Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Alcoholism Clinical ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Alcoholism Clinical and Experimental Research
Article . 2017 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Alcoholism Clinical and Experimental Research
Article
License: CC BY NC ND
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2017
Data sources: PubMed Central
UNC Dataverse
Article . 2017
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ethanol, TLR3, and TLR4 Agonists Have Unique Innate Immune Responses in Neuron‐Like SH‐SY5Y and Microglia‐Like BV2

Authors: Colleen J. Lawrimore; Fulton T. Crews;

Ethanol, TLR3, and TLR4 Agonists Have Unique Innate Immune Responses in Neuron‐Like SH‐SY5Y and Microglia‐Like BV2

Abstract

BackgroundEthanol (EtOH) consumption leads to an increase of proinflammatory signaling via activation of Toll‐like receptors (TLRs) such as TLR3 and TLR4 that leads to kinase activation (ERK1/2, p38, TBK1), transcription factor activation (NFκB, IRF3), and increased transcription of proinflammatory cytokines such as TNF‐α, IL‐1β, and IL‐6. This immune signaling cascade is thought to play a role in neurodegeneration and alcohol use disorders. While microglia are considered to be the primary macrophage in brain, it is unclear what if any role neurons play in EtOH‐induced proinflammatory signaling.MethodsMicroglia‐like BV2 and retinoic acid‐differentiated neuron‐like SH‐SY5Y were treated with TLR3 agonist Poly(I:C), TLR4 agonist lipopolysaccharide (LPS), or EtOH for 10 or 30 minutes to examine proinflammatory immune signaling kinase and transcription factor activation using Western blot, and for 24 hours to examine induction of proinflammatory gene mRNA using RT‐PCR.ResultsIn BV2, both LPS and Poly(I:C) increased p‐ERK1/2, p‐p38, and p‐NFκB by 30 minutes, whereas EtOH decreased p‐ERK1/2 and increased p‐IRF3. LPS, Poly(I:C), and EtOH all increased TNF‐α and IL‐1β mRNA, and EtOH further increased TLR2, 7, 8, and MD‐2 mRNA in BV2. In SH‐SY5Y, LPS had no effect on kinase or proinflammatory gene expression. However, Poly(I:C) increased p‐p38 and p‐IRF3, and increased expression of TNF‐α, IL‐1β, and IL‐6, while EtOH increased p‐p38, p‐IRF3, p‐TBK1, and p‐NFκB while decreasing p‐ERK1/2 and increasing expression of TLR3, 7, 8, and RAGE mRNA. HMGB1, a TLR agonist, was induced by LPS in BV2 and by EtOH in both cell types. EtOH was more potent at inducing proinflammatory gene mRNA in SH‐SY5Y compared with BV2.ConclusionsThese results support a novel and unique mechanism of EtOH, TLR3, and TLR4 signaling in neuron‐like SH‐SY5Y and microglia‐like BV2 that likely contributes to the complexity of brain neuroimmune signaling.

Keywords

Neurons, Dose-Response Relationship, Drug, Ethanol, Immunity, Innate, Toll-Like Receptor 3, Toll-Like Receptor 4, Mice, Poly I-C, Cell Line, Tumor, Animals, Humans, Microglia, Cell and Molecular Biology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    60
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
60
Top 10%
Top 10%
Top 1%
Green
hybrid