- home
- Advanced Search
- Energy Research
- Open Access
- Open Source
- Embargo
- 7. Clean energy
- 13. Climate action
- 12. Responsible consumption
- US
- GB
- Energy Research
- Open Access
- Open Source
- Embargo
- 7. Clean energy
- 13. Climate action
- 12. Responsible consumption
- US
- GB
description Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021 United KingdomPublisher:MDPI AG Authors:
Samuel Kwasi Opoku; Samuel Kwasi Opoku
Samuel Kwasi Opoku in OpenAIRE
Walter Leal Filho; Walter Leal Filho
Walter Leal Filho in OpenAIRE
Fudjumdjum Hubert; Fudjumdjum Hubert
Fudjumdjum Hubert in OpenAIRE
Oluwabunmi Adejumo; Oluwabunmi Adejumo
Oluwabunmi Adejumo in OpenAIREClimate change is a global problem, which affects the various geographical regions at different levels. It is also associated with a wide range of human health problems, which pose a burden to health systems, especially in regions such as Africa. Indeed, across the African continent public health systems are under severe pressure, partly due to their fragile socioeconomic conditions. This paper reports on a cross-sectional study in six African countries (Ghana, Nigeria, South Africa, Namibia, Ethiopia, and Kenya) aimed at assessing their vulnerabilities to climate change, focusing on its impacts on human health. The study evaluated the levels of information, knowledge, and perceptions of public health professionals. It also examined the health systems’ preparedness to cope with these health hazards, the available resources, and those needed to build resilience to the country’s vulnerable population, as perceived by health professionals. The results revealed that 63.1% of the total respondents reported that climate change had been extensively experienced in the past years, while 32% claimed that the sampled countries had experienced them to some extent. Nigerian respondents recorded the highest levels (67.7%), followed by Kenya with 66.6%. South Africa had the lowest level of impact as perceived by the respondents (50.0%) when compared with the other sampled countries. All respondents from Ghana and Namibia reported that health problems caused by climate change are common in the two countries. As perceived by the health professionals, the inadequate resources reiterate the need for infrastructural resources, medical equipment, emergency response resources, and technical support. The study’s recommendations include the need to improve current policies at all levels (i.e., national, regional, and local) on climate change and public health and to strengthen health professionals’ skills. Improving the basic knowledge of health institutions to better respond to a changing climate is also recommended. The study provides valuable insights which may be helpful to other nations in Sub-Saharan Africa.
International Journa... arrow_drop_down International Journal of Environmental Research and Public HealthOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1660-4601/18/9/4672/pdfData sources: Multidisciplinary Digital Publishing InstituteInternational Journal of Environmental Research and Public HealthArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Environmental Research and Public HealthArticleLicense: CC BYData sources: UnpayWallInternational Journal of Environmental Research and Public HealthArticle . 2021Data sources: Europe PubMed Centrale-space at Manchester Metropolitan UniversityArticle . 2021Data sources: e-space at Manchester Metropolitan Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijerph18094672&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert International Journa... arrow_drop_down International Journal of Environmental Research and Public HealthOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1660-4601/18/9/4672/pdfData sources: Multidisciplinary Digital Publishing InstituteInternational Journal of Environmental Research and Public HealthArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefInternational Journal of Environmental Research and Public HealthArticleLicense: CC BYData sources: UnpayWallInternational Journal of Environmental Research and Public HealthArticle . 2021Data sources: Europe PubMed Centrale-space at Manchester Metropolitan UniversityArticle . 2021Data sources: e-space at Manchester Metropolitan Universityadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/ijerph18094672&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2002 FrancePublisher:Copernicus GmbH Ch. George; L. Gutzwiller; Markus Ammann; N. Lahoutifard; N. Lahoutifard; Barbara Ervens; Barbara Ervens;Abstract. The impact of multiphase reactions involving nitrogen dioxide (NO2) and aromatic compounds was simulated in this study. A mechanism (CAPRAM 2.4, MODAC Mechanism) was applied for the aqueous phase reactions, whereas RACM was applied for the gas phase chemistry. Liquid droplets were considered as monodispersed with a mean radius of 0.1 µm and a liquid content (LC) of 50 µg m-3. The multiphase mechanism has been further extended to the chemistry of aromatics, i.e. reactions involving benzene, toluene, xylene, phenol and cresol have been added. In addition, reaction of NO2 with dissociated hydroxyl substituted aromatic compounds has also been implemented. These reactions proceed through charge exchange leading to nitrite ions and therefore to nitrous acid formation. The strength of this source was explored under urban polluted conditions. It was shown that it may increase gas phase HONO levels under some conditions and that the extent of this effect is strongly pH dependent. Especially under moderate acidic conditions (i.e. pH above 4) this source may represent more than 75% of the total HONO/NO2 - production rate, but this contribution drops down close to zero in acidic droplets (as those often encountered in urban environments).
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2002Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2002Data sources: INRIA a CCSD electronic archive serverAtmospheric Chemistry and Physics (ACP)Article . 2002 . Peer-reviewedLicense: CC BY NC SAData sources: Crossrefhttps://doi.org/10.5194/acpd-2...Article . 2002 . Peer-reviewedLicense: CC BY NC SAData sources: CrossrefINRIA a CCSD electronic archive serverArticle . 2002Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2002Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-2-215-2002&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2002Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2002Data sources: INRIA a CCSD electronic archive serverAtmospheric Chemistry and Physics (ACP)Article . 2002 . Peer-reviewedLicense: CC BY NC SAData sources: Crossrefhttps://doi.org/10.5194/acpd-2...Article . 2002 . Peer-reviewedLicense: CC BY NC SAData sources: CrossrefINRIA a CCSD electronic archive serverArticle . 2002Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2002Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-2-215-2002&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2022Embargo end date: 01 Jan 2021Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Ana Radovanovic;
Bokan Chen; Bokan Chen
Bokan Chen in OpenAIRE
Saurav Talukdar; Binz Roy; +2 AuthorsSaurav Talukdar
Saurav Talukdar in OpenAIREAna Radovanovic;
Bokan Chen; Bokan Chen
Bokan Chen in OpenAIRE
Saurav Talukdar; Binz Roy; Alexandre Duarte; Mahya Shahbazi;Saurav Talukdar
Saurav Talukdar in OpenAIREDatacenter power demand has been continuously growing and is the key driver of its cost. An accurate mapping of compute resources (CPU, RAM, etc.) and hardware types (servers, accelerators, etc.) to power consumption has emerged as a critical requirement for major Web and cloud service providers. With the global growth in datacenter capacity and associated power consumption, such models are essential for important decisions around datacenter design and operation. In this paper, we discuss two classes of statistical power models designed and validated to be accurate, simple, interpretable and applicable to all hardware configurations and workloads across hyperscale datacenters of Google fleet. To the best of our knowledge, this is the largest scale power modeling study of this kind, in both the scope of diverse datacenter planning and real-time management use cases, as well as the variety of hardware configurations and workload types used for modeling and validation. We demonstrate that the proposed statistical modeling techniques, while simple and scalable, predict power with less than 5% Mean Absolute Percent Error (MAPE) for more than 95% diverse Power Distribution Units (more than 2000) using only 4 features. This performance matches the reported accuracy of the previous started-of-the-art methods, while using significantly less features and covering a wider range of use cases.
IEEE Transactions on... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2021.3125275&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert IEEE Transactions on... arrow_drop_down https://dx.doi.org/10.48550/ar...Article . 2021License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2021.3125275&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Part of book or chapter of book 2016 Malaysia, United Kingdom, MalaysiaPublisher:IEEE Authors: Freier, Daria;
Muhammad Sukki, Firdaus; Muhammad Sukki, Firdaus
Muhammad Sukki, Firdaus in OpenAIRE
Abu Bakar, Siti Hawa; Abu Bakar, Siti Hawa
Abu Bakar, Siti Hawa in OpenAIRE
Ramirez Iniguez, Roberto; +4 AuthorsRamirez Iniguez, Roberto
Ramirez Iniguez, Roberto in OpenAIREFreier, Daria;
Muhammad Sukki, Firdaus; Muhammad Sukki, Firdaus
Muhammad Sukki, Firdaus in OpenAIRE
Abu Bakar, Siti Hawa; Abu Bakar, Siti Hawa
Abu Bakar, Siti Hawa in OpenAIRE
Ramirez Iniguez, Roberto; Munir, Abu Bakar; Mohd Yasin, Siti Hajar;Ramirez Iniguez, Roberto
Ramirez Iniguez, Roberto in OpenAIRE
Mas'ud, Abdullahi Abubakar; Mas'ud, Abdullahi Abubakar
Mas'ud, Abdullahi Abubakar in OpenAIRE
Bani, Nurul Aini; Bani, Nurul Aini
Bani, Nurul Aini in OpenAIREThis paper evaluates the performance of a recently patented rotationally asymmetrical dielectric totally internally reflective concentrator (RADTIRC) under diffuse radiation. The RADTIRC has a geometrical concentration gain of 4.969 and two half acceptance angles of ± 30° and ± 40° along the x-axis and z-axis respectively. Simulation and experimental work have been carried out to determine the optical concentration gain under diffuse radiation. It was found that the RADTIRC has an optical concentration gain of 1.94 under diffuse irradiance. The experimental results for the single concentrator showed an optoelectronic gain of 2.13, giving a difference of 9.8% due to factors such as the presence of direct radiation during experiments, the increase in diffuse radiation due to the reflection from surrounded buildings as well as from the ground reflection.
https://rgu-reposito... arrow_drop_down Multimedia University, Malaysia: SHDL@MMU Digital RepositoryPart of book or chapter of book . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icp.2016.7510017&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert https://rgu-reposito... arrow_drop_down Multimedia University, Malaysia: SHDL@MMU Digital RepositoryPart of book or chapter of book . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icp.2016.7510017&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Funded by:UKRI | Retrofit PlusUKRI| Retrofit PlusAbstract The article introduces the process of deep energy retrofit carried out on a residential building in the UK, using a ‘TCosy’ approach in which the existing building is completely surrounded by a new thermal envelope. It reports on the entire process, from establishing the characteristics of the existing building, carrying out design simulations, documenting the off- site manufacture and on-site installation, and carrying out instrumental monitoring, occupant studies and performance evaluation. Multi-objective optimisation is used throughout the process, for establishing the characteristics of the building before the retrofit, conducting the design simulations, and evaluating the success of the completed retrofit. Building physics parameters before and after retrofit are evaluated in an innovative way through simulation of dynamic heating tests with calibrated models, and the method can be used as quality control measure in future retrofit programmes. New insights are provided into retrofit economics in the context of occupants’ health and wellbeing improvements. The wide scope of the lessons learnt can be instrumental in the creation of continuing professional development programmes, university courses, and public education that raises awareness and demand. These lessons can also be valuable for development of new funding schemes that address the outstanding challenges and the need for updating technical reference material, informing policy and building regulations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.01.011&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2019.01.011&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Abstract Subcooled flow boiling is frequently encountered in hot assemblies in nuclear power plant. Considerable efforts have been made to improve the understanding of boiling process and prediction of critical heat flux (CHF). In this study, the effects of non-uniform heat input on heat transfer characteristics are further investigated, so that more realistic descriptions of practical systems can be achieved vis-a-vis usual heat input assumptions. A CFD model has been built to predict subcooled flow boiling process in a vertical round pipe. The capability of the model is validated against experimental results in the publication. A variety of non-uniform heat input profiles are tested using this validated CFD model. Results show that a regular triangle-shape heat input profile will cause stronger vapour generation in the middle of the heating region. Also, the risk of reaching CHF may be increased with the position of maximum heat flux moving downstream.
The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2021Data sources: The University of Manchester - Institutional RepositoryInternational Journal of Heat and Mass TransferArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2020.120619&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert The University of Ma... arrow_drop_down The University of Manchester - Institutional RepositoryArticle . 2021Data sources: The University of Manchester - Institutional RepositoryInternational Journal of Heat and Mass TransferArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijheatmasstransfer.2020.120619&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 United KingdomPublisher:MDPI AG Funded by:UKRI | EPSRC Centre for Doctoral...UKRI| EPSRC Centre for Doctoral Training in Energy Demand (LoLo)doi: 10.3390/en14144078
The decarbonisation of heating in the United Kingdom is likely to entail both the mass adoption of heat pumps and widespread development of district heating infrastructure. Estimation of the spatially disaggregated heat demand is needed for both electrical distribution network with electrified heating and for the development of district heating. The temporal variation of heat demand is important when considering the operation of district heating, thermal energy storage and electrical grid storage. The difference between the national and urban heat demands profiles will vary due to the type and occupancy of buildings leading to temporal variations which have not been widely surveyed. This paper develops a high-resolution spatiotemporal heat load model for Great Britain (GB: England, Scotland a Wales) by identifying the appropriate datasets, archetype segmentation and characterisation for the domestic and nondomestic building stock. This is applied to a thermal model and calibrated on the local scale using gas consumption statistics. The annual GB heat demand was in close agreement with other estimates and the peak demand was 219 GWth. The urban heat demand was found to have a lower peak to trough ratio than the average national demand profile. This will have important implications for the uptake of heating technologies and design of district heating.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/14/4078/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144078&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/14/4078/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144078&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 1979 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Ligon, D.M.; Brogli, R.H.;doi: 10.2172/5556002
A specific role for the HTGR in a national energy strategy is examined. The issue is addressed in two ways. First, the role of the HTGR-GT Binary cycle plant is examined in a national energy strategy based on symbiosis between fast breeder and advanced converter reactors utilizing the thorium U233 fuel cycle. Second, the advantages of the HTGR-GT dry-cooled plant operating in arid regions is examined and compared with a dry-cooled LWR. An event tree analysis of potential benefits is applied.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/5556002&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/5556002&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 United Kingdom, China (People's Republic of), China (People's Republic of), China (People's Republic of), SpainPublisher:MDPI AG Funded by:EC | DATASOUNDEC| DATASOUNDAuthors:
R. Rueda; R. Rueda
R. Rueda in OpenAIRE
M. P. Cuéllar; M. P. Cuéllar
M. P. Cuéllar in OpenAIRE
M. Molina-Solana; M. Molina-Solana
M. Molina-Solana in OpenAIRE
Y. Guo; +1 Authors
R. Rueda; R. Rueda
R. Rueda in OpenAIRE
M. P. Cuéllar; M. P. Cuéllar
M. P. Cuéllar in OpenAIRE
M. Molina-Solana; M. Molina-Solana
M. Molina-Solana in OpenAIRE
Y. Guo;
M. C. Pegalajar; M. C. Pegalajar
M. C. Pegalajar in OpenAIREdoi: 10.3390/en12061069
handle: 10481/61857 , 10044/1/67867
This work addresses the problem of energy consumption time series forecasting. In our approach, a set of time series containing energy consumption data is used to train a single, parameterised prediction model that can be used to predict future values for all the input time series. As a result, the proposed method is able to learn the common behaviour of all time series in the set (i.e., a fingerprint) and use this knowledge to perform the prediction task, and to explain this common behaviour as an algebraic formula. To that end, we use symbolic regression methods trained with both single- and multi-objective algorithms. Experimental results validate this approach to learn and model shared properties of different time series, which can then be used to obtain a generalised regression model encapsulating the global behaviour of different energy consumption time series.
Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/6/1069/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/12/6/1069/pdfData sources: SygmaImperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/67867Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2019Data sources: Spiral - Imperial College Digital RepositoryRepositorio Institucional Universidad de GranadaArticle . 2020License: CC BYData sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12061069&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Energies arrow_drop_down EnergiesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/1996-1073/12/6/1069/pdfData sources: Multidisciplinary Digital Publishing InstituteEnergiesArticleLicense: CC BYFull-Text: https://www.mdpi.com/1996-1073/12/6/1069/pdfData sources: SygmaImperial College London: SpiralArticle . 2019License: CC BYFull-Text: http://hdl.handle.net/10044/1/67867Data sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTA2019License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTASpiral - Imperial College Digital RepositoryArticle . 2019Data sources: Spiral - Imperial College Digital RepositoryRepositorio Institucional Universidad de GranadaArticle . 2020License: CC BYData sources: Repositorio Institucional Universidad de Granadaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12061069&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors:
Florian Laggner; Florian Laggner
Florian Laggner in OpenAIRE
Z.A. Xing; Olivier Izacard;Z.A. Xing
Z.A. Xing in OpenAIRE
Egemen Kolemen; +2 AuthorsEgemen Kolemen
Egemen Kolemen in OpenAIRE
Florian Laggner; Florian Laggner
Florian Laggner in OpenAIRE
Z.A. Xing; Olivier Izacard;Z.A. Xing
Z.A. Xing in OpenAIRE
Egemen Kolemen; Egemen Kolemen
Egemen Kolemen in OpenAIRE
Andrew Nelson; Andrew Nelson;Andrew Nelson
Andrew Nelson in OpenAIRECoupling between the UEDGE (edge fluid model), GINGRED (grid generation) and CAKE (equilibrium reconstruction) codes opens the door for automated interpretative scrape-off-layer (SOL) analysis over entire discharges, providing information that is essential in efforts to couple the SOL to core transport codes. In this work, we utilize new developments in the autoUEDGE code (Izacard et al. 2018) to investigate the behavior of the DIII-D SOL during the temporal evolution of an edge-localized mode (ELM) cycle. Modeled temperature and density profiles in UEDGE are automatically matched to experimental measurements by iteratively and self-consistently adjusting transport coefficient profiles in the plasma edge. This analysis is completed over multiple ELM cycles of a well-diagnosed discharge with long (∼100ms) inter-ELM periods. Directly after the ELM crash, a short period of high-density, low-temperature conditions is observed in Langmuir probe measurements at the outer divertor. This regime is associated with enhanced Dαemission and incident particle flux, suggesting that the divertor enters a period of high recycling after an ELM crash. After about ∼25ms, divertor conditions return to their pre-ELM conditions and remain there for several tens of milliseconds. Using the autoUEDGE code, the SOL is modeled as a function of ELM cycle using upstream profiles as input. The 2D modeling successfully reproduces both divertor Thomson scattering measurements and the experimentally observed divertor dynamics. Though the recycling is kept fixed throughout the modeling, changes in particle fluxes are consistent with local experimental recycling changes induced by ELMs. Agreement between modeling and observation suggests a strong link between upstream profiles and the high-recycling divertor conditions directly following large type-I ELMs.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2020.100883&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eumore_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2020.100883&type=result"></script>'); --> </script>For further information contact us at helpdesk@openaire.eu
