- home
- Advanced Search
- Energy Research
- Closed Access
- Energy Research
- Closed Access
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Nadia Drir; Adel Mellit; Maamar Bettayeb;IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2024.3492283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2024.3492283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2019Publisher:IEEE Authors: Adel Mellit; R. Boukenoui; Şafak Sağlam; R. Bouhedir;Tested by the manufacturer, the electrical characteristics of PV modules are rated at the Standard Test Conditions (STC; 1000 W/m2 and 25 °C). But under real working conditions where the temperature and the irradiance are different from those of STC, the electrical specifications are definitely affected. Which in turn, affect the conversion efficiency and the Fill factor (FF). Here, the conversion efficiency and the FF of three different PV modules technologies: Poly-Crystalline Silicon (Poly C-Si), Copper Indium Gallium Selenide (CIGS) and Cadmium Telluride (CdTe) under STC and real working conditions of solar irradiance and temperature are evaluated based on real data, then analyzed. To this, a test facility is employed to carry out the required tests for the aforementioned PV technologies. The investigation presented in this paper aims to seek which PV technology is preferable in a specific level of irradiance and temperature.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/wits.2...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/wits.2019.8723805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/wits.2...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/wits.2019.8723805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Billel Talbi; Abdesslam Belaout; Adel Mellit; Adel Mellit; Abderrazak Arabi; Fateh Krim;Abstract In this paper, a Multiclass Adaptive Neuro-Fuzzy Classifier (MC-NFC) for fault detection and classification in photovoltaic (PV) array has been developed. Firstly, to show the generalization capability in the automatic faults classification of a PV array (PVA), Fuzzy Logic (FL) classifiers have been built based on experimental datasets. Subsequently, a novel classification system based on Adaptive Neuro-fuzzy Inference System (ANFIS) has been proposed to improve the generalization performance of the FL classifiers. The experiments have been conducted on the basis of collected data from a PVA to classify five kinds of faults. Results showed the advantages of using the fuzzy approach with reduced features over using the entire original chosen features. Then, the designed MC-NFC has been compared with an Artificial Neural Networks (ANN) classifier. Results demonstrated the superiority of the MC-NFC over the ANN-classifier and suggest that further improvements in terms of classification accuracy can be achieved by the proposed classification algorithm; furthermore faults can be also considered for discrimination.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.05.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 89 citations 89 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.05.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Adel Mellit; El Madjid Berkouk; Djaafer Lalili; B. Medjahed; N. Lourci;Abstract In this paper, the power factor of a grid-connected photovoltaic inverter is controlled using the input output Feedback Linearization Control (FLC) technique. This technique transforms the nonlinear state model of the inverter in the d–q reference frame into two equivalent linear subsystems, and then applies a pole placement linear control loops on this subsystem in order to separately control the grid power factor and the dc link voltage of the inverter. Maximum Power Point Tracker (MPPT) that allows extraction of maximum available power from the photovoltaic (PV) array has been included. This MPPT is based on variable step size incremental conductance method. Compared with conventional fixed step size method, the variable step MPPT improves the speed and the accuracy of the tracking.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.04.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 135 citations 135 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.04.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Wiley Soteris A. Kalogirou; G. Furlan; Adel Mellit; A. Messai; H. Mekki;doi: 10.1002/pip.950
AbstractAn implementation of an intelligent photovoltaic module on reconfigurable Field Programmable Gate Array (FPGA) is described in this paper. An experimental database of meteorological data (irradiation and temperature) and output electrical generation data of a Photovoltaic (PV) module (current and voltage) under variable climate condition is used in this study. Initially, an Artificial Neural Network (ANN) is developed under Matlab/Similuk, environment for modeling the PV module. The inputs of the ANN–PV module are the global solar irradiation and temperature while the outputs are the current and voltage generated from the PV‐module. Subsequently, the optimal configuration of the ANN model (ANN–PV module) is written and simulated under the Very High Description Language (VHDL) and ModelSim. The synthesized architecture by ModelSim is then implemented on an FPGA device. The designed MLP‐photovoltaic module permits the evaluation of performance of the PV module using only environmental parameters and involves less computational effort. The device can also be used for predicting the output electrical energy from the PV module and for a real time simulation in specific climatic conditions. Copyright © 2010 John Wiley & Sons, Ltd.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Adel Mellit; Soteris Kalogirou;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.11.125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.11.125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Adel Mellit; Alessandro Massi Pavan;Abstract Growing of PV for electricity generation is one of the highest in the field of the renewable energies and this tendency is expected to continue in the next years. Due to the various seasonal, hourly and daily changes in climate, it is relatively difficult to find a suitable analytic model for predicting the performance of a grid-connected photovoltaic (GCPV) plant. In this paper, an artificial neural network is used for modelling and predicting the power produced by a 20 kW p GCPV plant installed on the roof top of the municipality of Trieste (latitude 45°40′N, longitude 13°46′E), Italy. An experimental database of climate (irradiance and air temperature) and electrical (power delivered to the grid) data from January 29th to May 25th 2009 has been used. Two ANN models have been developed and implemented on experimental climate and electrical data. The first one is a multivariate model based on the solar irradiance and the air temperature, while the second one is an univariate model which uses as input parameter only the solar irradiance. A database of 3437 patterns has been divided into two sets: the first (2989 patterns) is used for training the different ANN models, while the second (459 patterns) is used for testing and validating the proposed ANN models. Prediction performance measures such as correlation coefficient ( r ) and mean bias error (MBE) are presented. The results show that good effectiveness is obtained between the measured and predicted power produced by the 20 kW p GCPV plant. In fact, the found correlation coefficient is in the range 98–99%, while the mean bias error varies between 3.1% and 5.4%.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2010.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 84 citations 84 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2010.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Cherif Larbes; Fathia Chekired; Fathia Chekired; Soteris A. Kalogirou; Adel Mellit; Adel Mellit;Abstract In this paper, various intelligent methods (IMs) used in tracking the maximum power point and their possible implementation into a reconfigurable field programmable gate array (FPGA) platform are presented and compared. The investigated IMs are neural networks (NN), fuzzy logic (FL), genetic algorithm (GA) and hybrid systems (e.g. neuro-fuzzy or ANFIS and fuzzy logic optimized by genetic algorithm). Initially, a complete simulation of the photovoltaic system with intelligent MPP tracking controllers using MATLAB/Simulink environment is given. Secondly, the different steps to design and implement the controllers into the FPGA are presented, and the best controller is tested in real-time co-simulation using FPGA Virtex 5. Finally, a comparative study has been carried out to show the effectiveness of the developed IMs in terms of accuracy, quick response (rapidity), flexibility, power consumption and simplicity of implementation. Results confirm the good tracking efficiency and rapid response of the different IMs under variable air temperature and solar irradiance conditions; however, the FL–GA controller outperforms the other ones. Furthermore, the possibility of implementation of the designed controllers into FPGA is demonstrated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2013.12.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 82 citations 82 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2013.12.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Soteris A. Kalogirou; Adel Mellit; L. Hontoria; Sulaiman Shaari;Abstract Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques or as components of integrated systems. They have been used to solve complicated practical problems in various areas and are becoming more and more popular nowadays. AI-techniques have the following features: can learn from examples; are fault tolerant in the sense that they are able to handle noisy and incomplete data; are able to deal with non-linear problems; and once trained can perform prediction and generalization at high speed. AI-based systems are being developed and deployed worldwide in a myriad of applications, mainly because of their symbolic reasoning, flexibility and explanation capabilities. AI have been used and applied in different sectors, such as engineering, economics, medicine, military, marine, etc. They have also been applied for modeling, identification, optimization, prediction, forecasting, and control of complex systems. The main objective of this paper is to present an overview of the AI-techniques for sizing photovoltaic (PV) systems: stand-alone PVs, grid-connected PV systems, PV-wind hybrid systems, etc. Published literature presented in this paper show the potential of AI as a design tool for the optimal sizing of PV systems. Additionally, the advantage of using an AI-based sizing of PV systems is that it provides good optimization, especially in isolated areas, where the weather data are not always available.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2008.01.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 336 citations 336 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2008.01.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: B. Medjahed; H. Rezzouk; Adel Mellit; A. Messai;Abstract In this paper an FPGA-based implementation of a real time perturb and observe (P&O) algorithm for tracking the Maximum Power Point (MPP) of a photovoltaic (PV) generator is presented. The P&O algorithm has been designed using the very high-speed description language (VHDL) and implemented on Xilinx Virtex-II-Pro(xc2v1000-4fg456) - Field Programmable Gate Array (FPGA). The algorithm and the hardware have been simulated and tested by conditioning the power produced by the PV-modules installed on the rooftop of the “Hall of Technology Laboratory” at Jijel University. The main advantages of the developed MPPT are low cost, good velocity, acceptable reliability, and easy implementation. However, its main disadvantage is related to the fact that for fast changes in irradiance it may fail to track the maximum power point. The efficiency of the implemented P&O controller is about 96%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2010.11.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 106 citations 106 popularity Top 10% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2010.11.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2024Publisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Nadia Drir; Adel Mellit; Maamar Bettayeb;IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2024.3492283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert IEEE Journal of Phot... arrow_drop_down IEEE Journal of PhotovoltaicsArticle . 2024 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/jphotov.2024.3492283&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2019Publisher:IEEE Authors: Adel Mellit; R. Boukenoui; Şafak Sağlam; R. Bouhedir;Tested by the manufacturer, the electrical characteristics of PV modules are rated at the Standard Test Conditions (STC; 1000 W/m2 and 25 °C). But under real working conditions where the temperature and the irradiance are different from those of STC, the electrical specifications are definitely affected. Which in turn, affect the conversion efficiency and the Fill factor (FF). Here, the conversion efficiency and the FF of three different PV modules technologies: Poly-Crystalline Silicon (Poly C-Si), Copper Indium Gallium Selenide (CIGS) and Cadmium Telluride (CdTe) under STC and real working conditions of solar irradiance and temperature are evaluated based on real data, then analyzed. To this, a test facility is employed to carry out the required tests for the aforementioned PV technologies. The investigation presented in this paper aims to seek which PV technology is preferable in a specific level of irradiance and temperature.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/wits.2...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/wits.2019.8723805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/wits.2...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/wits.2019.8723805&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Billel Talbi; Abdesslam Belaout; Adel Mellit; Adel Mellit; Abderrazak Arabi; Fateh Krim;Abstract In this paper, a Multiclass Adaptive Neuro-Fuzzy Classifier (MC-NFC) for fault detection and classification in photovoltaic (PV) array has been developed. Firstly, to show the generalization capability in the automatic faults classification of a PV array (PVA), Fuzzy Logic (FL) classifiers have been built based on experimental datasets. Subsequently, a novel classification system based on Adaptive Neuro-fuzzy Inference System (ANFIS) has been proposed to improve the generalization performance of the FL classifiers. The experiments have been conducted on the basis of collected data from a PVA to classify five kinds of faults. Results showed the advantages of using the fuzzy approach with reduced features over using the entire original chosen features. Then, the designed MC-NFC has been compared with an Artificial Neural Networks (ANN) classifier. Results demonstrated the superiority of the MC-NFC over the ANN-classifier and suggest that further improvements in terms of classification accuracy can be achieved by the proposed classification algorithm; furthermore faults can be also considered for discrimination.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.05.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 89 citations 89 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.05.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Adel Mellit; El Madjid Berkouk; Djaafer Lalili; B. Medjahed; N. Lourci;Abstract In this paper, the power factor of a grid-connected photovoltaic inverter is controlled using the input output Feedback Linearization Control (FLC) technique. This technique transforms the nonlinear state model of the inverter in the d–q reference frame into two equivalent linear subsystems, and then applies a pole placement linear control loops on this subsystem in order to separately control the grid power factor and the dc link voltage of the inverter. Maximum Power Point Tracker (MPPT) that allows extraction of maximum available power from the photovoltaic (PV) array has been included. This MPPT is based on variable step size incremental conductance method. Compared with conventional fixed step size method, the variable step MPPT improves the speed and the accuracy of the tracking.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.04.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 135 citations 135 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2011.04.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Wiley Soteris A. Kalogirou; G. Furlan; Adel Mellit; A. Messai; H. Mekki;doi: 10.1002/pip.950
AbstractAn implementation of an intelligent photovoltaic module on reconfigurable Field Programmable Gate Array (FPGA) is described in this paper. An experimental database of meteorological data (irradiation and temperature) and output electrical generation data of a Photovoltaic (PV) module (current and voltage) under variable climate condition is used in this study. Initially, an Artificial Neural Network (ANN) is developed under Matlab/Similuk, environment for modeling the PV module. The inputs of the ANN–PV module are the global solar irradiation and temperature while the outputs are the current and voltage generated from the PV‐module. Subsequently, the optimal configuration of the ANN model (ANN–PV module) is written and simulated under the Very High Description Language (VHDL) and ModelSim. The synthesized architecture by ModelSim is then implemented on an FPGA device. The designed MLP‐photovoltaic module permits the evaluation of performance of the PV module using only environmental parameters and involves less computational effort. The device can also be used for predicting the output electrical energy from the PV module and for a real time simulation in specific climatic conditions. Copyright © 2010 John Wiley & Sons, Ltd.
Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Progress in Photovol... arrow_drop_down Progress in Photovoltaics Research and ApplicationsArticle . 2010 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/pip.950&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Adel Mellit; Soteris Kalogirou;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.11.125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2021.11.125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Authors: Adel Mellit; Alessandro Massi Pavan;Abstract Growing of PV for electricity generation is one of the highest in the field of the renewable energies and this tendency is expected to continue in the next years. Due to the various seasonal, hourly and daily changes in climate, it is relatively difficult to find a suitable analytic model for predicting the performance of a grid-connected photovoltaic (GCPV) plant. In this paper, an artificial neural network is used for modelling and predicting the power produced by a 20 kW p GCPV plant installed on the roof top of the municipality of Trieste (latitude 45°40′N, longitude 13°46′E), Italy. An experimental database of climate (irradiance and air temperature) and electrical (power delivered to the grid) data from January 29th to May 25th 2009 has been used. Two ANN models have been developed and implemented on experimental climate and electrical data. The first one is a multivariate model based on the solar irradiance and the air temperature, while the second one is an univariate model which uses as input parameter only the solar irradiance. A database of 3437 patterns has been divided into two sets: the first (2989 patterns) is used for training the different ANN models, while the second (459 patterns) is used for testing and validating the proposed ANN models. Prediction performance measures such as correlation coefficient ( r ) and mean bias error (MBE) are presented. The results show that good effectiveness is obtained between the measured and predicted power produced by the 20 kW p GCPV plant. In fact, the found correlation coefficient is in the range 98–99%, while the mean bias error varies between 3.1% and 5.4%.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2010.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 84 citations 84 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2010 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2010.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Cherif Larbes; Fathia Chekired; Fathia Chekired; Soteris A. Kalogirou; Adel Mellit; Adel Mellit;Abstract In this paper, various intelligent methods (IMs) used in tracking the maximum power point and their possible implementation into a reconfigurable field programmable gate array (FPGA) platform are presented and compared. The investigated IMs are neural networks (NN), fuzzy logic (FL), genetic algorithm (GA) and hybrid systems (e.g. neuro-fuzzy or ANFIS and fuzzy logic optimized by genetic algorithm). Initially, a complete simulation of the photovoltaic system with intelligent MPP tracking controllers using MATLAB/Simulink environment is given. Secondly, the different steps to design and implement the controllers into the FPGA are presented, and the best controller is tested in real-time co-simulation using FPGA Virtex 5. Finally, a comparative study has been carried out to show the effectiveness of the developed IMs in terms of accuracy, quick response (rapidity), flexibility, power consumption and simplicity of implementation. Results confirm the good tracking efficiency and rapid response of the different IMs under variable air temperature and solar irradiance conditions; however, the FL–GA controller outperforms the other ones. Furthermore, the possibility of implementation of the designed controllers into FPGA is demonstrated.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2013.12.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 82 citations 82 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2013.12.026&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Soteris A. Kalogirou; Adel Mellit; L. Hontoria; Sulaiman Shaari;Abstract Artificial intelligence (AI) techniques are becoming useful as alternate approaches to conventional techniques or as components of integrated systems. They have been used to solve complicated practical problems in various areas and are becoming more and more popular nowadays. AI-techniques have the following features: can learn from examples; are fault tolerant in the sense that they are able to handle noisy and incomplete data; are able to deal with non-linear problems; and once trained can perform prediction and generalization at high speed. AI-based systems are being developed and deployed worldwide in a myriad of applications, mainly because of their symbolic reasoning, flexibility and explanation capabilities. AI have been used and applied in different sectors, such as engineering, economics, medicine, military, marine, etc. They have also been applied for modeling, identification, optimization, prediction, forecasting, and control of complex systems. The main objective of this paper is to present an overview of the AI-techniques for sizing photovoltaic (PV) systems: stand-alone PVs, grid-connected PV systems, PV-wind hybrid systems, etc. Published literature presented in this paper show the potential of AI as a design tool for the optimal sizing of PV systems. Additionally, the advantage of using an AI-based sizing of PV systems is that it provides good optimization, especially in isolated areas, where the weather data are not always available.
Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2008.01.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 336 citations 336 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Renewable and Sustai... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2009 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2008.01.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: B. Medjahed; H. Rezzouk; Adel Mellit; A. Messai;Abstract In this paper an FPGA-based implementation of a real time perturb and observe (P&O) algorithm for tracking the Maximum Power Point (MPP) of a photovoltaic (PV) generator is presented. The P&O algorithm has been designed using the very high-speed description language (VHDL) and implemented on Xilinx Virtex-II-Pro(xc2v1000-4fg456) - Field Programmable Gate Array (FPGA). The algorithm and the hardware have been simulated and tested by conditioning the power produced by the PV-modules installed on the rooftop of the “Hall of Technology Laboratory” at Jijel University. The main advantages of the developed MPPT are low cost, good velocity, acceptable reliability, and easy implementation. However, its main disadvantage is related to the fact that for fast changes in irradiance it may fail to track the maximum power point. The efficiency of the implemented P&O controller is about 96%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2010.11.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 106 citations 106 popularity Top 10% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2010.11.019&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu