Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
6,548 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 7. Clean energy
  • CN
  • US
  • AU
  • Energy

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Wei Lai;
    Wei Lai
    ORCID
    Harvested from ORCID Public Data File

    Wei Lai in OpenAIRE
    Minyou Chen; Yanyu Luo; orcid Wenfa Kang;
    Wenfa Kang
    ORCID
    Harvested from ORCID Public Data File

    Wenfa Kang in OpenAIRE

    Abstract Energy storage systems (ESS) are widely used in active distribution networks (ADN) to smoothen the drastic fluctuation of renewable energy sources (RES). In order to enhance the scalability and flexibility of ESS, a virtual energy storage system (VESS), which is composed of battery energy storage system (BESS), RES as well as flexible loads (FL), is developed in this paper to realize the functionalities of ESS in more cost-effective way in ADN. Aiming at achieving voltage regulation, dynamic pricing strategies based on system voltage condition are designed for VESS. A distributed real-time power management model containing dynamic pricing strategies is proposed to accomplish the voltage regulation and economic power sharing in VESS. Moreover, a set of distributed algorithms, over time-varying unbalanced directed networks, are designed for dynamic pricing strategies and optimal power management model. Furthermore, the convergence property, optimality and system voltage stability are explained by detailed mathematical analysis. Three various case studies which were ran on a real time digital simulator (OPAL-RT OP5600) were designed to validate the effectiveness of the strategy. Finally, simulation results show that the economic power dispatch and voltage regulation are achieved among VESS simultaneously, even in the presence of time-varying directed and unbalanced communication networks.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    20
    citations20
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Nan Li; Hailin Mu; Zhixin Yu; Yuqing Jiang;

    Abstract In this study, we develop indices for the overall technical efficiency (OTE) and energy-saving target ratio (ESTR) using data envelopment analysis (DEA) to calculate the relative efficiency and energy-saving potential of 30 provinces in China from 1997 to 2014. The results are as follows: (1) the OTE of China is 79.187%, indicating that there is 20.813% potential for improvement. The OTE exhibits decreasing efficiency values from the coastal areas to the inland areas and has clear geographical relationships. The average values of OTE in the east, midland and west are 0.932, 0.694 and 0.703. Theoretically, the total energy savings of CE, HE, ME and BE are 11080.60PJ, 5124.71PJ, 4729.24PJ and 6797.39PJ. (2) Regarding CE, HE, ME and BE, the provinces with the highest comprehensive ranks are Henan, Shanxi, Shaanxi, and Gansu, which simultaneously have the greatest energy-saving potentials and energy-saving targets. (3) The HE has the largest average ESTR of 38.357% and the values for BE, CE, and ME are 25.759%, 23.874%, and 22.143%, respectively. The CE category is the greatest in total energy savings (40.171%), which is followed by BE (24.150%), HE (18.384%), and ME (17.293%).

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    50
    citations50
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Zhiheng Xu;
    Zhiheng Xu
    ORCID
    Harvested from ORCID Public Data File

    Zhiheng Xu in OpenAIRE
    Junqin Li; orcid bw Xiaobin Tang;
    Xiaobin Tang
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Xiaobin Tang in OpenAIRE
    orcid Yunpeng Liu;
    Yunpeng Liu
    ORCID
    Harvested from ORCID Public Data File

    Yunpeng Liu in OpenAIRE
    +3 Authors

    Abstract In view of the current energy demand for miniaturized equipment in extreme environmental fields, such as in deep space exploration. A new fan-shaped radioisotope thermoelectric generator is innovatively presented and designed. Thin-film thermoelectric materials used for miniaturized radioisotope thermoelectric generators are first prepared by electrochemical methods. The prepared fan-shaped radioisotope thermoelectric generator has a volume of 5.75 cm3 and consists of 8 thermoelectric modules and 32 thermoelectric legs. The study finds that when a 1.5 W heat source is loaded, the temperature difference of the device is 54.8 K, the output voltage and the maximum output power is 174.88 mV and 333.20 nW, respectively. On this basis, the number and size of the modules are optimized by the finite element method. When the thermoelectric leg size is optimized to 9 × 2 mm2 and the number of modules is 8, the maximum output power can be up to 369.02 nW. The corresponding experimental verification work is further developed and discussed. This work provides a novel solution for the energy supply problem of small-volume devices in extreme space environments.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2020 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    17
    citations17
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2020 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Fan Li; Yonghui Bai; Guo Chenyuan; Chang Sujie; +5 Authors

    Abstract For a fixed bed gasifier, coal gas is mainly derived from dry distillation zone and gasification zone. The upstream gas from gasification zone will inevitably affect the composition and production of dry distillation gas. Therefore, the composition of upstream gas and the reaction conditions of dry distillation zone were simulated to perform experiments of Yining coal pyrolysis under a series of atmospheres. Some new discoveries are obtained. H2O and the hydrogen-containing gas have a significant impact on the release of dry distillation gas. H2O inhibits the release of CO, CO2 and CH4, but promotes the release of H2 which is not from char−H2O gasification. When the hydrogen-containing gas passes through dry distillation zone, the path of stabilizing radicals is completely changed, resulting in that coal pyrolysis changes from a process of generating H2 under inert atmosphere to a process of consuming a large amount of H2. In addition, water gas shift reaction is the only homogeneous reaction observed obviously in dry distillation zone, which can promote the production increase of CO2, but can not prevent the production decrease of H2 in coal gas.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Hao Guo; Xueqiang Dong; Qingyu Xu; Maoqiong Gong; +4 Authors

    Abstract The absorption refrigeration system driven by low grade heat sources, especially the waste heat sources, becomes more and more attractive in recent decades. However, most traditional absorption systems cannot achieve a high utilization rate of the waste heat with limited heat capacity. These systems are usually designed to obtain heat in the generator, which means that the waste heat sources cannot be utilized to the temperature lower than the generator temperature. This paper proposed a new structure heated by heat conduction oil in the generator and electric heating rings around the stripping section. This structure can simulate the temperature-distributed heat sources when the electric heating rings work. It can also simulate a traditional generator when the electric heating rings do not work. Influences of different heat distributions are analyzed in detail in this paper. The results show that the heat sources utilization rate will increase with the increase of the heat in the stripping section, while the coefficient of performance will be negatively affected by the increasing heat in the stripping section. By optimizing the heating structure, the coefficient of performance can be similar to that of a traditional system when the heat is just added in the middle and lower part of stripping section. The optimum utilization rate of heat sources in this test model can reach 1.8 times to that of a traditional system. Under this heating model, the lowest temperature required in the heating section is 82 °C when the heat conduction oil inlet temperature is 169 °C. It is much lower than the temperature inside the generator, which is 137.3 °C.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid bw Chaudhary Awais Salman;
    Chaudhary Awais Salman
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    Chaudhary Awais Salman in OpenAIRE
    Jinying Yan; Jinying Yan; orcid Eva Thorin;
    Eva Thorin
    ORCID
    Harvested from ORCID Public Data File

    Eva Thorin in OpenAIRE
    +4 Authors

    Abstract For biomass/waste fueled power plants, stricter regulations require a further reduction of the negative impacts on the environment caused by the release of pollutants and withdrawal of fresh water externally. Flue gas quench (FGQ) is playing an important role in biomass or waste fueled combined heat and power (CHP) plants, as it can link the flue gas (FG) cleaning, energy recovery and wastewater treatment. Enhancing water evaporation can benefit the concentrating of pollutant in the quench water; however, when FG condenser (FGC) is not in use, it results in a large consumption of fresh water. In order to deeply understand the operation of FGQ, a mathematic model was developed and validated against the measurements. Based on simulation results key parameters affecting FGQ have been identified, such as the flow rate and temperature of recycling water and the moisture content of FG. A guideline about how to reduce the discharge of wastewater to the external and the withdrawal of external water can be proposed. The mathematic model was also implemented into an ASPEN Plus model about a CHP plant to assess the impacts of FGQ on CHP. Results show that when the FGC was running, increasing the flow rate and decreasing the temperature of recycling water can result in a lower total energy efficiency.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    11
    citations11
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Balázs Palotai; Zoltán Varga;

    Abstract Large amounts of heat is wasted through air coolers and water coolers for cooling low temperature ( H ) recovered in the evaporator were 8.0–8.6 MW for ORC using i-pentane as working fluid and 8.2–8.3 MW for Kalina cycle, respectively. Efficiency (η) of selected systems obtained at the highest power generated (W T ) was 10.0% (W T = 862 kW) for ORC and 10.57% (W T = 996 kW) for Kalina cycle within the design boundaries. Calculated carbon dioxide (CO 2 ) emission reduction potential was 2260 t/y for ORC and 2600 t/y for Kalina system, respectively, at advantageous process conditions. Results showed that Kalina cycle provided higher efficiency and power generation ability on expense of higher system pressure (29 bar–7 bar). Economic calculations showed that the payback time is about 5.0 year for both systems.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    44
    citations44
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Tapabrata Ray;
    Tapabrata Ray
    ORCID
    Harvested from ORCID Public Data File

    Tapabrata Ray in OpenAIRE
    orcid Saber M. Elsayed;
    Saber M. Elsayed
    ORCID
    Harvested from ORCID Public Data File

    Saber M. Elsayed in OpenAIRE
    Saber M. Elsayed; orcid Ruhul A. Sarker;
    Ruhul A. Sarker
    ORCID
    Harvested from ORCID Public Data File

    Ruhul A. Sarker in OpenAIRE
    +1 Authors

    Abstract To achieve optimal generation from a number of mixed power plants by minimizing the operational cost while meeting the electricity demand is a challenging optimization problem. When the system involves uncertain renewable energy, the problem has become harder with its operated generators may suffer a technical problem of ramp-rate violations during the periodic implementation in subsequent days. In this paper, a scenario-based dynamic economic dispatch model is proposed for periodically implementing its resources on successive days with uncertain wind speed and load demand. A set of scenarios is generated based on realistic data to characterize the random nature of load demand and wind forecast errors. In order to solve the uncertain dispatch problems, a self-adaptive differential evolution and real-coded genetic algorithm with a new heuristic are proposed. The heuristic is used to enhance the convergence rate by ensuring feasible load allocations for a given hour under the uncertain behavior of wind speed and load demand. The proposed frameworks are successfully applied to two deterministic and uncertain DED benchmarks, and their simulation results are compared with each other and state-of-the-art algorithms which reveal that the proposed method has merit in terms of solution quality and reliability.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    17
    citations17
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Abdelkader Chaker; orcid Messaoud Hamouda;
    Messaoud Hamouda
    ORCID
    Harvested from ORCID Public Data File

    Messaoud Hamouda in OpenAIRE
    orcid Nadir Boutasseta;
    Nadir Boutasseta
    ORCID
    Harvested from ORCID Public Data File

    Nadir Boutasseta in OpenAIRE
    Salah Lachtar; +4 Authors

    Abstract This paper gives an experimental investigation of the effect of climatic conditions on the performance and degradation of crystalline silicon photovoltaic modules under Saharan environment in Adrar region in the south of Algeria. The first part of this study is focused on the analysis and assessment of UDTS 50 PV modules degradation after a long term outdoor exposure to these conditions (more than 12 years). The visual inspection of 62 PV modules has allowed to observe and determine the degradation modes such as, EVA discoloration, delamination, busbar corrosion, cracking of solar cell, glass breakage, AR coating and solder bond. The degradation evaluation of three modules with different defects was also performed, using (I-V/P-V) characteristics and the degradation rates of the parameters (Pmax, Imp, Vmp, Isc, Voc, FF) at Standard test conditions (STC) in order to compare with the nominal data delivered by the manufacturer of photovoltaic panels. Finally, the combination of the partial shading effect and the presence of EVA browning defect was examined to assess the changes in I-V and P-V curves caused by the drop in electrical parameters.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2017 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    63
    citations63
    popularityTop 1%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2017 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Wenlong Zhang;
    Wenlong Zhang
    ORCID
    Harvested from ORCID Public Data File

    Wenlong Zhang in OpenAIRE
    Kaihua Lu; orcid Yanming Ding;
    Yanming Ding
    ORCID
    Harvested from ORCID Public Data File

    Yanming Ding in OpenAIRE
    Yanming Ding; +1 Authors

    Abstract Reaction kinetic parameters estimation of biomass pyrolysis is a relatively difficult optimization problem due to the complexity of pyrolysis model. Two common heuristic algorithms, Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), are applied to estimate the kinetic parameters of three-component parallel reaction mechanism based on the thermogravimetric experiment in wide heating rates. The accuracy and efficiency of GA and PSO algorithms are compared with each other under the identical optimization conditions. The results indicate the better optimization abilities of PSO with the closer convergence solution to the global optimum and quicker convergence to the solution than GA based on the three-component parallel reaction mechanism of biomass pyrolysis. Especially, the improvement of best fitting value of PSO reaches up to 30% compared with that of GA. Furthermore, 14 estimated kinetic parameters of best fitting value are obtained and the mass loss rate predicted results including three separate components (hemicellulose, cellulose and lignin) are compared with experimental data.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    180
    citations180
    popularityTop 1%
    influenceTop 10%
    impulseTop 0.1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim