- home
- Advanced Search
- Energy Research
- 15. Life on land
- CN
- UA
- Global Change Biology
- Energy Research
- 15. Life on land
- CN
- UA
- Global Change Biology
description Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Wiley doi: 10.1111/gcb.12703
pmid: 25099555
AbstractForest growth is sensitive to interannual climatic change in the alpine treeline ecotone (ATE). Whether the alpine treeline ecotone shares a similar pattern of forest growth with lower elevational closed forest belt (CFB) under changing climate remains unclear. Here, we reported an unprecedented acceleration ofPicea schrenkianaforest growth since 1960s in theATEof Tianshan Mountains, northwestern China by a stand‐total sampling along six altitudinal transects with three plots in each transect: one from theATEbetween the treeline and the forest line, and the other two from theCFB. All the sampledP.schrenkianaforest patches show a higher growth speed after 1960 and, comparatively, forest growth in theCFBhas sped up much slower than that in theATE. The speedup of forest growth at theATEis mainly accounted for by climate factors, with increasing temperature suggested to be the primary driver. Stronger water deficit as well as more competition withinthe CFBmight have restricted forest growth there more than that within theATE, implying biotic factors were also significant for the accelerated forest growth in theATE, which should be excluded from simulations and predictions of warming‐induced treeline dynamics.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12703&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 90 citations 90 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2014 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12703&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Wiley Authors:Anping Chen;
Anping Chen
Anping Chen in OpenAIRELing Huang;
Ling Huang
Ling Huang in OpenAIREQiang Liu;
Qiang Liu
Qiang Liu in OpenAIREShilong Piao;
Shilong Piao
Shilong Piao in OpenAIREdoi: 10.1111/gcb.15542
pmid: 33528057
AbstractVegetation productivity first increases and then decreases with temperature; and temperature corresponding to the maximum productivity is called optimal temperature (Topt). In this study, we used satellite derived near‐infrared reflectance of vegetation (NIRv) data to map Topt of vegetation productivity at the spatial resolution of 0.1° on the Tibetan Plateau (TP), one of most sensitive regions in the climate system. The average Topt of non‐forest vegetation on the TP is about 14.7°C, significantly lower than the Topt value used in current ecosystem models. A remarkable geographical heterogeneity in Topt is observed over the TP. Higher Topt values generally appear in the north‐eastern TP, while the south‐western TP has relatively lower Topt (<10°C), in line with the difference of climate conditions and topography across different regions. Spatially, Topt tends to decrease by 0.41°C per 100 m increase in elevation, faster than the elevational elapse rate of growing season temperature, implying a potential CO2 regulation of Topt in addition to temperature acclimation. Topt increases by 0.66°C for each 1°C of rising mean annual temperature as a result of vegetation acclimation to climate change. However, at least at the decadal scale, there is no significant change in Topt between 2000s and 2010s, suggesting that the Topt climate acclimation may not keep up with the warming rate. Finally, future (2091–2100) warming could be close to and even surpass Topt on the TP under different RCP scenarios without considering potential climate acclimation. Our analyses imply that the temperature tipping point when the impact of future warming shifts from positive to negative on the TP is greatly overestimated by current vegetation models. Future research needs to include varying thermal and CO2 acclimation effects on Topt across different time scales in vegetation models.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 79 citations 79 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2021 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 29 Jun 2022 Russian Federation, Italy, United Kingdom, France, Russian Federation, Netherlands, ItalyPublisher:Wiley Funded by:NSF | Collaborative Research: P..., UKRI | Do past fires explain cur..., UKRI | Forecasting the impacts o...NSF| Collaborative Research: Predicting ecosystem resilience to climate and disturbance events with a multi-scale hydraulic trait framework ,UKRI| Do past fires explain current carbon dynamics of Amazonian forests? ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with dataAuthors:Jucker, Tommaso;
Fischer, Fabian Jörg;Jucker, Tommaso
Jucker, Tommaso in OpenAIREChave, Jérôme;
Chave, Jérôme
Chave, Jérôme in OpenAIRECoomes, David;
+115 AuthorsCoomes, David
Coomes, David in OpenAIREJucker, Tommaso;
Fischer, Fabian Jörg;Jucker, Tommaso
Jucker, Tommaso in OpenAIREChave, Jérôme;
Chave, Jérôme
Chave, Jérôme in OpenAIRECoomes, David;
Caspersen, John;Coomes, David
Coomes, David in OpenAIREAli, Arshad;
Panzou, Grace Jopaul Loubota; Feldpausch, Ted R;Ali, Arshad
Ali, Arshad in OpenAIREFalster, Daniel;
Usoltsev, Vladimir A; Adu-Bredu, Stephen;Falster, Daniel
Falster, Daniel in OpenAIREAlves, Luciana F;
Aminpour, Mohammad;Alves, Luciana F
Alves, Luciana F in OpenAIREAngoboy, Ilondea B;
Angoboy, Ilondea B
Angoboy, Ilondea B in OpenAIREAnten, Niels PR;
Antin, Cécile; Askari, Yousef; Avilés, Rodrigo Muñoz; Ayyappan, Narayanan;Anten, Niels PR
Anten, Niels PR in OpenAIREBalvanera, Patricia;
Banin, Lindsay;Balvanera, Patricia
Balvanera, Patricia in OpenAIREBarbier, Nicolas;
Barbier, Nicolas
Barbier, Nicolas in OpenAIREBattles, John J;
Beeckman, Hans; Bocko, Yannick E; Bond-Lamberty, Ben; Bongers, Frans; Bowers, Samuel; Brade, Thomas; Van Breugel, Michiel; Chantrain, Arthur; Chaudhary, Rajeev;Battles, John J
Battles, John J in OpenAIREDai, Jingyu;
Dalponte, Michele;Dai, Jingyu
Dai, Jingyu in OpenAIREDimobe, Kangbéni;
Domec, Jean-Christophe; Doucet, Jean-Louis; Duursma, Remko A;Dimobe, Kangbéni
Dimobe, Kangbéni in OpenAIREEnríquez, Moisés;
Van Ewijk, Karin Y; Farfán-Rios, William; Fayolle, Adeline; Forni, Eric;Enríquez, Moisés
Enríquez, Moisés in OpenAIREForrester, David I;
Gilani, Hammad; Godlee, John L; Gourlet-Fleury, Sylvie; Haeni, Matthias; Hall, Jefferson S; He, Jie-Kun; Hemp, Andreas; Hernández-Stefanoni, José L; Higgins, Steven I; Holdaway, Robert J; Hussain, Kiramat;Forrester, David I
Forrester, David I in OpenAIREHutley, Lindsay B;
Hutley, Lindsay B
Hutley, Lindsay B in OpenAIREIchie, Tomoaki;
Iida, Yoshiko; Jiang, Hai-Sheng; Joshi, Puspa Raj; Kaboli, Hasan;Ichie, Tomoaki
Ichie, Tomoaki in OpenAIRELarsary, Maryam Kazempour;
Larsary, Maryam Kazempour
Larsary, Maryam Kazempour in OpenAIREKenzo, Tanaka;
Kloeppel, Brian D; Kohyama, Takashi; Kunwar, Suwash; Kuyah, Shem;Kenzo, Tanaka
Kenzo, Tanaka in OpenAIREKvasnica, Jakub;
Kvasnica, Jakub
Kvasnica, Jakub in OpenAIRELin, Siliang;
Lin, Siliang
Lin, Siliang in OpenAIRELines, Emily;
Liu, Hongyan; Lorimer, Craig; Loumeto, Jean-Joël; Malhi, Yadvinder; Marshall, Peter L;Lines, Emily
Lines, Emily in OpenAIREMattsson, Eskil;
Mattsson, Eskil
Mattsson, Eskil in OpenAIREMatula, Radim;
Matula, Radim
Matula, Radim in OpenAIREMeave, Jorge A;
Meave, Jorge A
Meave, Jorge A in OpenAIREMensah, Sylvanus;
Mi, Xiangcheng; Momo, Stéphane;Mensah, Sylvanus
Mensah, Sylvanus in OpenAIREMoncrieff, Glenn R;
Mora, Francisco; Nissanka, Sarath P; O'Hara, Kevin L; Pearce, Steven; Pelissier, Raphaël; Peri, Pablo L; Ploton, Pierre; Poorter, Lourens; Pour, Mohsen Javanmiri; Pourbabaei, Hassan; Rada, Juan Manuel Dupuy; Ribeiro, Sabina C;Moncrieff, Glenn R
Moncrieff, Glenn R in OpenAIRERyan, Casey;
Sanaei, Anvar; Sanger, Jennifer;Ryan, Casey
Ryan, Casey in OpenAIRESchlund, Michael;
Schlund, Michael
Schlund, Michael in OpenAIRESellan, Giacomo;
Sellan, Giacomo
Sellan, Giacomo in OpenAIREShenkin, Alexander;
Sonké, Bonaventure; Sterck, Frank J;Shenkin, Alexander
Shenkin, Alexander in OpenAIRESvátek, Martin;
Takagi, Kentaro; Trugman, Anna T; Ullah, Farman; Vadeboncoeur, Matthew A; Valipour, Ahmad; Vanderwel, Mark C;Svátek, Martin
Svátek, Martin in OpenAIREVovides, Alejandra G;
Wang, Weiwei; Wang, Li-Qiu; Wirth, Christian; Woods, Murray; Xiang, Wenhua; De Aquino Ximenes, Fabiano; Xu, Yaozhan;Vovides, Alejandra G
Vovides, Alejandra G in OpenAIREYamada, Toshihiro;
Zavala, Miguel A;Yamada, Toshihiro
Yamada, Toshihiro in OpenAIREpmid: 35703577
pmc: PMC9542605
AbstractData capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research—from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non‐forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC‐BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599. To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology—from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle.
CORE arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/75855Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 59visibility views 59 download downloads 59 Powered bymore_vert CORE arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/75855Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Wiley Authors:Lingfan Wan;
Guohua Liu; Hao Cheng; Shishuai Yang; +2 AuthorsLingfan Wan
Lingfan Wan in OpenAIRELingfan Wan;
Guohua Liu; Hao Cheng; Shishuai Yang; Yu Shen; Xukun Su;Lingfan Wan
Lingfan Wan in OpenAIREdoi: 10.1111/gcb.16986
pmid: 37837281
AbstractGlobal warming has significantly affected terrestrial ecosystems. Biomass and C:N:P stoichiometry of plants and soil is crucial for enhancing plant productivity, improving human nutrition, and regulating biogeochemical cycles. However, the effect of warming on the biomass and C:N:P stoichiometry of different components (plant, leaf, stem, root, litter, soil, and microbial biomass) in various terrestrial ecosystems remains uncertain. We conducted a comprehensive meta‐analysis to investigate the global patterns of biomass and C:N:P stoichiometry responses to warming, as well as interaction relationships based on 1399 paired observations from 105 warming studies. Results indicated that warming had a significant impact on various aspects of plant growth, including an increase in plant biomass (+16.55%), plant C:N ratio (+4.15%), leaf biomass (+16.78%), stem biomass (+23.65%), root biomass (+22.00%), litter C:N ratio (+9.54%) and soil C:N ratio (+5.64%). However, it also decreased stem C:P ratio (−23.34%), root C:P ratio (−12.88%), soil N:P ratio (−14.43%) and soil C:P ratio (−16.33%). The magnitude of warming was the primary drivers of changes of biomass and C:N:P stoichiometry. By establishing the general response curves of changes in biomass and C:N:P ratios with increasing temperature, we demonstrated that warming effect on plant, root, and litter biomass shifted from negative to positive, whereas that on leaf and stem biomass changed from positive to negative as temperature increased. Additionally, the effect of warming on root C:N ratio, root biomass, and microbial biomass N:P ratios shifted from positive to negative, whereas the effects on plant N:P, leaf N:P, leaf C:P, root N:P ratios, and microbial biomass C:N ratio changed from negative to positive with increasing temperature. Our research can help assess plant productivity and optimize ecosystem stoichiometry precisely in the context of global warming.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16986&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16986&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Wiley Authors:Bing Liu;
Weixing Cao; Yan Zhu;Bing Liu
Bing Liu in OpenAIRESenthold Asseng;
+2 AuthorsSenthold Asseng
Senthold Asseng in OpenAIREBing Liu;
Weixing Cao; Yan Zhu;Bing Liu
Bing Liu in OpenAIRESenthold Asseng;
Leilei Liu; Liang Tang;Senthold Asseng
Senthold Asseng in OpenAIREdoi: 10.1111/gcb.13212
pmid: 26725507
AbstractHigher temperatures caused by future climate change will bring more frequent heat stress events and pose an increasing risk to global wheat production. Crop models have been widely used to simulate future crop productivity but are rarely tested with observed heat stress experimental datasets. Four wheat models (DSSAT‐CERES‐Wheat,DSSAT‐Nwheat,APSIM‐Wheat, and WheatGrow) were evaluated with 4 years of environment‐controlled phytotron experimental datasets with two wheat cultivars under heat stress at anthesis and grain filling stages. Heat stress at anthesis reduced observed grain numbers per unit area and individual grain size, while heat stress during grain filling mainly decreased the size of the individual grains. The observed impact of heat stress on grain filling duration, total aboveground biomass, grain yield, and grain protein concentration (GPC) varied depending on cultivar and accumulated heat stress. For every unit increase of heat degree days (HDD, degree days over 30 °C), grain filling duration was reduced by 0.30–0.60%, total aboveground biomass was reduced by 0.37–0.43%, and grain yield was reduced by 1.0–1.6%, butGPCwas increased by 0.50% for cv Yangmai16 and 0.80% for cv Xumai30. The tested crop simulation models could reproduce some of the observed reductions in grain filling duration, final total aboveground biomass, and grain yield, as well as the observed increase inGPCdue to heat stress. Most of the crop models tended to reproduce heat stress impacts better during grain filling than at anthesis. Some of the tested models require improvements in the response to heat stress during grain filling, but all models need improvements in simulating heat stress effects on grain set during anthesis. The observed significant genetic variability in the response of wheat to heat stress needs to be considered through cultivar parameters in future simulation studies.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 116 citations 116 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13212&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley doi: 10.1111/gcb.14317
pmid: 29777620
AbstractCities are natural laboratories for studying vegetation responses to global environmental changes because of their climate, atmospheric, and biogeochemical conditions. However, few holistic studies have been conducted on the impact of urbanization on vegetation growth. We decomposed the overall impacts of urbanization on vegetation growth into direct (replacement of original land surfaces by impervious built‐up) and indirect (urban environments) components, using a conceptual framework and remotely sensed data for 377 metropolitan statistical areas (MSAs) in the conterminous United States (CONUS) in 2001, 2006, and 2011. Results showed that urban pixels are often greener than expected given the amount of paved surface they contain. The vegetation growth enhancement due to indirect effects occurred in 88.4%, 90.8%, and 92.9% of urban bins in 2001, 2006, and 2011, respectively. By defining offset value as the ratio of the absolute indirect and direct impact, we obtained that growth enhancement due to indirect effects compensated for about 29.2%, 29.5%, and 31.0% of the reduced productivity due to loss of vegetated surface area on average in 2001, 2006, and 2011, respectively. Vegetation growth responses to urbanization showed little temporal variation but large regional differences with higher offset value in the western CONUS than in the eastern CONUS. Our study highlights the prevalence of vegetation growth enhancement in urban environments and the necessity of differentiating various impacts of urbanization on vegetation growth, and calls for tailored field experiments to understand the relative contributions of various driving forces to vegetation growth and predict vegetation responses to future global change using cities as harbingers.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14317&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 77 citations 77 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14317&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Wiley Authors: Kenneth G. Hubbard; Xiaoguang Yang;Zhijuan Liu;
Xiaomao Lin; +1 AuthorsZhijuan Liu
Zhijuan Liu in OpenAIREKenneth G. Hubbard; Xiaoguang Yang;Zhijuan Liu;
Xiaomao Lin; Xiaomao Lin;Zhijuan Liu
Zhijuan Liu in OpenAIREdoi: 10.1111/gcb.12324
pmid: 23857749
AbstractNortheast China (NEC) accounts for about 30% of the nation's maize production in China. In the past three decades, maize yields in NEC have increased under changes in climate, cultivar selection and crop management. It is important to investigate the contribution of these changing factors to the historical yield increases to improve our understanding of how we can ensure increased yields in the future. In this study, we use phenology observations at six sites from 1981 to 2007 to detect trends in sowing dates and length of maize growing period, and then combine these observations with in situ temperature data to determine the trends of thermal time in the maize growing period, as a measure of changes in maize cultivars. The area in the vicinity of these six sites accounts for 30% of NEC's total maize production. The agricultural production systems simulator, APSIM‐Maize model, was used to separate the impacts of changes in climate, sowing dates and thermal time requirements on maize phenology and yields. In NEC, sowing dates trended earlier in four of six sites and maturity dates trended later by 4–21 days. Therefore, the period from sowing to maturity ranged from 2 to 38 days longer in 2007 than it was in 1981. Our results indicate that climate trends alone would have led to a negative impact on maize. However, results from the adaptation assessments indicate that earlier sowing dates increased yields by up to 4%, and adoption of longer season cultivars caused a substantial increase in yield ranging from 13% to 38% over the past 27 years. Therefore, earlier sowing dates and introduction of cultivars with higher thermal time requirements in NEC have overcome the negative effects of climate change and turned what would have otherwise been a loss into a significant increase in maize yield.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 190 citations 190 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2013 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.12324&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United StatesPublisher:Wiley Authors:Liu, Lingli;
Liu, Lingli
Liu, Lingli in OpenAIREWang, Xin;
Lajeunesse, Marc J.; Miao, Guofang; +7 AuthorsWang, Xin
Wang, Xin in OpenAIRELiu, Lingli;
Liu, Lingli
Liu, Lingli in OpenAIREWang, Xin;
Lajeunesse, Marc J.; Miao, Guofang; Piao, Shilong;Wang, Xin
Wang, Xin in OpenAIREWan, Shiqiang;
Wu, Yuxin; Wang, Zhenhua; Yang, Sen;Wan, Shiqiang
Wan, Shiqiang in OpenAIRELi, Ping;
Li, Ping
Li, Ping in OpenAIREDeng, Meifeng;
Deng, Meifeng
Deng, Meifeng in OpenAIREdoi: 10.1111/gcb.13156
pmid: 26554753
AbstractSoil respiration (Rs) is the second‐largest terrestrial carbon (C) flux. Although Rs has been extensively studied across a broad range of biomes, there is surprisingly little consensus on how the spatiotemporal patterns of Rs will be altered in a warming climate with changing precipitation regimes. Here, we present a global synthesis Rs data from studies that have manipulated precipitation in the field by collating studies from 113 increased precipitation treatments, 91 decreased precipitation treatments, and 14 prolonged drought treatments. Our meta‐analysis indicated that when the increased precipitation treatments were normalized to 28% above the ambient level, the soil moisture, Rs, and the temperature sensitivity (Q10) values increased by an average of 17%, 16%, and 6%, respectively, and the soil temperature decreased by −1.3%. The greatest increases in Rs and Q10 were observed in arid areas, and the stimulation rates decreased with increases in climate humidity. When the decreased precipitation treatments were normalized to 28% below the ambient level, the soil moisture and Rs values decreased by an average of −14% and −17%, respectively, and the soil temperature and Q10 values were not altered. The reductions in soil moisture tended to be greater in more humid areas. Prolonged drought without alterations in the amount of precipitation reduced the soil moisture and Rs by −12% and −6%, respectively, but did not alter Q10. Overall, our synthesis suggests that soil moisture and Rs tend to be more sensitive to increased precipitation in more arid areas and more responsive to decreased precipitation in more humid areas. The responses of Rs and Q10 were predominantly driven by precipitation‐induced changes in the soil moisture, whereas changes in the soil temperature had limited impacts. Finally, our synthesis of prolonged drought experiments also emphasizes the importance of the timing and frequency of precipitation events on ecosystem C cycles. Given these findings, we urge future studies to focus on manipulating the frequency, intensity, and seasonality of precipitation with an aim to improving our ability to predict and model feedback between Rs and climate change.
Global Change Biolog... arrow_drop_down eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of South Florida St. Petersburg: Digital USFSPArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Digital Commons University of South Florida (USF)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13156&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 223 citations 223 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down eScholarship - University of CaliforniaArticle . 2016Data sources: eScholarship - University of CaliforniaGlobal Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefUniversity of South Florida St. Petersburg: Digital USFSPArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)Digital Commons University of South Florida (USF)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13156&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 GermanyPublisher:Wiley Authors: Yang Zhan;Zhisheng Yao;
Peter M. Groffman; Junfei Xie; +4 AuthorsZhisheng Yao
Zhisheng Yao in OpenAIREYang Zhan;Zhisheng Yao;
Peter M. Groffman; Junfei Xie; Yan Wang; Guangtao Li;Zhisheng Yao
Zhisheng Yao in OpenAIREXunhua Zheng;
Xunhua Zheng
Xunhua Zheng in OpenAIREKlaus Butterbach‐Bahl;
Klaus Butterbach‐Bahl
Klaus Butterbach‐Bahl in OpenAIREdoi: 10.1111/gcb.16652
pmid: 36825371
AbstractUrban land‐use change has the potential to affect local to global biogeochemical carbon (C) and nitrogen (N) cycles and associated greenhouse gas (GHG) fluxes. We conducted a meta‐analysis to (1) assess the effects of urbanization‐induced land‐use conversion on soil nitrous oxide (N2O) and methane (CH4) fluxes, (2) quantify direct N2O emission factors (EFd) of fertilized urban soils used, for example, as lawns or forests, and (3) identify the key drivers leading to flux changes associated with urbanization. On average, urbanization increases soil N2O emissions by 153%, to 3.0 kg N ha−1 year−1, while rates of soil CH4 uptake are reduced by 50%, to 2.0 kg C ha−1 year−1. The global mean annual N2O EFd of fertilized lawns and urban forests is 1.4%, suggesting that urban soils can be regional hotspots of N2O emissions. On a global basis, conversion of land to urban greenspaces has increased soil N2O emission by 0.46 Tg N2O‐N year−1 and decreased soil CH4 uptake by 0.58 Tg CH4‐C year−1. Urbanization driven changes in soil N2O emission and CH4 uptake are associated with changes in soil properties (bulk density, pH, total N content, and C/N ratio), increased temperature, and management practices, especially fertilizer use. Overall, our meta‐analysis shows that urbanization increases soil N2O emissions and reduces the role of soils as a sink for atmospheric CH4. These effects can be mitigated by avoiding soil compaction, reducing fertilization of lawns, and by restoring native ecosystems in urban landscapes.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16652&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16652&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Wiley Decai Gao;
Lei Zhang; Jun Liu; Bo Peng; Zhenzhen Fan; Weiwei Dai; Ping Jiang;Decai Gao
Decai Gao in OpenAIREEdith Bai;
Edith Bai
Edith Bai in OpenAIREdoi: 10.1111/gcb.14010
pmid: 29215766
AbstractAltered freeze‐thaw cycle (FTC) patterns due to global climate change may affect nitrogen (N) cycling in terrestrial ecosystems. However, the general responses of soil N pools and fluxes to different FTC patterns are still poorly understood. Here, we compiled data of 1519 observations from 63 studies and conducted a meta‐analysis of the responses of 17 variables involved in terrestrial N pools and fluxes to FTC. Results showed that under FTC treatment, soil NH4+, NO3−, NO3− leaching, and N2O emission significantly increased by 18.5%, 18.3%, 66.9%, and 144.9%, respectively; and soil total N (TN) and microbial biomass N (MBN) significantly decreased by 26.2% and 4.7%, respectively; while net N mineralization or nitrification rates did not change. Temperate and cropland ecosystems with relatively high soil nutrient contents were more responsive to FTC than alpine and arctic tundra ecosystems with rapid microbial acclimation. Therefore, altered FTC patterns (such as increased duration of FTC, temperature of freeze, amplitude of freeze, and frequency of FTC) due to global climate warming would enhance the release of inorganic N and the losses of N via leaching and N2O emissions. Results of this meta‐analysis help better understand the responses of N cycling to FTC and the relationships between FTC patterns and N pools and N fluxes.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 78 citations 78 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2018 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.14010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu