- home
- Advanced Search
- Energy Research
- IT
- US
- DE
- ZENODO
- Energy Research
- IT
- US
- DE
- ZENODO
description Publicationkeyboard_double_arrow_right Article , Research , Preprint , Other literature type , Journal 2020Embargo end date: 01 Jan 2020 Italy, China (People's Republic of), Australia, Turkey, Italy, Turkey, United Kingdom, Italy, Turkey, United Kingdom, Spain, Norway, Australia, Italy, Italy, Belarus, United Kingdom, Spain, China (People's Republic of), Czech Republic, Italy, Australia, France, Netherlands, South Africa, Czech Republic, United States, Germany, Netherlands, Italy, Switzerland, Turkey, Italy, Sweden, Italy, South Africa, United States, Germany, Italy, Italy, Turkey, Italy, Belarus, Netherlands, Italy, Denmark, Poland, Spain, Netherlands, Netherlands, Portugal, United Kingdom, China (People's Republic of), Chile, Italy, Germany, Italy, NorwayPublisher:Springer Science and Business Media LLC Funded by:EC | PROBIST, GSRIEC| PROBIST ,GSRIAad, G.; Abbott, B.; Abbott, D. C.; Abud, A.; Abeling, K.; Abhayasinghe, D. K.; Abidi, S. H.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Acharya, B. S.; Achkar, B.; Adachi, S.; Adam, L.; Bourdarios, Adam C.; Adamczyk, L.; Adamek, L.; Adelman, J.; Adersberger, M.; Adiguzel, A.; Adorni, S.; Adye, T.; Affolder, A. A.; Afik, Y.; Agapopoulou, C.; Agaras, M. N.; Aggarwal, A.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahmadov, F.; Ahmed, W. S.; Ai, X.; Aielli, G.; Akatsuka, S.; Akesson, T. P. A.; Akilli, E.; Akimov, A. V.; Al Khoury, K.; Alberghi, G. L.; Albert, J.; Alconada Verzini, M. J.; Alderweireldt, S.; Aleksa, M.; Aleks; rov, I. N.; Alexa, C.; Alex; re, D.; Alexopoulos, T.; Alfonsi, A.; Alfonsi, F.; Alhroob, M.; Ali, B.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allaire, C.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alvarez Estevez, M.; Alvarez Piqueras, D.; Alviggi, M. G.; Amaral Coutinho, Y.; Ambler, A.; Ambroz, L.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amoroso, S.; Amrouche, C. S.; An, F.; Anastopoulos, C.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Andreazza, A.; Andrei, V.; Anelli, C. R.; Angelidakis, S.; Angerami, A.; Anisenkov, A. V.; Annovi, A.; Antel, C.; Anthony, M. T.; Antonelli, M.; Antrim, D. J. A.; Anulli, F.; Aoki, M.; Aparisi Pozo, J. A.; Aperio Bella, L.; Arabidze, G.; Araque, J. P.; Araujo Ferraz, V.; Araujo Pereira, R.; Arcangeletti, C.; Arce, A. T. H.; Arduh, F. A.; Arguin, J-F.; Argyropoulos, S.; Arling, J. -H.; Armbruster, A. J.; Armstrong, A.; Arnaez, O.; Arnold, H.; Arrubarrena Tame, Z. P.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Asimakopoulou, E. M.; Asquith, L.; Assahsah, J.; Assamagan, K.; Astalos, R.; Atkin, R. J.; Atkinson, M.; Atlay, N. B.; Atmani, H.; Augsten, K.; Avolio, G.; Avramidou, R.; Ayoub, M. K.; Azoulay, A. M.; Azuelos, G.; Bachacou, H.; Bachas, K.; Backes, M.; Backman, F.; Bagnaia, P.; Bahmani, M.; Bahrasemani, H.; Bailey, A. J.; Bailey, V. R.; Baines, J. T.; Bajic, M.; Bakalis, C.; Baker, O. K.; Bakker, P. J.; Bakshi Gupta, D.; Balaji, S.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Balz, J.; Banas, E.; B; yopadhyay, A.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barbe, W. M.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barbour, G.; Barillari, T.; Barisits, M-S.; Barkeloo, J.; Barklow, T.; Barnea, R.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Navarro, Barranco L.; Barreiro, F.; da Costa, J. Barreiro Guimaraes; Barsov, S.; Bartoldus, R.; Bartolini, G.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basso, M. J.; Bates, R. L.; Batlamous, S.; Batley, J. R.; Batool, B.; Battaglia, M.; Bauce, M.; Bauer, F.; Bauer, K. T.; Bawa, H. S.; Beacham, J. B.; Beau, T.;doi: 10.1007/jhep10(2020)005 , 10.48550/arxiv.2004.10894 , 10.7302/5020 , 10.17863/cam.58539 , 10.3204/pubdb-2020-02400 , 10.3204/pubdb-2020-04625 , 10.17863/cam.63750 , 10.5281/zenodo.13369210 , 10.17863/cam.58089 , 10.17863/cam.76319 , 10.5281/zenodo.13369211
handle: 2066/225580 , https://repository.ubn.ru.nl/handle/2066/225580 , 11588/839924 , 11245.1/4218673b-e35d-4180-ae8d-7e404133875f , 20.500.11851/9369 , 10852/84595 , 10261/233073 , 10316/106291 , 10486/708945 , 10481/64656 , 20.500.11770/333419 , 11572/286034 , 11572/285762 , 11390/1191453 , 2108/275693 , 11590/377302 , 11573/1493929 , 11367/95070 , 11567/1034535 , 11568/1075863 , 11568/1164481 , 11587/455111 , 11585/790659 , 11250/2753305 , 2027.42/173289 , 11343/252206 , 1959.3/463770 , 10210/463416 , 11411/2431 , 11571/1369874
doi: 10.1007/jhep10(2020)005 , 10.48550/arxiv.2004.10894 , 10.7302/5020 , 10.17863/cam.58539 , 10.3204/pubdb-2020-02400 , 10.3204/pubdb-2020-04625 , 10.17863/cam.63750 , 10.5281/zenodo.13369210 , 10.17863/cam.58089 , 10.17863/cam.76319 , 10.5281/zenodo.13369211
handle: 2066/225580 , https://repository.ubn.ru.nl/handle/2066/225580 , 11588/839924 , 11245.1/4218673b-e35d-4180-ae8d-7e404133875f , 20.500.11851/9369 , 10852/84595 , 10261/233073 , 10316/106291 , 10486/708945 , 10481/64656 , 20.500.11770/333419 , 11572/286034 , 11572/285762 , 11390/1191453 , 2108/275693 , 11590/377302 , 11573/1493929 , 11367/95070 , 11567/1034535 , 11568/1075863 , 11568/1164481 , 11587/455111 , 11585/790659 , 11250/2753305 , 2027.42/173289 , 11343/252206 , 1959.3/463770 , 10210/463416 , 11411/2431 , 11571/1369874
Abstract A search for a chargino-neutralino pair decaying via the 125 GeV Higgs boson into photons is presented. The study is based on the data collected between 2015 and 2018 with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 139 fb−1 of pp collisions at a centre-of-mass energy of 13 TeV. No significant excess over the expected background is observed. Upper limits at 95% confidence level for a massless $$ {\tilde{\chi}}_1^0 $$ χ ˜ 1 0 are set on several electroweakino production cross-sections and the visible cross-section for beyond the Standard Model processes. In the context of simplified supersymmetric models, 95% confidence-level limits of up to 310 GeV in $$ m\left({\tilde{\chi}}_1^{\pm }/{\tilde{\chi}}_2^0\right) $$ m χ ˜ 1 ± / χ ˜ 2 0 , where $$ m\left({\tilde{\chi}}_1^0\right) $$ m χ ˜ 1 0 = 0.5 GeV, are set. Limits at 95% confidence level are also set on the $$ {\tilde{\chi}}_1^{\pm }{\tilde{\chi}}_2^0 $$ χ ˜ 1 ± χ ˜ 2 0 cross-section in the mass plane of $$ m\left({\tilde{\chi}}_1^{\pm }/{\tilde{\chi}}_2^0\right) $$ m χ ˜ 1 ± / χ ˜ 2 0 and $$ m\left({\tilde{\chi}}_1^0\right) $$ m χ ˜ 1 0 , and on scenarios with gravitino as the lightest supersymmetric particle. Upper limits at the 95% confidence-level are set on the higgsino production cross-section. Higgsino masses below 380 GeV are excluded for the case of the higgsino fully decaying into a Higgs boson and a gravitino.
CORE arrow_drop_down Archivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2020License: CC BY NC NDArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BY NC NDFull-Text: https://iris.uniroma1.it/bitstream/11573/1493929/1/ATLAS_Search%20for%20direct%20production_2020.pdfData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/275693Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2753305Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/5jv1198nData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/252206Data sources: Bielefeld Academic Search Engine (BASE)Belarusian State University: Electronic Library BSUArticle . 2020License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/288736Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/10852/84595Data sources: Bielefeld Academic Search Engine (BASE)Istanbul Bilgi University: Open Access RepositoryArticle . 2020Full-Text: https://hdl.handle.net/11411/2431Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Journal of High Energy PhysicsArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAJournal of High Energy PhysicsArticle . 2020License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGiresun University Institutional RepositoryArticle . 2020Data sources: Giresun University Institutional RepositoryMémoires en Sciences de l'Information et de la CommunicationPreprint . 2020Publikationer från Uppsala UniversitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedBergen Open Research Archive - UiBArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBJournal of High Energy PhysicsArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2020Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2020Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della Ricerca - Università di PisaArticle . 2020Data sources: Archivio della Ricerca - Università di PisaArchivio della Ricerca - Università di PisaArticle . 2020Data sources: Archivio della Ricerca - Università di PisaRepositorio Institucional Universidad de GranadaArticle . 2020License: CC BYData sources: Repositorio Institucional Universidad de GranadaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaUniversity of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Swinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Johannesburg: UJContentArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/jhep10(2020)005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 73visibility views 73 download downloads 61 Powered bymore_vert CORE arrow_drop_down Archivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2020License: CC BY NC NDArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BY NC NDFull-Text: https://iris.uniroma1.it/bitstream/11573/1493929/1/ATLAS_Search%20for%20direct%20production_2020.pdfData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/275693Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2753305Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/5jv1198nData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/252206Data sources: Bielefeld Academic Search Engine (BASE)Belarusian State University: Electronic Library BSUArticle . 2020License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/288736Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/10852/84595Data sources: Bielefeld Academic Search Engine (BASE)Istanbul Bilgi University: Open Access RepositoryArticle . 2020Full-Text: https://hdl.handle.net/11411/2431Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Journal of High Energy PhysicsArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAJournal of High Energy PhysicsArticle . 2020License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGiresun University Institutional RepositoryArticle . 2020Data sources: Giresun University Institutional RepositoryMémoires en Sciences de l'Information et de la CommunicationPreprint . 2020Publikationer från Uppsala UniversitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedBergen Open Research Archive - UiBArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBJournal of High Energy PhysicsArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2020Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2020Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della Ricerca - Università di PisaArticle . 2020Data sources: Archivio della Ricerca - Università di PisaArchivio della Ricerca - Università di PisaArticle . 2020Data sources: Archivio della Ricerca - Università di PisaRepositorio Institucional Universidad de GranadaArticle . 2020License: CC BYData sources: Repositorio Institucional Universidad de GranadaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaUniversity of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Swinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Johannesburg: UJContentArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/jhep10(2020)005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable , Other literature type , Conference object , Article 2018Publisher:Zenodo Funded by:EC | CL-WindconEC| CL-WindconDoekemeijer, Bart; Bossanyi, Ervin; Kanev, Stoyan; Bot, E.T.G.; Elorza, Iker; Campagnolo, Filippo; Fortes‐Plaza, A; Schreiber, J; Eguinoa‐Erdozain, Irene; Gomez‐Iradi, Sugoi; Astrain‐Juangarcia, David; Cantero‐Nouqueret, Elena; Irigoyen‐Martinez, Uxue; Fernandes‐ Correia, Pedro; Benito-Cia, Pablo; Kern, Stefan; Kim, Y; Raach, Steffen; Knudsen, Torben; Schito, Paolo;A key topic of the European CL‐Windcon project, and specifically WP1 of the project, is the accurate modelling of wind turbine and wind farm dynamics at a varying range of fidelities. Hence, this document describes the different numerical models employed throughout the project and presents their arrangement and fidelity classification based on the different capabilities, limitations and complexity of their underlying physics. The description of the four categories selected: steady‐state models, control‐oriented dynamical models, medium‐fidelity simulation models, and high‐fidelity simulation models is included and discussed in the document.
ZENODO arrow_drop_down http://dx.doi.org/10.5281/zeno...Conference object . 2018Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3462439&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ZENODO arrow_drop_down http://dx.doi.org/10.5281/zeno...Conference object . 2018Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3462439&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 NetherlandsPublisher:Elsevier BV Funded by:EC | TRANSriskEC| TRANSriskAnouk van der Laan; Tom Kober; Tom Kober; Gert Jan Kramer; Francesco Dalla Longa; Bob van der Zwaan; Bob van der Zwaan; Bob van der Zwaan;In this paper we investigate the prospects for the large-scale use of low-emission energy technologies in Africa. Many African countries have recently experienced substantial economic growth and aim at fulfilling much of the energy needs associated with continuing along paths of economic expansion by exploiting their large domestic potentials of renewable forms of energy. Important benefits of the abundant renewable energy resources in Africa are that they allow for stimulating economic development, increasing energy access and alleviating poverty, while simultaneously avoiding emissions of greenhouse gases. In this study we analyse what the likely energy demand in Africa could be until 2050, and inspect multiple scenarios for the concomitant levels of greenhouse gas emissions and emission intensities. We use the TIAM-ECN model for our study, which enawbbles detailed energy systems research through a technology-rich cost-minimisation procedure. The results from our analysis fully support an Africa-led effort to substantially enhance the use of the continent's renewable energy potential. But they suggest that the current aim of achieving 300 GW of additional renewable electricity generation capacity by 2030 is perhaps unrealistic, even given high GDP and population growth: we find figures that are close to half this level. On the other hand, we find evidence for leap-frogging opportunities, by which renewable energy options rather than fossil fuels could constitute the cost-optimal solution to fulfil most of Africa's growing energy requirements. An important benefit of leap-frogging is that it avoids an ultimately expensive fossil fuels lock-in that would fix the carbon footprint of the continent until at least the middle of the century.
Energy Policy arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Energy PolicyArticle . 2018License: CC BY NC NDData sources: Universiteit van Amsterdam Digital Academic RepositoryUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2018.03.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 2visibility views 2 download downloads 12 Powered bymore_vert Energy Policy arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Energy PolicyArticle . 2018License: CC BY NC NDData sources: Universiteit van Amsterdam Digital Academic RepositoryUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2018.03.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type , Journal 2020Embargo end date: 01 Jan 2020Publisher:MDPI AG Randall Claywell; Laszlo Nadai; Imre Felde; Sina Ardabili; Amirhosein Mosavi;doi: 10.20944/preprints202009.0377.v1 , 10.3390/e22111192 , 10.21203/rs.3.rs-77142/v1 , 10.2139/ssrn.3692018 , 10.31219/osf.io/6qybp , 10.48550/arxiv.2009.08275 , 10.13140/rg.2.2.35814.24649 , 10.5281/zenodo.4037582 , 10.5281/zenodo.4037583
pmid: 33286960
pmc: PMC7711824
The accurate prediction of the solar Diffuse Fraction (DF), sometimes called the Diffuse Ratio, is an important topic for solar energy research. In the present study, the current state of Diffuse Irradiance research is discussed and then three robust, Machine Learning (ML) models, are examined using a large dataset (almost 8 years) of hourly readings from Almeria, Spain. The ML models used herein, are a hybrid Adaptive Network-based Fuzzy Inference System (ANFIS), a single Multi-Layer Perceptron (MLP) and a hybrid Multi-Layer Perceptron-Grey Wolf Optimizer (MLP-GWO). These models were evaluated for their predictive precision, using various Solar and Diffuse Fraction (DF) irradiance data, from Spain. The results were then evaluated using two frequently used evaluation criteria, the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE). The results showed that the MLP-GWO model, followed by the ANFIS model, provided a higher performance, in both the training and the testing procedures.
Entropy arrow_drop_down EntropyOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1099-4300/22/11/1192/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.31219/osf.i...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202009.0377.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 7 Powered bymore_vert Entropy arrow_drop_down EntropyOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1099-4300/22/11/1192/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.31219/osf.i...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202009.0377.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:MDPI AG Authors: Luthe, Tobias;doi: 10.3390/su9010071
The complexity of sustainable development and societal transitions require both analytical understandings of how coupled human-environment systems function and transdisciplinary science-to-practice approaches. The academic discourse has advanced in developing a framework for defining success in transdisciplinary research (TDR). Further empirical evidence is needed to validate the proposed concepts with TDR case studies. This paper applies a widely used TDR framework to test and critically evaluate its design principles and criteria of success with five TDR case studies the author is intimately familiar with. Overall, the design principles of the framework are validated for the five cases. Additional design principles are derived from the case analysis and proposed to complement the applied framework: (1) A project origin from society as opposed to with and for society; (2) Quickly available initiation funding; (3) Flexibility in time, objectives and methods throughout the research process; (4) Acceptance of process vs. project results; (5) Inclusion of public science communication; and (6) A demand-driven transition to a prolonged or new project partnership. The complementing principles are proposed for integration in the applied framework and are subject to further empirical testing. The reflexive empirical approach I have taken in this paper offers a key step towards removing institutional barriers for successful TDR, demonstrating how conceptual frameworks can be applied.
Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/1/71/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9010071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/1/71/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9010071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 BelgiumPublisher:Center for Open Science Authors: Heeren, Alexandre; Mouguiama Daouda, Camille; Contreras Cuevas, Alba;The notion of climate anxiety has gained traction in the last years. Yet uncertainty remains regarding the variations of climate anxiety across demographic characteristics (e.g., gender, age) and its associations with adaptive (i.e., pro-environmental) behaviors. Moreover, the point-estimate proportion of people frequently experiencing climate anxiety has seldom been probed. In this study, we assessed climate anxiety (including its related functional impairments), along with demographic characteristics, climate change experience, and pro-environmental behaviors, in 2,080 French-speaking participants from eight African and European countries. 11.64% of the participants reported experiencing climate anxiety frequently, and 20.72% reported experiencing daily life functional consequences (e.g., impact on the ability to go to work or socialize). Women and younger people exhibited significantly higher levels of climate anxiety. There was no difference between participants from African and European countries, although the sample size of the former was limited, thus precluding any definite conclusion regarding potential geographic differences. Concerning adaptation, climate anxiety was associated with pro-environmental behaviors. However, this association was significantly weaker in people reporting frequent experiences of climate anxiety (i.e., eco-paralysis) than in those with lower levels. Although this observation needs to be confirmed in longitudinal and experimental research, our results suggest that climate anxiety can impede daily life functioning and adaptation to climate change in many people, thus deserving a careful audit by the scientific community and practitioners.
https://doi.org/10.3... arrow_drop_down https://doi.org/10.31234/osf.i...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.31234/osf.io/a69wp&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu72 citations 72 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert https://doi.org/10.3... arrow_drop_down https://doi.org/10.31234/osf.i...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.31234/osf.io/a69wp&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 FrancePublisher:American Association for the Advancement of Science (AAAS) Jean-Francois Bastin; Yelena Finegold; Claude Garcia; Danilo Mollicone; Marcelo Rezende; Devin Routh; Constantin M. Zohner; Thomas W. Crowther;pmid: 31273120
The potential for global forest cover The restoration of forested land at a global scale could help capture atmospheric carbon and mitigate climate change. Bastin et al. used direct measurements of forest cover to generate a model of forest restoration potential across the globe (see the Perspective by Chazdon and Brancalion). Their spatially explicit maps show how much additional tree cover could exist outside of existing forests and agricultural and urban land. Ecosystems could support an additional 0.9 billion hectares of continuous forest. This would represent a greater than 25% increase in forested area, including more than 200 gigatonnes of additional carbon at maturity.Such a change has the potential to store an equivalent of 25% of the current atmospheric carbon pool. Science , this issue p. 76 ; see also p. 24
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax0848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2K citations 1,502 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
visibility 4visibility views 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax0848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Authors: Chlebnikovas, Aleksandras; Kilikevičius, Artūras; Selech, Jaroslaw; Matijošius, Jonas; +4 AuthorsChlebnikovas, Aleksandras; Kilikevičius, Artūras; Selech, Jaroslaw; Matijošius, Jonas; Kilikevičienė, Kristina; Vainorius, Darius; Passerini, Giorgio; Marcinkiewicz, Jacek;doi: 10.3390/en14238092
The work of traditional cyclones is based on the separation of solid particles using only the centrifugal forces. Therefore, they do not demonstrate high gas-cleaning efficiency, particularly in the cases where gas flows are polluted with fine solid particles (about 20 µm in diameter). The key feature of a new-generation multi-channel cyclone separator’s structure is that its symmetrical upgraded curved elements, with openings cut with their plates bent outwards, make channels for the continuous movement of the gas flows from the inflow opening to the central axis. The smoke flue of the vertical gas outflow is located near the cover of the separating chamber. The present work is aimed at studying the applicability of two various viscosity models and their modified versions to simulate aerodynamic processes in an innovative design for a multi-channel cyclone separator with a single inflow, using the computational fluid dynamics. The research results obtained in the numerical simulation are compared to the experimental results obtained using a physical model. The main purpose of this study is to provide information on how the new design for the multi-channel cyclone affects the distribution of gas flow in the cyclone’s channels. The modified viscosity models, k-ε and k-ω, and computational meshes with various levels of detailed elaboration were analyzed. The developed numerical models of a single-inlet multi-channel cyclone separator allow the researchers to describe its advantages and possible methods of improving its new structure. The developed models can be used for simulating the fluid cleaning phenomenon in the improved fourth-channel cyclone separator and to optimize the whole research process.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/23/8092/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14238092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/23/8092/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14238092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Publisher:GSC Online Press Funded by:NSF | Collaborative Research: H..., NSF | Collaborative Research: H..., NSF | Collaborative Research: H...NSF| Collaborative Research: HDR DSC: Data Science Training and Practices: Preparing a Diverse Workforce via Academic and Industrial Partnership ,NSF| Collaborative Research: HDR DSC: Data Science Training and Practices: Preparing a Diverse Workforce via Academic and Industrial Partnership ,NSF| Collaborative Research: HDR DSC: Data Science Training and Practices: Preparing a Diverse Workforce via Academic and Industrial PartnershipMoslemi, Zahra; Clark, Logan; Kernal, Sarah; Rehome, Samantha; Sprengel, Scott; Tamizifar, Ahoora; Tuli, Shawna; Chokshi, Vish; Nomeli, Mo; Liang, Ella; Bidgoli, Moury; Lu, Jeff; Dasaur, Manish; Hodgett, Marty;California’s significant role as the second-largest consumer of energy in the United States underscores the importance of accurate energy consumption predictions. With a thriving industrial sector, a burgeoning population, and ambitious environmental goals, the state’s energy landscape is dynamic and complex. This paper presents a comprehensive analysis of California’s energy consumption trends and provides detailed forecasting models for different energy sources and sectors. The study leverages ARIMA and ARIMAX models, considering both historical consumption data and exogenous variables. We address the unique challenges posed by the COVID-19 pandemic and the limited data for 2022, highlighting the resilience of these models in the face of uncertainty. Our analysis reveals that while fossil fuels continue to dominate California’s energy landscape, renewable energy sources, particularly solar and biomass, are experiencing substantial growth. Hydroelectric power, while sensitive to precipitation, remains a significant contributor to renewable energy consumption. Furthermore, we anticipate ongoing efforts to reduce fossil fuel consumption. The forecasts for energy consumption by sector suggest some decline in the commercial and residential sectors, reflecting California’s recently declining population and the shift away from brick-and-mortar shops and offices to online websites and remote work. In contrast, the industrial and transportation sectors are expected to experience some growth until they return to more constant pre-COVID levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.30574/wjarr.2024.22.2.1367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.30574/wjarr.2024.22.2.1367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Funded by:EC | EUniversalEC| EUniversalAuthors: Beckstedde, Ellen; Correa Ramírez, Mauricio; Cossent, Rafael; Vanschoenwinkel, Janka; +1 AuthorsBeckstedde, Ellen; Correa Ramírez, Mauricio; Cossent, Rafael; Vanschoenwinkel, Janka; meeus, leonardo;handle: 1814/76481
Published online: 08 June 2023 Regulatory sandboxes are generally seen as an important tool to make policy and regulation evolve with the changes in our energy system and to create an equal playing field for new technologies and business models that arise with the energy transition. Although an increasing number of legal frameworks on regulatory sandboxes are being implemented in Europe, the pioneers in the Netherlands decided to close their sandbox program. These contradictory events lead to questions about the potential of regulatory sandboxes to bring innovation to the European energy sector. This paper contributes to this discussion by examining the experiences with regulatory sandboxes in Austria, Belgium, France, Germany, Great Britain, the Netherlands, Norway and Spain. We compare approved sandbox projects based on their scope and regulatory derogations to identify areas of innovation and regulatory learning brought by regulatory sandboxes. We also examine the legal frameworks of the concerned countries to evaluate the interaction between the implementation of the framework and its potential to bring innovation. In this way, we develop best practices on the topics of regulatory sandboxes and their imple[1]mentation frameworks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4309455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4309455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Research , Preprint , Other literature type , Journal 2020Embargo end date: 01 Jan 2020 Italy, China (People's Republic of), Australia, Turkey, Italy, Turkey, United Kingdom, Italy, Turkey, United Kingdom, Spain, Norway, Australia, Italy, Italy, Belarus, United Kingdom, Spain, China (People's Republic of), Czech Republic, Italy, Australia, France, Netherlands, South Africa, Czech Republic, United States, Germany, Netherlands, Italy, Switzerland, Turkey, Italy, Sweden, Italy, South Africa, United States, Germany, Italy, Italy, Turkey, Italy, Belarus, Netherlands, Italy, Denmark, Poland, Spain, Netherlands, Netherlands, Portugal, United Kingdom, China (People's Republic of), Chile, Italy, Germany, Italy, NorwayPublisher:Springer Science and Business Media LLC Funded by:EC | PROBIST, GSRIEC| PROBIST ,GSRIAad, G.; Abbott, B.; Abbott, D. C.; Abud, A.; Abeling, K.; Abhayasinghe, D. K.; Abidi, S. H.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Acharya, B. S.; Achkar, B.; Adachi, S.; Adam, L.; Bourdarios, Adam C.; Adamczyk, L.; Adamek, L.; Adelman, J.; Adersberger, M.; Adiguzel, A.; Adorni, S.; Adye, T.; Affolder, A. A.; Afik, Y.; Agapopoulou, C.; Agaras, M. N.; Aggarwal, A.; Agheorghiesei, C.; Aguilar-Saavedra, J. A.; Ahmadov, F.; Ahmed, W. S.; Ai, X.; Aielli, G.; Akatsuka, S.; Akesson, T. P. A.; Akilli, E.; Akimov, A. V.; Al Khoury, K.; Alberghi, G. L.; Albert, J.; Alconada Verzini, M. J.; Alderweireldt, S.; Aleksa, M.; Aleks; rov, I. N.; Alexa, C.; Alex; re, D.; Alexopoulos, T.; Alfonsi, A.; Alfonsi, F.; Alhroob, M.; Ali, B.; Alimonti, G.; Alison, J.; Alkire, S. P.; Allaire, C.; Allbrooke, B. M. M.; Allen, B. W.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Alshehri, A. A.; Alvarez Estevez, M.; Alvarez Piqueras, D.; Alviggi, M. G.; Amaral Coutinho, Y.; Ambler, A.; Ambroz, L.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amoroso, S.; Amrouche, C. S.; An, F.; Anastopoulos, C.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, J. K.; Andreazza, A.; Andrei, V.; Anelli, C. R.; Angelidakis, S.; Angerami, A.; Anisenkov, A. V.; Annovi, A.; Antel, C.; Anthony, M. T.; Antonelli, M.; Antrim, D. J. A.; Anulli, F.; Aoki, M.; Aparisi Pozo, J. A.; Aperio Bella, L.; Arabidze, G.; Araque, J. P.; Araujo Ferraz, V.; Araujo Pereira, R.; Arcangeletti, C.; Arce, A. T. H.; Arduh, F. A.; Arguin, J-F.; Argyropoulos, S.; Arling, J. -H.; Armbruster, A. J.; Armstrong, A.; Arnaez, O.; Arnold, H.; Arrubarrena Tame, Z. P.; Artamonov, A.; Artoni, G.; Artz, S.; Asai, S.; Asbah, N.; Asimakopoulou, E. M.; Asquith, L.; Assahsah, J.; Assamagan, K.; Astalos, R.; Atkin, R. J.; Atkinson, M.; Atlay, N. B.; Atmani, H.; Augsten, K.; Avolio, G.; Avramidou, R.; Ayoub, M. K.; Azoulay, A. M.; Azuelos, G.; Bachacou, H.; Bachas, K.; Backes, M.; Backman, F.; Bagnaia, P.; Bahmani, M.; Bahrasemani, H.; Bailey, A. J.; Bailey, V. R.; Baines, J. T.; Bajic, M.; Bakalis, C.; Baker, O. K.; Bakker, P. J.; Bakshi Gupta, D.; Balaji, S.; Baldin, E. M.; Balek, P.; Balli, F.; Balunas, W. K.; Balz, J.; Banas, E.; B; yopadhyay, A.; Banerjee, Sw.; Bannoura, A. A. E.; Barak, L.; Barbe, W. M.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barbour, G.; Barillari, T.; Barisits, M-S.; Barkeloo, J.; Barklow, T.; Barnea, R.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska-Blenessy, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Navarro, Barranco L.; Barreiro, F.; da Costa, J. Barreiro Guimaraes; Barsov, S.; Bartoldus, R.; Bartolini, G.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basso, M. J.; Bates, R. L.; Batlamous, S.; Batley, J. R.; Batool, B.; Battaglia, M.; Bauce, M.; Bauer, F.; Bauer, K. T.; Bawa, H. S.; Beacham, J. B.; Beau, T.;doi: 10.1007/jhep10(2020)005 , 10.48550/arxiv.2004.10894 , 10.7302/5020 , 10.17863/cam.58539 , 10.3204/pubdb-2020-02400 , 10.3204/pubdb-2020-04625 , 10.17863/cam.63750 , 10.5281/zenodo.13369210 , 10.17863/cam.58089 , 10.17863/cam.76319 , 10.5281/zenodo.13369211
handle: 2066/225580 , https://repository.ubn.ru.nl/handle/2066/225580 , 11588/839924 , 11245.1/4218673b-e35d-4180-ae8d-7e404133875f , 20.500.11851/9369 , 10852/84595 , 10261/233073 , 10316/106291 , 10486/708945 , 10481/64656 , 20.500.11770/333419 , 11572/286034 , 11572/285762 , 11390/1191453 , 2108/275693 , 11590/377302 , 11573/1493929 , 11367/95070 , 11567/1034535 , 11568/1075863 , 11568/1164481 , 11587/455111 , 11585/790659 , 11250/2753305 , 2027.42/173289 , 11343/252206 , 1959.3/463770 , 10210/463416 , 11411/2431 , 11571/1369874
doi: 10.1007/jhep10(2020)005 , 10.48550/arxiv.2004.10894 , 10.7302/5020 , 10.17863/cam.58539 , 10.3204/pubdb-2020-02400 , 10.3204/pubdb-2020-04625 , 10.17863/cam.63750 , 10.5281/zenodo.13369210 , 10.17863/cam.58089 , 10.17863/cam.76319 , 10.5281/zenodo.13369211
handle: 2066/225580 , https://repository.ubn.ru.nl/handle/2066/225580 , 11588/839924 , 11245.1/4218673b-e35d-4180-ae8d-7e404133875f , 20.500.11851/9369 , 10852/84595 , 10261/233073 , 10316/106291 , 10486/708945 , 10481/64656 , 20.500.11770/333419 , 11572/286034 , 11572/285762 , 11390/1191453 , 2108/275693 , 11590/377302 , 11573/1493929 , 11367/95070 , 11567/1034535 , 11568/1075863 , 11568/1164481 , 11587/455111 , 11585/790659 , 11250/2753305 , 2027.42/173289 , 11343/252206 , 1959.3/463770 , 10210/463416 , 11411/2431 , 11571/1369874
Abstract A search for a chargino-neutralino pair decaying via the 125 GeV Higgs boson into photons is presented. The study is based on the data collected between 2015 and 2018 with the ATLAS detector at the LHC, corresponding to an integrated luminosity of 139 fb−1 of pp collisions at a centre-of-mass energy of 13 TeV. No significant excess over the expected background is observed. Upper limits at 95% confidence level for a massless $$ {\tilde{\chi}}_1^0 $$ χ ˜ 1 0 are set on several electroweakino production cross-sections and the visible cross-section for beyond the Standard Model processes. In the context of simplified supersymmetric models, 95% confidence-level limits of up to 310 GeV in $$ m\left({\tilde{\chi}}_1^{\pm }/{\tilde{\chi}}_2^0\right) $$ m χ ˜ 1 ± / χ ˜ 2 0 , where $$ m\left({\tilde{\chi}}_1^0\right) $$ m χ ˜ 1 0 = 0.5 GeV, are set. Limits at 95% confidence level are also set on the $$ {\tilde{\chi}}_1^{\pm }{\tilde{\chi}}_2^0 $$ χ ˜ 1 ± χ ˜ 2 0 cross-section in the mass plane of $$ m\left({\tilde{\chi}}_1^{\pm }/{\tilde{\chi}}_2^0\right) $$ m χ ˜ 1 ± / χ ˜ 2 0 and $$ m\left({\tilde{\chi}}_1^0\right) $$ m χ ˜ 1 0 , and on scenarios with gravitino as the lightest supersymmetric particle. Upper limits at the 95% confidence-level are set on the higgsino production cross-section. Higgsino masses below 380 GeV are excluded for the case of the higgsino fully decaying into a Higgs boson and a gravitino.
CORE arrow_drop_down Archivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2020License: CC BY NC NDArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BY NC NDFull-Text: https://iris.uniroma1.it/bitstream/11573/1493929/1/ATLAS_Search%20for%20direct%20production_2020.pdfData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/275693Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2753305Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/5jv1198nData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/252206Data sources: Bielefeld Academic Search Engine (BASE)Belarusian State University: Electronic Library BSUArticle . 2020License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/288736Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/10852/84595Data sources: Bielefeld Academic Search Engine (BASE)Istanbul Bilgi University: Open Access RepositoryArticle . 2020Full-Text: https://hdl.handle.net/11411/2431Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Journal of High Energy PhysicsArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAJournal of High Energy PhysicsArticle . 2020License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGiresun University Institutional RepositoryArticle . 2020Data sources: Giresun University Institutional RepositoryMémoires en Sciences de l'Information et de la CommunicationPreprint . 2020Publikationer från Uppsala UniversitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedBergen Open Research Archive - UiBArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBJournal of High Energy PhysicsArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2020Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2020Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della Ricerca - Università di PisaArticle . 2020Data sources: Archivio della Ricerca - Università di PisaArchivio della Ricerca - Università di PisaArticle . 2020Data sources: Archivio della Ricerca - Università di PisaRepositorio Institucional Universidad de GranadaArticle . 2020License: CC BYData sources: Repositorio Institucional Universidad de GranadaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaUniversity of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Swinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Johannesburg: UJContentArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/jhep10(2020)005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 73visibility views 73 download downloads 61 Powered bymore_vert CORE arrow_drop_down Archivio istituzionale della ricerca - Università degli Studi di UdineArticle . 2020License: CC BY NC NDArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020License: CC BYData sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2020License: CC BY NC NDFull-Text: https://iris.uniroma1.it/bitstream/11573/1493929/1/ATLAS_Search%20for%20direct%20production_2020.pdfData sources: Archivio della ricerca- Università di Roma La SapienzaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2020Full-Text: http://hdl.handle.net/2108/275693Data sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2753305Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2020Full-Text: https://escholarship.org/uc/item/5jv1198nData sources: Bielefeld Academic Search Engine (BASE)The University of Melbourne: Digital RepositoryArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/11343/252206Data sources: Bielefeld Academic Search Engine (BASE)Belarusian State University: Electronic Library BSUArticle . 2020License: CC BYFull-Text: https://elib.bsu.by/handle/123456789/288736Data sources: Bielefeld Academic Search Engine (BASE)Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/10852/84595Data sources: Bielefeld Academic Search Engine (BASE)Istanbul Bilgi University: Open Access RepositoryArticle . 2020Full-Text: https://hdl.handle.net/11411/2431Data sources: Bielefeld Academic Search Engine (BASE)Queen Mary University of London: Queen Mary Research Online (QMRO)Article . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Journal of High Energy PhysicsArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2020License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2020Data sources: Recolector de Ciencia Abierta, RECOLECTAJournal of High Energy PhysicsArticle . 2020License: CC BYData sources: Universiteit van Amsterdam Digital Academic RepositoryCopenhagen University Research Information SystemArticle . 2020Data sources: Copenhagen University Research Information SystemRepository of the Czech Academy of SciencesArticle . 2020Data sources: Repository of the Czech Academy of SciencesGiresun University Institutional RepositoryArticle . 2020Data sources: Giresun University Institutional RepositoryMémoires en Sciences de l'Information et de la CommunicationPreprint . 2020Publikationer från Uppsala UniversitetArticle . 2020 . Peer-reviewedData sources: Publikationer från Uppsala UniversitetDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2020 . Peer-reviewedBergen Open Research Archive - UiBArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBJournal of High Energy PhysicsArticle . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)King's College, London: Research PortalArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2020Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università degli Studi Roma TreArticle . 2020Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della Ricerca - Università di PisaArticle . 2020Data sources: Archivio della Ricerca - Università di PisaArchivio della Ricerca - Università di PisaArticle . 2020Data sources: Archivio della Ricerca - Università di PisaRepositorio Institucional Universidad de GranadaArticle . 2020License: CC BYData sources: Repositorio Institucional Universidad de GranadaeScholarship - University of CaliforniaArticle . 2020Data sources: eScholarship - University of CaliforniaUniversity of Michigan: Deep BlueArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Swinburne University of Technology: Swinburne Research BankArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)Pontificia Universidad Católica de Chile: Repositorio UCArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)The University of Johannesburg: UJContentArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/jhep10(2020)005&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Project deliverable , Other literature type , Conference object , Article 2018Publisher:Zenodo Funded by:EC | CL-WindconEC| CL-WindconDoekemeijer, Bart; Bossanyi, Ervin; Kanev, Stoyan; Bot, E.T.G.; Elorza, Iker; Campagnolo, Filippo; Fortes‐Plaza, A; Schreiber, J; Eguinoa‐Erdozain, Irene; Gomez‐Iradi, Sugoi; Astrain‐Juangarcia, David; Cantero‐Nouqueret, Elena; Irigoyen‐Martinez, Uxue; Fernandes‐ Correia, Pedro; Benito-Cia, Pablo; Kern, Stefan; Kim, Y; Raach, Steffen; Knudsen, Torben; Schito, Paolo;A key topic of the European CL‐Windcon project, and specifically WP1 of the project, is the accurate modelling of wind turbine and wind farm dynamics at a varying range of fidelities. Hence, this document describes the different numerical models employed throughout the project and presents their arrangement and fidelity classification based on the different capabilities, limitations and complexity of their underlying physics. The description of the four categories selected: steady‐state models, control‐oriented dynamical models, medium‐fidelity simulation models, and high‐fidelity simulation models is included and discussed in the document.
ZENODO arrow_drop_down http://dx.doi.org/10.5281/zeno...Conference object . 2018Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3462439&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ZENODO arrow_drop_down http://dx.doi.org/10.5281/zeno...Conference object . 2018Data sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.3462439&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 NetherlandsPublisher:Elsevier BV Funded by:EC | TRANSriskEC| TRANSriskAnouk van der Laan; Tom Kober; Tom Kober; Gert Jan Kramer; Francesco Dalla Longa; Bob van der Zwaan; Bob van der Zwaan; Bob van der Zwaan;In this paper we investigate the prospects for the large-scale use of low-emission energy technologies in Africa. Many African countries have recently experienced substantial economic growth and aim at fulfilling much of the energy needs associated with continuing along paths of economic expansion by exploiting their large domestic potentials of renewable forms of energy. Important benefits of the abundant renewable energy resources in Africa are that they allow for stimulating economic development, increasing energy access and alleviating poverty, while simultaneously avoiding emissions of greenhouse gases. In this study we analyse what the likely energy demand in Africa could be until 2050, and inspect multiple scenarios for the concomitant levels of greenhouse gas emissions and emission intensities. We use the TIAM-ECN model for our study, which enawbbles detailed energy systems research through a technology-rich cost-minimisation procedure. The results from our analysis fully support an Africa-led effort to substantially enhance the use of the continent's renewable energy potential. But they suggest that the current aim of achieving 300 GW of additional renewable electricity generation capacity by 2030 is perhaps unrealistic, even given high GDP and population growth: we find figures that are close to half this level. On the other hand, we find evidence for leap-frogging opportunities, by which renewable energy options rather than fossil fuels could constitute the cost-optimal solution to fulfil most of Africa's growing energy requirements. An important benefit of leap-frogging is that it avoids an ultimately expensive fossil fuels lock-in that would fix the carbon footprint of the continent until at least the middle of the century.
Energy Policy arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Energy PolicyArticle . 2018License: CC BY NC NDData sources: Universiteit van Amsterdam Digital Academic RepositoryUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2018.03.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 77 citations 77 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 2visibility views 2 download downloads 12 Powered bymore_vert Energy Policy arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Energy PolicyArticle . 2018License: CC BY NC NDData sources: Universiteit van Amsterdam Digital Academic RepositoryUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2018.03.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Other literature type , Journal 2020Embargo end date: 01 Jan 2020Publisher:MDPI AG Randall Claywell; Laszlo Nadai; Imre Felde; Sina Ardabili; Amirhosein Mosavi;doi: 10.20944/preprints202009.0377.v1 , 10.3390/e22111192 , 10.21203/rs.3.rs-77142/v1 , 10.2139/ssrn.3692018 , 10.31219/osf.io/6qybp , 10.48550/arxiv.2009.08275 , 10.13140/rg.2.2.35814.24649 , 10.5281/zenodo.4037582 , 10.5281/zenodo.4037583
pmid: 33286960
pmc: PMC7711824
The accurate prediction of the solar Diffuse Fraction (DF), sometimes called the Diffuse Ratio, is an important topic for solar energy research. In the present study, the current state of Diffuse Irradiance research is discussed and then three robust, Machine Learning (ML) models, are examined using a large dataset (almost 8 years) of hourly readings from Almeria, Spain. The ML models used herein, are a hybrid Adaptive Network-based Fuzzy Inference System (ANFIS), a single Multi-Layer Perceptron (MLP) and a hybrid Multi-Layer Perceptron-Grey Wolf Optimizer (MLP-GWO). These models were evaluated for their predictive precision, using various Solar and Diffuse Fraction (DF) irradiance data, from Spain. The results were then evaluated using two frequently used evaluation criteria, the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE). The results showed that the MLP-GWO model, followed by the ANFIS model, provided a higher performance, in both the training and the testing procedures.
Entropy arrow_drop_down EntropyOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1099-4300/22/11/1192/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.31219/osf.i...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202009.0377.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 3visibility views 3 download downloads 7 Powered bymore_vert Entropy arrow_drop_down EntropyOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1099-4300/22/11/1192/pdfData sources: Multidisciplinary Digital Publishing Institutehttps://doi.org/10.20944/prepr...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.21203/rs.3....Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.31219/osf.i...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.20944/preprints202009.0377.v1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017Publisher:MDPI AG Authors: Luthe, Tobias;doi: 10.3390/su9010071
The complexity of sustainable development and societal transitions require both analytical understandings of how coupled human-environment systems function and transdisciplinary science-to-practice approaches. The academic discourse has advanced in developing a framework for defining success in transdisciplinary research (TDR). Further empirical evidence is needed to validate the proposed concepts with TDR case studies. This paper applies a widely used TDR framework to test and critically evaluate its design principles and criteria of success with five TDR case studies the author is intimately familiar with. Overall, the design principles of the framework are validated for the five cases. Additional design principles are derived from the case analysis and proposed to complement the applied framework: (1) A project origin from society as opposed to with and for society; (2) Quickly available initiation funding; (3) Flexibility in time, objectives and methods throughout the research process; (4) Acceptance of process vs. project results; (5) Inclusion of public science communication; and (6) A demand-driven transition to a prolonged or new project partnership. The complementing principles are proposed for integration in the applied framework and are subject to further empirical testing. The reflexive empirical approach I have taken in this paper offers a key step towards removing institutional barriers for successful TDR, demonstrating how conceptual frameworks can be applied.
Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/1/71/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9010071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2017License: CC BYFull-Text: http://www.mdpi.com/2071-1050/9/1/71/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su9010071&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 BelgiumPublisher:Center for Open Science Authors: Heeren, Alexandre; Mouguiama Daouda, Camille; Contreras Cuevas, Alba;The notion of climate anxiety has gained traction in the last years. Yet uncertainty remains regarding the variations of climate anxiety across demographic characteristics (e.g., gender, age) and its associations with adaptive (i.e., pro-environmental) behaviors. Moreover, the point-estimate proportion of people frequently experiencing climate anxiety has seldom been probed. In this study, we assessed climate anxiety (including its related functional impairments), along with demographic characteristics, climate change experience, and pro-environmental behaviors, in 2,080 French-speaking participants from eight African and European countries. 11.64% of the participants reported experiencing climate anxiety frequently, and 20.72% reported experiencing daily life functional consequences (e.g., impact on the ability to go to work or socialize). Women and younger people exhibited significantly higher levels of climate anxiety. There was no difference between participants from African and European countries, although the sample size of the former was limited, thus precluding any definite conclusion regarding potential geographic differences. Concerning adaptation, climate anxiety was associated with pro-environmental behaviors. However, this association was significantly weaker in people reporting frequent experiences of climate anxiety (i.e., eco-paralysis) than in those with lower levels. Although this observation needs to be confirmed in longitudinal and experimental research, our results suggest that climate anxiety can impede daily life functioning and adaptation to climate change in many people, thus deserving a careful audit by the scientific community and practitioners.
https://doi.org/10.3... arrow_drop_down https://doi.org/10.31234/osf.i...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.31234/osf.io/a69wp&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu72 citations 72 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert https://doi.org/10.3... arrow_drop_down https://doi.org/10.31234/osf.i...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.31234/osf.io/a69wp&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 FrancePublisher:American Association for the Advancement of Science (AAAS) Jean-Francois Bastin; Yelena Finegold; Claude Garcia; Danilo Mollicone; Marcelo Rezende; Devin Routh; Constantin M. Zohner; Thomas W. Crowther;pmid: 31273120
The potential for global forest cover The restoration of forested land at a global scale could help capture atmospheric carbon and mitigate climate change. Bastin et al. used direct measurements of forest cover to generate a model of forest restoration potential across the globe (see the Perspective by Chazdon and Brancalion). Their spatially explicit maps show how much additional tree cover could exist outside of existing forests and agricultural and urban land. Ecosystems could support an additional 0.9 billion hectares of continuous forest. This would represent a greater than 25% increase in forested area, including more than 200 gigatonnes of additional carbon at maturity.Such a change has the potential to store an equivalent of 25% of the current atmospheric carbon pool. Science , this issue p. 76 ; see also p. 24
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax0848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2K citations 1,502 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
visibility 4visibility views 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/science.aax0848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:MDPI AG Authors: Chlebnikovas, Aleksandras; Kilikevičius, Artūras; Selech, Jaroslaw; Matijošius, Jonas; +4 AuthorsChlebnikovas, Aleksandras; Kilikevičius, Artūras; Selech, Jaroslaw; Matijošius, Jonas; Kilikevičienė, Kristina; Vainorius, Darius; Passerini, Giorgio; Marcinkiewicz, Jacek;doi: 10.3390/en14238092
The work of traditional cyclones is based on the separation of solid particles using only the centrifugal forces. Therefore, they do not demonstrate high gas-cleaning efficiency, particularly in the cases where gas flows are polluted with fine solid particles (about 20 µm in diameter). The key feature of a new-generation multi-channel cyclone separator’s structure is that its symmetrical upgraded curved elements, with openings cut with their plates bent outwards, make channels for the continuous movement of the gas flows from the inflow opening to the central axis. The smoke flue of the vertical gas outflow is located near the cover of the separating chamber. The present work is aimed at studying the applicability of two various viscosity models and their modified versions to simulate aerodynamic processes in an innovative design for a multi-channel cyclone separator with a single inflow, using the computational fluid dynamics. The research results obtained in the numerical simulation are compared to the experimental results obtained using a physical model. The main purpose of this study is to provide information on how the new design for the multi-channel cyclone affects the distribution of gas flow in the cyclone’s channels. The modified viscosity models, k-ε and k-ω, and computational meshes with various levels of detailed elaboration were analyzed. The developed numerical models of a single-inlet multi-channel cyclone separator allow the researchers to describe its advantages and possible methods of improving its new structure. The developed models can be used for simulating the fluid cleaning phenomenon in the improved fourth-channel cyclone separator and to optimize the whole research process.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/23/8092/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14238092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/23/8092/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14238092&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Publisher:GSC Online Press Funded by:NSF | Collaborative Research: H..., NSF | Collaborative Research: H..., NSF | Collaborative Research: H...NSF| Collaborative Research: HDR DSC: Data Science Training and Practices: Preparing a Diverse Workforce via Academic and Industrial Partnership ,NSF| Collaborative Research: HDR DSC: Data Science Training and Practices: Preparing a Diverse Workforce via Academic and Industrial Partnership ,NSF| Collaborative Research: HDR DSC: Data Science Training and Practices: Preparing a Diverse Workforce via Academic and Industrial PartnershipMoslemi, Zahra; Clark, Logan; Kernal, Sarah; Rehome, Samantha; Sprengel, Scott; Tamizifar, Ahoora; Tuli, Shawna; Chokshi, Vish; Nomeli, Mo; Liang, Ella; Bidgoli, Moury; Lu, Jeff; Dasaur, Manish; Hodgett, Marty;California’s significant role as the second-largest consumer of energy in the United States underscores the importance of accurate energy consumption predictions. With a thriving industrial sector, a burgeoning population, and ambitious environmental goals, the state’s energy landscape is dynamic and complex. This paper presents a comprehensive analysis of California’s energy consumption trends and provides detailed forecasting models for different energy sources and sectors. The study leverages ARIMA and ARIMAX models, considering both historical consumption data and exogenous variables. We address the unique challenges posed by the COVID-19 pandemic and the limited data for 2022, highlighting the resilience of these models in the face of uncertainty. Our analysis reveals that while fossil fuels continue to dominate California’s energy landscape, renewable energy sources, particularly solar and biomass, are experiencing substantial growth. Hydroelectric power, while sensitive to precipitation, remains a significant contributor to renewable energy consumption. Furthermore, we anticipate ongoing efforts to reduce fossil fuel consumption. The forecasts for energy consumption by sector suggest some decline in the commercial and residential sectors, reflecting California’s recently declining population and the shift away from brick-and-mortar shops and offices to online websites and remote work. In contrast, the industrial and transportation sectors are expected to experience some growth until they return to more constant pre-COVID levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.30574/wjarr.2024.22.2.1367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.30574/wjarr.2024.22.2.1367&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 ItalyPublisher:Elsevier BV Funded by:EC | EUniversalEC| EUniversalAuthors: Beckstedde, Ellen; Correa Ramírez, Mauricio; Cossent, Rafael; Vanschoenwinkel, Janka; +1 AuthorsBeckstedde, Ellen; Correa Ramírez, Mauricio; Cossent, Rafael; Vanschoenwinkel, Janka; meeus, leonardo;handle: 1814/76481
Published online: 08 June 2023 Regulatory sandboxes are generally seen as an important tool to make policy and regulation evolve with the changes in our energy system and to create an equal playing field for new technologies and business models that arise with the energy transition. Although an increasing number of legal frameworks on regulatory sandboxes are being implemented in Europe, the pioneers in the Netherlands decided to close their sandbox program. These contradictory events lead to questions about the potential of regulatory sandboxes to bring innovation to the European energy sector. This paper contributes to this discussion by examining the experiences with regulatory sandboxes in Austria, Belgium, France, Germany, Great Britain, the Netherlands, Norway and Spain. We compare approved sandbox projects based on their scope and regulatory derogations to identify areas of innovation and regulatory learning brought by regulatory sandboxes. We also examine the legal frameworks of the concerned countries to evaluate the interaction between the implementation of the framework and its potential to bring innovation. In this way, we develop best practices on the topics of regulatory sandboxes and their imple[1]mentation frameworks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4309455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.4309455&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu