −31.6 ± 13.8%).ConclusionsThese data suggest that specific neuroadaptations in 3α,5α‐THPlevels may be present in regions of brain that mediate anxiety, stress, and reinforcement relevant to EtOH dependence. The changes that occur at different time points likely modulate neurocircuitry involved in EtOH withdrawal as well as the elevated drinking observed afterCIEexposure.
Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/acer.12530&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/acer.12530&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017Publisher:Wiley Funded by:NIH | Administrative Core, NIH | Adult neurobiology follow..., NIH | Molecular and Cellular Pa... +2 projectsNIH| Administrative Core ,NIH| Adult neurobiology following adolescent drinking ,NIH| Molecular and Cellular Pathogenesis in Alcoholism ,NIH| Supplement to Molecular and Cellular Studies on Alcohol's Actions ,NIH| Cancer Center Support GrantAuthors: Colleen J. Lawrimore; Fulton T. Crews;BackgroundEthanol (EtOH) consumption leads to an increase of proinflammatory signaling via activation of Toll‐like receptors (TLRs) such as TLR3 and TLR4 that leads to kinase activation (ERK1/2, p38, TBK1), transcription factor activation (NFκB, IRF3), and increased transcription of proinflammatory cytokines such as TNF‐α, IL‐1β, and IL‐6. This immune signaling cascade is thought to play a role in neurodegeneration and alcohol use disorders. While microglia are considered to be the primary macrophage in brain, it is unclear what if any role neurons play in EtOH‐induced proinflammatory signaling.MethodsMicroglia‐like BV2 and retinoic acid‐differentiated neuron‐like SH‐SY5Y were treated with TLR3 agonist Poly(I:C), TLR4 agonist lipopolysaccharide (LPS), or EtOH for 10 or 30 minutes to examine proinflammatory immune signaling kinase and transcription factor activation using Western blot, and for 24 hours to examine induction of proinflammatory gene mRNA using RT‐PCR.ResultsIn BV2, both LPS and Poly(I:C) increased p‐ERK1/2, p‐p38, and p‐NFκB by 30 minutes, whereas EtOH decreased p‐ERK1/2 and increased p‐IRF3. LPS, Poly(I:C), and EtOH all increased TNF‐α and IL‐1β mRNA, and EtOH further increased TLR2, 7, 8, and MD‐2 mRNA in BV2. In SH‐SY5Y, LPS had no effect on kinase or proinflammatory gene expression. However, Poly(I:C) increased p‐p38 and p‐IRF3, and increased expression of TNF‐α, IL‐1β, and IL‐6, while EtOH increased p‐p38, p‐IRF3, p‐TBK1, and p‐NFκB while decreasing p‐ERK1/2 and increasing expression of TLR3, 7, 8, and RAGE mRNA. HMGB1, a TLR agonist, was induced by LPS in BV2 and by EtOH in both cell types. EtOH was more potent at inducing proinflammatory gene mRNA in SH‐SY5Y compared with BV2.ConclusionsThese results support a novel and unique mechanism of EtOH, TLR3, and TLR4 signaling in neuron‐like SH‐SY5Y and microglia‐like BV2 that likely contributes to the complexity of brain neuroimmune signaling.
Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/acer.13368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 60 citations 60 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/acer.13368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Wiley Rueben A. Gonzales; Scott McConnell; Donita L. Robinson; Donita L. Robinson; Elaina C. Howard; R. Mark Wightman;Background: Dopamine concentrations in the nucleus accumbens fluctuate on phasic (subsecond) and tonic (over minutes) timescales in awake rats. Acute ethanol increases tonic concentrations of dopamine, but its effect on subsecond dopamine transients has not been fully explored.Methods: We measured tonic and phasic dopamine fluctuations in the nucleus accumbens of rats in response to ethanol (within‐subject cumulative dosing, 0.125 to 2 g/kg, i.v.).Results: Microdialysis samples yielded significant tonic increases in dopamine concentrations at 1 to 2 g/kg ethanol in each rat, while repeated saline infusions had no effect. When monitored with fast scan cyclic voltammetry, ethanol increased the frequency of dopamine transients in 6 of 16 recording sites, in contrast to the uniform effect of ethanol as measured with microdialysis. In the remaining 10 recording sites that were unresponsive to ethanol, dopamine transients either decreased in frequency or were unaffected by cumulative ethanol infusions, patterns also observed during repeated saline infusions. The responsiveness of particular recording sites to ethanol was not correlated with either core versus shell placement of the electrodes or the basal rate of dopamine transients. Importantly, the phasic response pattern to a single dose of ethanol at a particular site was qualitatively reproduced when a second dose of ethanol was administered, suggesting that the variable between‐site effects reflected specific pharmacology at that recording site.Conclusions: These data demonstrate that the relatively uniform dopamine concentrations obtained with microdialysis can mask a dramatic heterogeneity of phasic dopamine release within the accumbens.
Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1530-0277.2009.00942.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 86 citations 86 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 2009 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/j.1530-0277.2009.00942.x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003 United Kingdom, Australia, DenmarkPublisher:Elsevier BV Djongolov, M.K.; Hartley, D J; Riedinger, L L; Kondev, Filip G; Janssens, R V F; Abu Saleem, K; Ahmad, I.; Balabanski, D; Carpenter, M P; Chowdhury, P; Cullen, D M; Danchev, M.; Dracoulis, George; El Masri, H; Goon, J.; Heinz, A; Kaye, R A; Khoo, T; Lauritsen, T; Lister, C J; Moore, E.F.; Riley, M.A.; Seweryniak, D; Shestakova, I; Sletten, G; Walker, Philip M; Wheldon, C; Wiedenhover, I; Zeidan, O; Zhang, Jing-ye;handle: 1885/91649
Three, possibly four, regularly spaced rotational bands with large dynamic moments of inertia have been identified in 174Hf. Their properties are consistent with known triaxial superdeformed bands of the Lu/Hf region. Calculations predict substantial triaxial deformation (γ ≈ γ17°) for 174Hf structures with deformation ε2 0.45, despite the fact that 174Hf is eight neutrons away from the previously established N = 94 triaxial superdeformed gap. Shell gaps at N = 100 and 106 with γ ≥15° are predicted for ε2 ≈ 0.45, and are most likely responsible for the calculated TSD minima in 174Hf.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/91649Data sources: Bielefeld Academic Search Engine (BASE)The University of Manchester - Institutional RepositoryArticle . 2003Data sources: The University of Manchester - Institutional RepositoryUniversity of Copenhagen: ResearchArticle . 2003Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0370-2693(03)00328-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 36 citations 36 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/91649Data sources: Bielefeld Academic Search Engine (BASE)The University of Manchester - Institutional RepositoryArticle . 2003Data sources: The University of Manchester - Institutional RepositoryUniversity of Copenhagen: ResearchArticle . 2003Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0370-2693(03)00328-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Society for Neuroscience Clyde W. Hodge; Marina Spanos; Michael C. Salling; Rebekah A. Stevenson; Joyce Besheer; Julie J. M. Grondin;The interoceptive effects of alcohol are major determinants of addiction liability. Metabotropic glutamate (mGlu) receptors are widely expressed in striatal circuits known to modulate drug-seeking. Given that the interoceptive effects of drugs can be important determinants of abuse liability, we hypothesized that striatal mGlu receptors modulate the interoceptive effects of alcohol. Using drug discrimination learning, rats were trained to discriminate alcohol (1 g/kg, i.g.) versus water. We found that systemic antagonism of metabotropic glutamate subtype 5 (mGlu5) receptors [10 mg/kg 2-methyl-6-(phenylethynyl)pyridine (MPEP) and 3 mg/kg 3-((2-methyl-1,3-thiazol-4-yl)ethynyl)pyridine], but not mGlu1 receptors ([0.3–3 mg/kg JNJ16259685) (3,4-dihydro-2H-pyrano[2,3]β-quinolin-7-yl)(cis-4-methoxycyclohexyl) methanone)], inhibited the discriminative stimulus effects of alcohol. Furthermore, mGlu5 receptor antagonism (10 mg/kg MPEP) significantly inhibited neuronal activity in the nucleus accumbens core as levels of the transcription factor c-Fos were significantly reduced. Accordingly, targeted inhibition of mGlu5 receptors (20 μg of MPEP) in the nucleus accumbens core blunted the discriminative stimulus effects of alcohol (1 g/kg). Anatomical specificity was confirmed by the lack of effect of inhibition of mGlu5 receptors (10–30 μg of MPEP) in the dorsomedial caudate–putamen and the similar cytological expression patterns and relative density of mGlu5 receptors between the brain regions. Functional involvement of intra-accumbens mGlu5 receptors was confirmed as activation of mGlu5 receptors [10 μg of (RS)-2-amino-2-(2-chloro-5-hydroxyphenyl)acetic acid sodium salt] enhanced the discriminative stimulus effects of a low alcohol dose (0.5 g/kg), and mGlu5 receptor inhibition (20 μg of MPEP) prevented the agonist-induced enhancement. These results show that mGlu5 receptor activity in the nucleus accumbens is required for the expression of the interoceptive effects of alcohol.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1523/jneurosci.2366-09.2009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1523/jneurosci.2366-09.2009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2002 AustraliaPublisher:Wiley Patel, C. N.; Noble, S. M.; Weatherly, G. T.; Tripathy, A.; Winzor, D. J.; Pielak, G. J.;AbstractGiven the importance of protein complexes as therapeutic targets, it is necessary to understand the physical chemistry of these interactions under the crowded conditions that exist in cells. We have used sedimentation equilibrium to quantify the enhancement of the reversible homodimerization of α‐chymotrypsin by high concentrations of the osmolytes glucose, sucrose, and raffinose. In an attempt to rationalize the osmolyte‐mediated stabilization of the α‐chymotrypsin homodimer, we have used models based on binding interactions (transfer‐free energy analysis) and steric interactions (excluded volume theory) to predict the stabilization. Although transfer‐free energy analysis predicts reasonably well the relatively small stabilization observed for complex formation between cytochrome c and cytochrome c peroxidase, as well as that between bobtail quail lysozyme and a monoclonal Fab fragment, it underestimates the sugar‐mediated stabilization of the α‐chymotrypsin dimer. Although predictions based on excluded volume theory overestimate the stabilization, it would seem that a major determinant in the observed stabilization of the α‐chymotrypsin homodimer is the thermodynamic nonideality arising from molecular crowding by the three small sugars.
Protein Science arrow_drop_down Protein ScienceArticle . 2002 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2002Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1110/ps.4450102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Protein Science arrow_drop_down Protein ScienceArticle . 2002 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2002Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1110/ps.4450102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Authors: Fulton T. Crews; Ryan P. Vetreno; Liya Qin;Adolescence is characterized behaviorally by increased impulsivity and risk-taking that declines in parallel with maturation of the prefrontal cortex and executive function. In the brain, the receptor for advanced glycation end products (RAGE) is critically involved in neurodevelopment and neuropathology. In humans, the risk of alcoholism is greatly increased in those who begin drinking between 13 and 15 years of age, and adolescents binge drink more than any other age group. We have previously found that alcoholism is associated with increased expression of neuroimmune genes. This manuscript tested the hypothesis that adolescent binge drinking upregulates RAGE and Toll-like receptor (TLR) 4 as well as their endogenous agonist, high-mobility group box 1 (HMGB1). Immunohistochemistry, Western blot, and mRNA analyses found that RAGE expression was increased in the human post-mortem alcoholic orbitofrontal cortex (OFC). Further, an earlier age of drinking onset correlated with increased expression of RAGE, TLR4, and HMGB1. To determine if alcohol contributed to these changes, we used an adolescent binge ethanol model in rats (5.0 g/kg, i.g., 2-day on/2-day off from postnatal day [P] 25 to P55) and assessed neuroimmune gene expression. We found an age-associated decline of RAGE expression from late adolescence (P56) to young adulthood (P80). Adolescent intermittent ethanol exposure did not alter RAGE expression at P56, but increased RAGE in the young adult PFC (P80). Adolescent intermittent ethanol exposure also increased TLR4 and HMGB1 expression at P56 that persisted into young adulthood (P80). Assessment of young adult frontal cortex mRNA (RT-PCR) found increased expression of proinflammatory cytokines, oxidases, and neuroimmune agonists at P80, 25 days after ethanol treatment. Together, these human and animal data support the hypothesis that an early age of drinking onset upregulates RAGE/TLR4-HMGB1 and other neuroimmune genes that persist into young adulthood and could contribute to risk of alcoholism or other brain diseases associated with neuroinflammation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nbd.2013.07.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 119 citations 119 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nbd.2013.07.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Funded by:NIH | Cellular Signaling in Alc..., NIH | 2/2 NADIA U24 Epigenetic/..., NIH | Administrative CoreNIH| Cellular Signaling in Alcoholism ,NIH| 2/2 NADIA U24 Epigenetic/Molecular Core ,NIH| Administrative CoreAmul J. Sakharkar; Amul J. Sakharkar; Dadasaheb M. Kokare; Huaibo Zhang; Huaibo Zhang; Ryan P. Vetreno; Subhash C. Pandey; Subhash C. Pandey; Fulton T. Crews;Binge drinking during adolescence is a risk factor for neuropsychiatric disorders that can develop later in life. Histone acetylation is an important epigenetic mechanism that contributes to neurodevelopment. We investigated the effects of adolescent intermittent ethanol (AIE) exposure, as opposed to normal saline (AIS) exposure, on histone acetylation-mediated regulation of brain-derived neurotrophic factor (BDNF) expression and developmental stages of neurogenesis (proliferating and immature neurons) in the hippocampus in adulthood. AIE exposure increased whole hippocampal histone deacetylase (HDAC) activity and decreased binding protein of cyclic adenosine monophosphate response element binding protein (CBP) and histone H3-K9 acetylation levels in the CA1, CA2, and CA3 regions of the hippocampus. BDNF protein and exon IV mRNA levels in the CA1 and CA3 regions of the hippocampus of AIE exposed adult rats were decreased as compared to AIS exposed adult rats. AIE induced anxiety-like behaviors and deficits in histone H3 acetylation at BDNF exon IV promoter in the hippocampus during adulthood, which were reversed by treatment with the HDAC inhibitor, trichostatin A (TSA). Similarly, neurogenesis was inhibited by AIE in adulthood as demonstrated by the decrease in Ki-67 and doublecortin (DCX)-positive cells in the dentate gyrus, which was normalized by TSA treatment. These results indicate that AIE exposure increases HDACs and decreases CBP levels that may be associated with a decrease in histone H3 acetylation in the hippocampus. These epigenetic changes potentially decrease BDNF expression and inhibit neurogenesis in the hippocampus that may be involved in AIE-induced behavioral abnormalities, including anxiety, in adulthood.
Brain Structure and ... arrow_drop_down Brain Structure and FunctionArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00429-016-1196-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 102 citations 102 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Brain Structure and ... arrow_drop_down Brain Structure and FunctionArticle . 2016 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00429-016-1196-y&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: Jeffrey J. Olney; Todd E. Thiele; Montserrat Navarro; Gretchen M. Sprow;Recent data have implicated the melanocortin (MC) system in modulating voluntary ethanol consumption. Administration of melanotan-II (MTII), a nonselective melanocortin receptor (MCR) agonist, reduces voluntary ethanol consumption in C57BL/6J mice. Previous studies have demonstrated that central infusion of MTII effectively reduced voluntary ethanol drinking in mutant mice lacking normal expression of MC3R (MC3R−/− mice) but failed to alter ethanol drinking in mice lacking expression of MC4R, demonstrating that central MTII administration reduces voluntary ethanol drinking by signaling through the MC4R. However, evidence shows that the neurocircuitry recruited during excessive binge-like ethanol drinking versus moderate ethanol drinking are not identical. Thus the present study sought to investigate the potential role of the MC3R in binge-like ethanol intake. To this end, the “drinking in the dark” (DID) procedure, a commonly used animal model of binge-like ethanol drinking, was employed. Wild-type MC3R+/+ and MC3R−/− mice were given intracerebroventricular (i.c.v.) infusion of MTII (0.0, 0.25, 0.50, or 1.0 μg) prior to the onset of a four-hour testing period in which mice were given access to 20% (v/v) ethanol. Immediately after the four-hour testing period, tail blood samples were collected from each animal in order to assess blood ethanol concentrations (BECs). Consistent with previous findings, central administration of MTII blunted binge-like ethanol drinking in both MC3R+/+ and MC3R−/− mice. Interestingly, all doses of MTII blunted binge-like ethanol drinking in MC3R−/− mice during the first hour of testing, while only the 1.0 μg dose reduced binge-like drinking in MC3R+/+ mice. Thus, MC3R−/− mice were more sensitive to the protective effects of MTII. These data suggest that MC3Rs oppose the protective effects of MTII against binge-like ethanol drinking, and thus selective MC3R antagonists may have potential therapeutic roles in treating excessive ethanol drinking.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.npep.2013.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.npep.2013.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Deborah B. Dehart; Shonagh K. O'Leary-Moore; Scott E. Parnell; Kathleen K. Sulik; +1 AuthorsDeborah B. Dehart; Shonagh K. O'Leary-Moore; Scott E. Parnell; Kathleen K. Sulik; Elizabeth A. Godin;Ethanol exposure on gestational day (GD) 7 in the mouse has previously been shown to result in ventromedian forebrain deficits along with facial anomalies characteristic of fetal alcohol syndrome (FAS). To further explore ethanol's teratogenic effect on the ventromedian forebrain in this mouse model, scanning electron microscopic and histological analyses were conducted. For this, time mated C57Bl/6J mice were injected with 2.9 g/kg ethanol or saline twice, at a four hour interval, on their 7th day of pregnancy. On GD 12.5, 13 and 17, control and ethanol-exposed specimens were collected and processed for light and scanning electron microscopic analyses. Gross morphological changes present in the forebrains of ethanol-exposed embryos included cerebral hemispheres that were too close in proximity or rostrally united, enlarged foramina of Monro, enlarged or united lateral ventricles, and varying degrees of hippocampal and ventromedian forebrain deficiency. In GD 12.5 control and ethanol-exposed embryos, in situ hybridization employing probes for Nkx2.1 or Fzd8 to distinguish the preoptic area and medial ganglionic eminences (MGE) from the lateral ganglionic eminences, respectively, confirmed the selective loss of ventromedian tissues. Immunohistochemical labeling of oligodendrocyte progenitors with Olig2, a transcription factor necessary for their specification, and of GABA, an inhibitory neurotransmitter, showed ethanol-induced reductions in both. To investigate later consequences of ventromedian forebrain loss, MGE-derived somatostatin-expressing interneurons in the subpallial region of GD 17 fetal mice were examined, with results showing that the somatostatin-expressing interneurons that were present were dysmorphic in the ethanol-exposed fetuses. The potential functional consequences of this insult are discussed.
Neurotoxicology and ... arrow_drop_down Neurotoxicology and TeratologyArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ntt.2010.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Neurotoxicology and ... arrow_drop_down Neurotoxicology and TeratologyArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ntt.2010.11.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley Todd K. O’Buckley; Danielle H. Morrow; A. Leslie Morrow; Howard C. Becker; Howard C. Becker; Raechel E. McKinley; Antoniette M. Maldonado-Devincci; Marcelo F. Lopez; Jason B. Cook;BackgroundTheGABAergic neuroactive steroid (3α,5α)‐3‐hydroxy‐pregnan‐20‐one (3α,5α‐THP; allopregnanolone) has been studied during withdrawal from ethanol (EtOH) in humans, rats, and mice. Serum 3α,5α‐THPlevels decreased, and brain levels were not altered following acute EtOH administration (2 g/kg) in maleC57BL/6Jmice; however, the effects of chronic intermittent ethanol (CIE) exposure on 3α,5α‐THPlevels have not been examined. Given thatCIEexposure changes subsequent voluntary EtOH drinking in a time‐dependent fashion following repeated cycles of EtOH exposure, we conducted a time‐course analysis ofCIEeffects on 3α,5α‐THPlevels in specific brain regions known to influence drinking behavior.MethodsAdult maleC57BL/6Jmice were exposed to 4 cycles ofCIEto induce EtOH dependence. All mice were sacrificed and perfused at 1 of 2 time points, 8 or 72 hours following the final exposure cycle. Free‐floating brain sections (40 μm; 3 to 5 sections/region/animal) were immunostained and analyzed to determine relative levels of cellular 3α,5α‐THP.ResultsWithdrawal fromCIEexposure produced time‐dependent and region‐specific effects on immunohistochemical detection of 3α,5α‐THPlevels across cortical and limbic brain regions. A transient reduction in 3α,5α‐THPimmunoreactivity was observed in the central nucleus of the amygdala 8 hours after withdrawal fromCIE(−31.4 ± 9.3%). Decreases in 3α,5α‐THPimmunoreactivity were observed 72 hours following withdrawal in the medial prefrontal cortex (−25.0 ± 9.3%), nucleus accumbens core (−29.9 ± 6.6%), and dorsolateral striatum (−18.5 ± 6.0%), while an increase was observed in theCA3 pyramidal cell layer of the hippocampus (+42.8 ± 19.5%). Sustained reductions in 3α,5α‐THPimmunoreactivity were observed at both time points in the lateral amygdala (8 hours −28.3 ± 12.8%; 72 hours −27.5 ± 12.4%) and in the ventral tegmental area (8 hours −26.5 ± 9.9%; 72 hours −31.6 ± 13.8%).ConclusionsThese data suggest that specific neuroadaptations in 3α,5α‐THPlevels may be present in regions of brain that mediate anxiety, stress, and reinforcement relevant to EtOH dependence. The changes that occur at different time points likely modulate neurocircuitry involved in EtOH withdrawal as well as the elevated drinking observed afterCIEexposure.
Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/acer.12530&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/acer.12530&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2017Publisher:Wiley Funded by:NIH | Administrative Core, NIH | Adult neurobiology follow..., NIH | Molecular and Cellular Pa... +2 projectsNIH| Administrative Core ,NIH| Adult neurobiology following adolescent drinking ,NIH| Molecular and Cellular Pathogenesis in Alcoholism ,NIH| Supplement to Molecular and Cellular Studies on Alcohol's Actions ,NIH| Cancer Center Support GrantAuthors: Colleen J. Lawrimore; Fulton T. Crews;BackgroundEthanol (EtOH) consumption leads to an increase of proinflammatory signaling via activation of Toll‐like receptors (TLRs) such as TLR3 and TLR4 that leads to kinase activation (ERK1/2, p38, TBK1), transcription factor activation (NFκB, IRF3), and increased transcription of proinflammatory cytokines such as TNF‐α, IL‐1β, and IL‐6. This immune signaling cascade is thought to play a role in neurodegeneration and alcohol use disorders. While microglia are considered to be the primary macrophage in brain, it is unclear what if any role neurons play in EtOH‐induced proinflammatory signaling.MethodsMicroglia‐like BV2 and retinoic acid‐differentiated neuron‐like SH‐SY5Y were treated with TLR3 agonist Poly(I:C), TLR4 agonist lipopolysaccharide (LPS), or EtOH for 10 or 30 minutes to examine proinflammatory immune signaling kinase and transcription factor activation using Western blot, and for 24 hours to examine induction of proinflammatory gene mRNA using RT‐PCR.ResultsIn BV2, both LPS and Poly(I:C) increased p‐ERK1/2, p‐p38, and p‐NFκB by 30 minutes, whereas EtOH decreased p‐ERK1/2 and increased p‐IRF3. LPS, Poly(I:C), and EtOH all increased TNF‐α and IL‐1β mRNA, and EtOH further increased TLR2, 7, 8, and MD‐2 mRNA in BV2. In SH‐SY5Y, LPS had no effect on kinase or proinflammatory gene expression. However, Poly(I:C) increased p‐p38 and p‐IRF3, and increased expression of TNF‐α, IL‐1β, and IL‐6, while EtOH increased p‐p38, p‐IRF3, p‐TBK1, and p‐NFκB while decreasing p‐ERK1/2 and increasing expression of TLR3, 7, 8, and RAGE mRNA. HMGB1, a TLR agonist, was induced by LPS in BV2 and by EtOH in both cell types. EtOH was more potent at inducing proinflammatory gene mRNA in SH‐SY5Y compared with BV2.ConclusionsThese results support a novel and unique mechanism of EtOH, TLR3, and TLR4 signaling in neuron‐like SH‐SY5Y and microglia‐like BV2 that likely contributes to the complexity of brain neuroimmune signaling.
Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/acer.13368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 60 citations 60 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Alcoholism Clinical ... arrow_drop_down Alcoholism Clinical and Experimental ResearchArticle . 2017 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/acer.13368&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu